COMPANY

Roll No.

Total Pages : 5

235101

December, 2019 B.Sc. Honors (Physics) 1st Semester Mathematical Physics-I (BPH-101)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) If \vec{A} and \vec{B} are two unit vectors and θ is the angle between them, then find the value of θ such that $\vec{A} + \vec{B}$ is a unit vector. (1.5)
 - (b) Define scalar product of two vectors and \vec{A} and \vec{B} along with its geometrical interpretation. (1.5)

235101/110/111/31

[P.T.O. 11/12

(c) Two vector fields are given as (i)
$$\vec{A} = mi$$
 and
(ii) $\vec{B} = m\vec{r}$. Find $\nabla . \vec{B}$ and $\nabla \times \vec{B}$ and draw
 $\vec{A}, \vec{B}, \nabla . \vec{B}$ and $\nabla \times \vec{B}$. (1.5)

(d) If
$$y_1 = \frac{x_2 x_3}{x_1}$$
, $y_2 = \frac{x_3 x_1}{x_2}$ and $y_3 = \frac{x_2 x_1}{x_3}$ then show

that the Jacobian of (y_1, y_2, y_3) with respect to (x_1, x_2, x_3) is 4. (1.5)

(e) Find the values of integrals (i)
$$\int_{1}^{5} (3x-2)\delta(x-2) dx$$

(ii)
$$\int_{3}^{5} (3x-2)\delta(x-2) dx.$$
 (1.5)

(f) Plot the graph corresponding to y = |x + 2|. (1.5)

(g) Find the Integrating Factor (I.F.) for the 1st order linear differential equation

$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1}x.$$
 (1.5)

(h) Show that complementary function (C.F.) of the differential equation
$$\frac{d^2y}{dx^2} + y = x - \cot x$$
 is given as C.F. = $a \cos x + b \sin x$, where 'a' and 'b' are constants. (1.5)

2

- (i) In spherical polar coordinates, find ∇f for scalar field $f = \frac{1}{r}$. (1.5)
- (j) Prove that $\nabla \times (\phi \vec{V}) = (\nabla \phi) \times \vec{V} + \phi \nabla \times \vec{V}$, where ϕ is a scalar field. (1.5)

PART - B

- (a) Write the general form of a linear differential equation of 1st order and show that its solution is given asy $(I.F.) = \int Q(I.F.)dx + c$, where P and Q are the functions of x, c is a constant and I.F. is the integrating factor given as I.F. = $e^{\int Pdx}$. (10)
 - (b) Solve the differential equation

$$(x^2 + 1)\frac{dy}{dx} + 2xy = x^2.$$
 (5)

3. (a) If
$$(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, show that (i) $\nabla(r^n) = nr^{n-2}$ where
 $r = |\vec{r}|$ (ii) $\nabla(\vec{a}.\vec{r}) = \vec{a}$, where \vec{a} is a constant
vector. (5)

(b) Define gradient of a scalar field and also discuss its geometrical interpretation. (10)

235101/110/111/31 3 [P.T.O.

235101/110/111/31

2.

4. Discuss the variation method of parameters to find the particular integral (P.I.) of differential equation

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = X.$$

Also apply this method to solve the differential equation :

$$\frac{d^2y}{dx^2} + y = \tan x. \tag{15}$$

5. (a) Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, z = 0, under field of force $\overline{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}$.

Is the force conservative? (5)

- (b) State Stokes theorem and verify it for the vector field $\vec{F} = z\hat{i} + x\hat{j} + y\hat{k}$, where C is the unit circle in x-y plane bounding the hemisphere $z = \sqrt{1 - x^2 - y^2}$. (10)
- 6. (a) Show that $\iint_{S} \vec{F} \cdot \hat{n} \, ds = \frac{3}{2}$, where $\vec{F} = 4xz\hat{i} - y^{2}\hat{j} + yz\hat{k}$ and 'S' is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (10)

235101/110/111/31

4

- (b) If $y_1 = e^{-x} \cos x$, $y_2 = e^{-x} \sin x$
 - and $\frac{d^2y}{d^2x} + 2\frac{dy}{dx} + 2y = 0$, then (i) Calculate the Wronskin (ii) Verify that y_1 and y_2 satisfy this differential equation (iii) Apply Wronskin test to check that y_1 and y_2 are linearly independent. (5)
- With the help of clear diagram define spherical and cylindrical polar coordinate systems. Derive the expressions for Laplacian in each of these two coordinate systems.

5

(15)

235101/110/111/31

7.