May 2019

B.Sc. (Physics/Chemistry) II Semester LINEAR ALGEBRA
 (OMTH-201)

Time : 3 Hours]

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find k so that u and v are orthogonal, where $u=(1, k,-3)$ and $v=(2,-5,4)$.
(b) State Cauchy-Schwarz inequality and triangle inequality for vectors.
(c) Define Rank of a matrix with example.
(d) Write short note on vector space and subspace. (1.5)
(e) Determine whether u and v are linearly dependent where $u=2 t^{2}+4 t-3, v=4 t^{2}+8 t-6$.

335204/140/111/212
(f) Explain Basis and dimensions of a vector space.
(g) Define transition matrix.
(h) If $f: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ is a mapping defined by $f(x, y)=(x+y, x)$ then show that $' f$ is linear.
i) State Projection Theorem.
(j) Define orthogonal projection onto a subspace.

PART-B

2. (a) If $u=(1,-3,4)$ and $v=(3,4,7)$ then find (i) $\cos \theta$, where θ is the angle between u and v.
(ii) $\operatorname{proj}(u, v)$, projection of u onto v.
(iii) $d(u, v)$, the distance between u and v.
(iv) $\|u\|$ and $\|v\|$.
(b) Find the eigen values and corresponding eigen vectors of the following matrix :

$$
\left[\begin{array}{lll}
1 & -3 & 3 \tag{7}\\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]
$$

3. (a) If $A=\left[\begin{array}{cc}7 & 3 \\ 3 & -1\end{array}\right]$ then find an orthogonal matrix P such that $\mathrm{D}=\mathrm{P}^{-1} \mathrm{AP}$ is diagonal.
(b) Show that the vectors $u=(1,1,1), v=(1,2,3)$, $w=(1,5,8)$ span R^{3}.
4. (a) Solve the following system of equations by Rank method
$x+2 y+z=3,2 x+5 y-z=-4,3 x-2 y-z=5$.
(b) State and Prove Dimension theorem.
5. If $f: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ be a linear transformation defined by $f(x, y, z, t)=(x-y+z+t, x+2 z-t, x+y+3 z-3 t)$
Then find a basis and the dimension of the
(i) Range of f
(ii) Kernel of f.
6. (a) Reduce the following matrix to row canonical form

$$
\left[\begin{array}{ccc}
-4 & 1 & -6 \tag{8}\\
1 & 2 & -5 \\
6 & 3 & -4
\end{array}\right]
$$

(b) Determine whether or not the vectors $u=(1,1,2)$, $v=(2,3,1), w=(4,5,5)$ in R^{3} are linearly dependent. If they are linearly dependent, find a relation between them.
7. (a) If a linear transformation $f: \mathrm{V} \rightarrow \mathrm{U}$ is one to one and onto then show that the inverse mapping $f^{-1}: \mathrm{U} \rightarrow \mathrm{V}$ is also linear.
(b) If W be the subspace of R^{5} spanned by $u=(1,2,3$, $-1,2)$ and $v=(2,4,7,2,-1)$ then find a basis of the orthogonal complement W^{\perp} of W .
(8)

