235102

December, 2019

B.Sc. (Hons.) Physics- I SEMESTER Mechanics (BPH-102)

Time: 3 Hours]

[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Define elastic potential energy. Give its expression.
[CO-1]
(b) What are the features of central force motion?
(c) State Kepler's laws.
[CO-3]
(d) A particle vibrates with SHM of amplitude 0.06 m and time period 31.4 s . Calculate its maximum velocity.
(e) What is impulse? State its units. [CO-1] (1.5)
(f) Define moment of inertia. What is its physical significance?
[CO-2] (1.5)
(g) Do photons have mass? If no, then how photons have momentum?
[CO-4] (1.5)
(h) What is Hooke's law? What do you mean by elastic limit?
[CO-2] (1.5,
(i) What is laboratory and centre of mass frame of reference?
[CO-4] (1.5)
(j) What do you understand by Coriolis force? Write its few applications.
[CO-4] (1.5)

PART - B

2. (a) Establish the following relation for a rocket
$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{rel}} \log _{\mathrm{e}}\left(\mathrm{M}_{\mathrm{o}} / \mathrm{M}_{\mathrm{f}}\right)$.
[CO-1] (10)
(b) A phonograph for turntable rotates at 33.3 revolutions per minute. What is the frequency of revolution, angular velocity and period of motion?
[CO-1] (5)
3. (a) What is meant by conservative force? Show that for a conservative force field, a scalar function $U(r)$ can be defined as $F(r)=-\nabla U(r)$. Also show that $\nabla \times F(r)=0$.
[CO-1] (7)
(b) Show that in perfectly inelastic collision in laboratory system there is always loss in kinetic energy.
[CO-1] (8)
4. What is driven harmonic oscillator? Set up a differential equation of motion for such a oscillator. Discuss the transient and steady state terms in complete solution. Discuss the condition of resonance.
[CO-3] (15)
5. (a) Calculate the radius of gyration of a solid sphere rotating about a diameter, if its radius is 5.0 cm .
[CO-2] (5)
(b) Derive the expression for the moment of inertia of a hollow sphere about a diameter. [CO-2] (10)
6. (a) State the postulates of special theory of relativity and hence deduce the Lorentz transformations.
[CO-4] (10)
(b) Find the speed that a proton must be given if its mass is to be twice its rest mass $1.67 \times 10^{-27} \mathrm{~kg}$.

$$
[\mathrm{CO}-4]
$$

235102/100/111/377
3
[PTO.
7. (a) How can a two body problem can be reduced to one body problem for central force motion? Also write the concept of reduced mass.
[CO-3] (10)
(b) Show variation of gravitational potential and field due to a spherical shell graphically.
[CO-2]

