B.Sc. Honors (Physics) 1st Semester Mathematical Physics-I (BPH-101)

Time : 3 Hours]

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1 1. (a) If \vec{A} and \vec{B} are two unit vectors and θ is the angle between them, then find the value of θ such that $\vec{A}+\vec{B}$ is a unit vector.
(b) Define scalar product of two vectors and \vec{A} and \vec{B} along with its geometrical interpretation.
(c) Two vector fields are given as (i) $\vec{A}=m \hat{i}$ and (ii) $\vec{B}=m \vec{r}$. Find $\nabla \cdot \vec{B}$ and $\nabla \times \vec{B}$ and draw $\vec{A}, \vec{B}, \nabla, \vec{B}$ and $\nabla \times \vec{B}$.
(d) If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}$ and $y_{3}=\frac{x_{2} x_{1}}{x_{3}}$ then show that the Jacobian of $\left(y_{1}, y_{2}, y_{3}\right)$ with respect to $\left(x_{1}, x_{2}, x_{3}\right)$ is 4 .
(e) Find the values of integrals (i) $\int_{1}^{5}(3 x-2) \delta(x-2) d x$ (ii) $\int_{3}^{5}(3 x-2) \delta(x-2) d x$
(f) Plot the graph corresponding to $y=|x+2|$. (1.5)
(g) Find the Integrating Factor (I.F.) for the $1^{\text {st }}$ order linear differential equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x \tag{1.5}
\end{equation*}
$$

(h) Show that complementary function (C.F.) of the differential equation $\frac{d^{2} y}{d x^{2}}+y=x-\cot x$ is given as C.F. $=a \cos x+b \sin x$, where ' a ' and ' b ' are constants.
(i) In spherical polar coordinates, find ∇f for scalar field $f=\frac{1}{r}$.
(j) Prove that $\nabla \times(\phi \vec{V})=(\nabla \phi) \times \vec{V}+\phi \nabla \times \vec{V}$, where ϕ is a scalar field.

PART - B

2. (a) Write the general form of a linear differential equation of $1^{\text {st }}$ order and show that its solution is given asy $($ I.F. $)=\int \mathrm{Q}($ I.F. $) d x+c$, where P and Q are the functions of x, c is a constant and I.F. is the integrating factor given as I.F. $=e^{\int P d x}$.
(b) Solve the differential equation

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2} \tag{5}
\end{equation*}
$$

3. (a) If $\left(\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}\right.$, show that (i) $\nabla\left(r^{n}\right)=n r^{n-2}$ where $r=|\vec{r}|$ (ii) $\nabla(\vec{a} \cdot \vec{r})=\vec{a}$, where \vec{a} is a constant vector.
(b) Define gradient of a scalar field and also discuss its geometrical interpretation.
4. Discuss the variation method of parameters to find the particular integral (P.I.) of differential equation

$$
\frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=X
$$

Also apply this method to solve the differential equation :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+y=\tan x \tag{15}
\end{equation*}
$$

5. (a) Find the work done in moving a particle once round the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$, under field of force

$$
\begin{equation*}
\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k} . \tag{5}
\end{equation*}
$$

Is the force conservative?
(b) State Stokes theorem and verify it for the vector field $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$, where C is the unit circle in $x-y$ plane bounding the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$.
6. (a) Show that $\iint_{S} \vec{F} \cdot \hat{n} d s=\frac{3}{2}$,
where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and ' S ' is the surface of the cube bounded by the planes $x=0, x=1, y=0$,

$$
\begin{equation*}
y=1, z=0, z=1 \tag{10}
\end{equation*}
$$

(b) If $y_{1}=e^{-x} \cos x, y_{2}=e^{-x} \sin x$ and $\frac{d^{2} y}{d^{2} x}+2 \frac{d y}{d x}+2 y=0$, then (i) Calculate the Wronskin (ii) Verify that y_{1} and y_{2} satisfy this differential equation (iii) Apply Wronskin test to check that y_{1} and y_{2} are linearly independent.
7. With the help of clear diagram define spherical and cylindrical polar coordinate systems. Derive the expressions for Laplacian in each of these two coordinate systems.

