Roll No.

Total Pages : 4

235103

December, 2019 **BSc.** (H) Physics - I SEMESTER Calculus (OMTH-101)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- It is compulsory to answer all the questions (1.5 marks 1. each) of Part-A in short.
- Answer any four questions from Part-B in detail. 2.
- Different sub-parts of a question are to be attempted 3 adjacent to each other.

PART - A

- (a) Find the *n*th differential coefficient of log $(ax + x^2)$. 1. (1.5)•
 - (b) Find the radius of curvature at the origin for

$$x^{3} + 2x^{2}y + 3xy^{2} - 4y^{3} + 5x^{2} - 6xy + 7y^{2} - 8y = 0.$$
(1.5)

(1.5)(c) Expand sin x in powers of $(x - \pi/2)$.

235103/150/11/215

IP.T.O. 18/12

(d) If
$$u = \log\left(\frac{x^2 + y^2}{x + y}\right)$$
, then by using Euler's theorem,
prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 1$. (1.5)

(e) If
$$x = uv$$
, $y = \frac{u+v}{u-v}$, then, find $\frac{\partial(u,v)}{\partial(x,y)}$. (1.5)

(f) Evaluate
$$\int_{0}^{\pi} \int_{0}^{a(1-\cos\theta)} r^{2} \sin\theta \, dr \, d\theta. \qquad (1.5)$$

(g) Evaluate $\iint_R xy(x+y)dxdy$ where R is the region

bounded by $x^2 = y$ and x = y. (1.5)

- (h) Find the surface area of a sphere of radius 'a'. (1.5)
- (i) Evaluate $\int_{0}^{1} x^4 (1-\sqrt{x})^5 dx$ using Beta-Gamma function. (1.5)
- (j) Evaluate $\iiint_R (x+y+z)dxdydz$, where $R: 0 \le x \le 1$, $1 \le y \le 2, 2 \le z \le 3$. (1.5)

2

2.

for x = 0 using Leibnitz's theorem. (8)

(a) Find the value of the *n*th derivative of $y = e^{m \sin^{-1} x}$

PART - B

(b) Find all the asymptotes of the curve

- $4x^3 3xy^2 y^3 + 2x^2 xy y^2 1 = 0.$ (7)
- 3. (a) In a plane triangle ABC, find the maximum value of cos A cos B cos C. (8)
 - (b) Expand $(x^2y + \sin y + e^x)$ in powers of (x 1) and $(y \pi)$ using Taylor's series for two variables. (7)
- (a) The curve y = 1/(1 + x²) is rotated about x-axis between x = -1 and x = 1. Find the volume of the solid generated.
 - (b) Change the order of integration I = $\int_{0}^{1} \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same. (7)
- 5. (a) Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. (8)
- 235103/150/111/215 3 [P.T.O.

235103/150/111/215

- (b) Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = a. (7)
- 6. (a) If ρ is the radius of curvature at any point P on the parabola $y^2 = 4ax$ and S is the focus of the parabola, then show that ρ^2 varies as (SP)³. (8)

(b) Evaluate
$$\int_{0}^{\infty} \frac{e^{-x} \sin bx}{x} dx$$
 using differentiation under the integral sign. (7)

- 7. (a) Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$. (8)
 - (b) State and prove the relation between Beta and Gamma functions. (7)

235103/150/111/215

4