235103

December, 2019
 BSc. (H) Physics - I SEMESTER Calculus (OMTH-101)

Time : 3 Hours
[Max. Marks : 75

Instructions .

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Find the nth differential coefficient of $\log \left(a x+x^{2}\right)$.
(b) Find the radius of curvature at the origin for

$$
\begin{equation*}
x^{3}+2 x^{2} y+3 x y^{2}-4 y^{3}+5 x^{2}-6 x y+7 y^{2}-8 y=0 . \tag{1.5}
\end{equation*}
$$

(c) Expand $\sin x$ in powers of $(x-\pi / 2)$.
(d) If $u=\log \left(\frac{x^{2}+y^{2}}{x+y}\right)$, then by using Euler's theorem, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(e) If $x=u v, y=\frac{u+v}{u-v}$, then, find $\frac{\partial(u, v)}{\partial(x, y)}$.
(f) Evaluate $\int_{0}^{\pi} \int_{0}^{a(1-\cos \theta)} r^{2} \sin \theta d r d \theta$.
(g) Evaluate $\iint_{R} x y(x+y) d x d y$ where R is the region bounded by $x^{2}=y$ and $x=y$.
(h) Find the surface area of a sphere of radius ' a '. (1.5)
(i) Evaluate $\int_{0}^{1} x^{4}(1-\sqrt{x})^{5} d x$ using Beta-Gamma function.
(1.5)
(j) Evaluate $\iiint_{R}(x+y+z) d x d y d z$, where $\mathrm{R}: 0 \leq x \leq 1$,

$$
\begin{equation*}
1 \leq y \leq 2,2 \leq z \leq 3 \tag{1.5}
\end{equation*}
$$

PART - B

2. (a) Find the value of the nth derivative of $y=e^{m \sin ^{-1} x}$ for $x=0$ using Leibnitz's theorem.
(b) Find all the asymptotes of the curve

$$
\begin{equation*}
4 x^{3}-3 x y^{2}-y^{3}+2 x^{2}-x y-y^{2}-1=0 \tag{7}
\end{equation*}
$$

3. (a) In a plane triangle ABC , find the maximum value of $\cos A \cos B \cos C$.
(b) Expand $\left(x^{2} y+\sin y+e^{x}\right)$ in powers of $(x-1)$ and $(y-\pi)$ using Taylor's series for two variables.
4. (a) The curve $y=1 /\left(1+x^{2}\right)$ is rotated about x-axis between $x=-1$ and $x=1$. Find the volume of the solid generated.
(b) Change the order of integration $\mathrm{I}=\int_{0}^{12-x} \int_{x^{2}}^{2-x} x d y d x$ and hence evaluate the same.
5. (a) Evaluate $\iiint x y z d x d y d z$ over the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

235103/150/111/215 3
(b) Find the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=a$.
6. (a) If ρ is the radius of curvature at any point P on the parabola $y^{2}=4 a x$ and S is the focus of the parabola, then show that ρ^{2} varies as (SP) ${ }^{3}$.
(b) Evaluate $\int_{0}^{\infty} \frac{e^{-x} \sin b x}{x} d x$ using differentiation under the integral sign.
7. (a) Find the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
(b) State and prove the relation between Beta and Gamma functions.

