
DESIGN OF AN ONTOLOGY DRIVEN INFORMATION

SYSTEM IN SEMANTIC WEB

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

JJ.C. BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY, YMCA

by

RANJNA JAIN

Registration No: YMCAUST/PH58/2011

Under the Supervision f

Dr. NEELAM DUHAN (Late) Dr. A.K. SHARMA

Assistant Professor Professor

SCIENCE AND TECH RSTN OF S

ARIDAHAD
HARYANA

Department of Computer Engineering

Faculty of Engineering and Technology

J.C. BOSE University of Science &Technology, YMCA

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

July 2019

DEDICATED

to

My Husband Mr. Ravi Jain

and

My beloved Daughter Aadya Jain

i

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled “DESIGN OF AN ONTOLOGY DRIVEN

INFORMATION SYSTEM IN SEMANTIC WEB” by RANJNA JAIN, being

submitted in fulfillment of requirement for the award of Degree of Doctor of Philosophy

in the Department of Computer Engineering under Faculty of Engineering and Technology

of J.C. Bose University of Science and Technology, YMCA, Faridabad, during the

academic year March 2012-December 2018, is a bonafide record of my original work

carried out under the guidance and supervision of Dr. NEELAM DUHAN, ASSISTANT

PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING & (Late) Dr.

A.K. SHARMA & has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

 (RANJNA JAIN)

 Registration No. YMCAUST/PH58/2011

ii

CERTIFICATE

This is to certify that this thesis entitled “DESIGN OF AN ONTOLOGY DRIVEN

INFORMATION SYSTEM IN SEMANTIC WEB” by RANJNA JAIN submitted in

fulfillment of the requirement for the award of Degree of Doctor of Philosophy in

DEPARTMENT OF COMPUTER ENGINEERING, under Faculty of Engineering and

Technology of J.C. Bose University of Science and Technology, YMCA, Faridabad, during

the academic year March 2012-December 2018, is a bonafide record of work carried out

under my guidance and supervision.

I further declare that to the best of my knowledge; the thesis does not contain any part of

any work which has been submitted for the award of any degree either in this university or

in any other university.

Date: Dr. NEELAM DUHAN

 ASSISTANT PROFESSOR

 Department of Computer Engineering

 Faculty of Informatics & Computing

J.C. Bose University of Science & Technology, YMCA, Faridabad

iii

ACKNOWLEDGEMENT

It gives me immense pleasure to acknowledge the people whose priceless contributions

helped me reach here. Without their support, this piece of academic work, in the form of

my doctoral thesis, would have just been reduced to mere ink on paper. First and foremost,

my deepest and heartfelt thanks to (Late) Dr. A.K. Sharma who has been not just a guide

par excellence but also an inspiring teacher, Sharma sir not only created a solid foundation

in my mind, but also nurtured it over the years till his last days through his tireless efforts.

Sir, you have shown me the right path always, lit the lamp of clarity whenever I was in

doubt, corrected me when I was wrong, encouraged me when I was right, criticized me

when I became over-confident and motivated me whenever I would lose hope.

At this moment of accomplishment, I am greatly indebted to my research guide, Dr.

Neelam Duhan, who accepted me as her Ph.D. student and offered me her mentorship,

sisterly love and care. This work would not have been possible without her guidance and

involvement, her support and encouragement on daily basis from the start of the journey

till date. Under her guidance, I successfully overcame many difficulties and learnt a lot.

Her own zeal for perfection, passion, unflinching courage and conviction has always

inspired me to do more. She has taught me another aspect of life, that, “Believe in yourself”

and this encouraged me to move toward my goals. For all these, I sincerely thank her from

bottom of my heart and will be truly indebted to her throughout my life time.

I am thankful to B.S. Annapurna Institute of Technology & Management, Faridabad for

giving me the permission to carry out Ph.D. I sincerely thank Mr. Divya Gupta, Dr. S.S.

Tyagi and Dr. Pawan Bhadana for providing me time and space for the research work.

I would like to express my sincere gratitude to chairperson Dr. Komal Kumar Bhatia and

Dr. Atul Mishra, Dean R&D for their valuable advice, support and information on different

aspects.

 It is my firm belief that no success in life can ever be achieved without the well wishes

and support of one’s family. And when I look back from where I have reached today, my

belief only becomes stronger. First and foremost, I show my very special gratitude towards

my Parents, Sh. Uttam Chand Gupta and Smt. Manorama, for believing in me and giving

iv

me the best lesson of life. My parents inspired me to do better with every passing day. I am

sure no one today would be as proud as them seeing me complete my doctoral thesis. I also

heartily thank my dearest Father-in-law (Late) Sh. Netra Pal Singh, Mother-in-law Mrs.

Kamlesh Jain, Uncle Sh. Satish Chander Goel, Aunt Smt. Chandrakanta Goel and my

whole family for their unwavering support.

I owe thanks to a very special person, my husband, Mr. Ravi Jain for his continued and

unfailing love, support and understanding during my pursuit of Ph.D. degree that made the

completion of thesis possible. You were always around at times I thought that it is

impossible to continue, you helped me to keep things in perspective. I greatly value his

contribution and deeply appreciate his belief in me. I appreciate my beloved daughter

Aadya Jain for abiding my ignorance and the patience she showed during my thesis writing.

Words would never say how grateful I am to both of you. I consider myself the luckiest in

the world to have such a lovely and caring family, standing beside me with their love and

unconditional support.

It’s my fortune to gratefully acknowledge the support of my friends, Deepkiran Munjal,

Bhawna Chauhan, Geetanjali Gandhi, Anju Gera and Girija Srikanth for their support and

generous care throughout the research tenure. They were always beside me during the

happy and hard moments to push me and motivate me. Big thanks to all my fellow research

scholars and friends, particularly, Ms. Sumita Gupta and Ms. Mamta Kathuria for their co-

operation and support.

And finally, thinking that one entity without whose grace, all the above wonderful people

wouldn’t have come in to my life and without whose blessings, I wouldn’t have been where

I am. Thank you almighty, the ever knowing, omnipresent and ever-forgiving God for

being kind and watching over me all these years and I know that you will continue to do

so forever.

 (RANJNA JAIN)

 Registration No. YMCAUST/PH58/2011

v

ABSTRACT

World Wide Web (WWW) is a huge repository of information and its success is due to its

decentralized structure where anyone irrespective of its geographic location can publish its

content. However, due to large amount of information; it is becoming difficult to access

the relevant information. To deal with this, many keywords based search engines such as

Google, Bing etc. are available which retrieves results with respect to user query. However,

the main limitation of these search engines is that they produce results based on keyword

matching due to unstructured format of data. This unable machines to understand the

meaning of data and thus they are limited to use for presenting data only. To deal with

these issues, Tim-Berner-Lee envisioned Semantic Web which gives more emphasis on

data rather than documents.

In Semantic Web, data is represented in structured format using semantic web technologies

such as RDF, OWL etc. Each data is uniquely identified as URI (Uniform Resource

Identifier) which removes ambiguity from the data and thus makes data machine readable.

Developers have started to represent data in structured format using these technologies and

to provide more relevant results several Semantic Search Engines such as Swoogle, Falcon,

and Semantic Web Search Engine (SWSE) etc. has been developed. But, it does not

conclude that existing data available in the form of semi-structured and unstructured format

is of no relevance. For instance, in the domain of Job, there exists several Jobboards which

provide job posts to its users. But, these systems are keyword based, therefore retrieve

results based on keyword matching only which results less relevant results. This

information can also be utilized by transforming semi-structured/ unstructured data into

structured format, thereby expanding the coverage area of information in semantic web.

But, less efforts have been done in this area.

By knowing the advantages of Semantic Web and availability of abundant resources in the

current web, the present thesis work contributes to the research efforts of designing and

developing a framework of Ontology Driven Information System in Semantic Web in the

domain of Job. The system has developed ontologies with respect to selected Jobboards.

The “OntoJobextractor” framework extracts semi-structured data from several Jobboards

and transforms into structured format using Jobboard specific ontologies. A framework for

vi

ontology alignment has been proposed which aligns the ontologies that will be useful

during query processing. “OntoJob Query Processor” processes user’s given keyword

based queries by converting into SPARQL format. The developed framework Jobology is

integrated with Student domain to provide Job posts per his/her qualification and keyskills

at one place.

The ontologies were developed in Protégé framework tool successfully and have been

validated for consistency and certainty using Pellet reasoner with the set of SPARQL

queries. The developed system is efficient in terms of covering and extracting the required

relevant data from semi-structured formatted webpages. The developed system is efficient

in terms of establishing alignment between ontologies for query processing. This system

provides a friendly user interface to its users. The system has been compared with

traditional mechanism of searching with the existing Jobboards using the evaluation

metrics that shows an improvement over the existing systems. The developed system

provides more relevant results at one place on a single click. The developed system

supports scalability, robustness and generate more relevant results to fulfill the user

requirement.

vii

TABLE OF CONTENTS

Candidate Declaration i

Certificate ii

Acknowledgement iii

Abstract v

Table of Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xvii

Chapter I INTRODUCTION 1-8

 GENERAL 1

 SEMANTIC WEB TECHNOLOGIES 3

 MOTIVATION 3

 PROBLEM DEFINITION 5

 OBJECTIVES OF THE PROPOSED WORK 5

 ORGANIZATION OF THE THESIS 7

Chapter II CURRENT WEB & SEMANTIC WEB: A REVIEW 9-50

 INTRODUCTION 9

 INFORMATION RETRIEVAL TOOLS 10

 PROBLEM WITH CURRENT INFORMATION RETRIEVAL MODELS 12

 INTRODUCTION TO SEMANTIC WEB 13

 ONTOLOGY 16

2.5.1 Main Functions of Ontologies 17

2.5.2 Reasons for Developing Ontology 18

2.5.3 Kinds of Ontology 19

 LANGUAGES TO SUPPORT ONTOLOGY MANAGEMENT 19

 SEMANTIC REASONERS 28

 ONTOLOGY DEVELOPMENT TOOLS 29

 ONTOLOGY RULE LANGUAGES 32

 SEMANTIC WEB QUERY LANGUAGES 34

viii

 PROGRAMMING THE SEMANTIC WEB 38

 SEMANTIC SEARCH ENGINES 39

2.12.1 Swoogle 39

2.12.2 Falcon 41

2.12.3 Hakia 43

2.12.4 Semantic Web Search Engine (SWSE) 45

2.12.5 DuckDuckGo 47

2.12.6 Sensebot 47

2.12.7 Powerset 47

2.12.8 Watson 48

 SUMMARY 50

Chapter III ONTOLOGY MANAGEMENT TOOLS 51-74

 INTRODUCTION 51

 PROCESS OF DEVELOPING ONTOLOGY 51

 BENEFITS OF ONTOLOGY 56

 ISSUES IN DATA SHARING AND ONTOLOGY INTEGRATION 56

 ARCHITECTURES OF ONTOLOGY MANAGEMENT 57

 ONTOLOGY MANAGEMENT METHODS 58

3.6.1 Ontology Alignment Methods 59

3.6.2 Ontology Merging Methods 65

3.6.3 Ontology Integration Tools 68

 SUMMARY 72

Chapter IV JOBOLOGY: SEARCH SYSTEM FOR PROVIDING

RELEVANT JOBS USING ONTOLOGY 75-84

 GENERAL 75

 JOBOLOGY SEARCH SYSTEM 76

 FUNCTIONAL DIAGRAM OF THE PROPOSED SYSTEM 78

 COMPONENT DETAILS OF JOBOLOGY SEARCH SYSTEM 79

4.4.1 Ontology Development Module 81

4.4.2 Data Extraction Module 81

4.4.3 Ontology Alignment Module 82

4.4.4 Search Module 82

4.4.5 Query Processing Module 82

ix

 SUMMARY 83

Chapter V ONTOLOGY DEVELOPMENT IN THE DOMAIN OF

JOBBOARDS 85-100

 GENERAL 85

 ONTOLOGY DEVELOPMENT FOR JOB BOARDS 85

 QUERY PROCESSING IN ONTOLOGY 97

 SUMMARY 99

Chapter VI ONTOJOBEXTRACTOR: RELEVANT INFORMATION

EXTRACTION FROM JOB BOARDS 101-114

 GENERAL 101

 PROPOSED APPROACH FOR EXTRACING RELEVANT INFORMATION

FROM JOB BOARD 102

6.2.1 Query URL Builder 104

6.2.2 Downloader 108

6.2.3 Selector 108

6.2.4 Information Extractor 109

6.2.5 Ontology Populator 110

 IMPLEMENTATION OF THE PROPOSED SYSTEM 110

 SUMMARY 113

Chapter VII BUILDING GLOBAL INDEXES FOR ONTOLOGY

ALIGNMENT 115-136

 GENERAL 115

 PROPOSED SYSTEM FOR BUILDING GLOBAL INDEXES FOR

ONTOLOGY ALIGNMENT 115

7.2.1 Ontology Layer 117

7.2.2 Preprocessing Layer 117

7.2.3 Local Repository Layer 120

7.2.4 Matching Process Layer 120

7.2.5 Alignment Layer 126

 IMPLEMENTATION OF THE PROPOSED WORK 134

 SUMMARY 135

x

Chapter VIII ONTOJOB QUERY PROCESSOR: AN ONTOLOGY

DRIVEN QUERY PROCESSING METHOD 137-166

 GENERAL 137

 PROPOSED SYSTEM FOR ONTOJOB QUERY PROCESSING 137

8.2.1 Various Data Structures used for Query Processing 139

8.2.2 Component Modules of Query processor 143

 GENERATION OF SPARQL QUERIES 147

 RESULT MERGER 151

 EXAMPLE ILLUSTRATION & IMPLEMENTATION 151

 IMPLEMENTATION OF THE PROPOSED WORK 154

 INTEGRATING JOBOLOGY SEARCH SYSTEM WITH STUDENT

DOMAIN 155

 PERFORMANCE EVALUATION OF THE PROPOSED SYSTEM 156

8.8.1 Evaluation for individual Jobboards 157

8.8.2 Evaluation at System Level 163

 SUMMARY 166

Chapter IX CONCLUSION AND FUTURE WORK 167-170

 CONCLUSION 167

 FUTURE SCOPE 169

REFERENCES 171-186

APPENDIX-1 187-190

APPENDIX-2 191-194

APPENDIX-3 195-198

BRIEF PROFILE OF SCHOLAR 199

LIST OF PUBLICATIONS 201

xi

LIST OF FIGURES

Fig. 1.1 Depiction of Flow of outline of the thesis 8

Fig. 2.1 Architecture of Search Engine 10

Fig. 2.2 Architecture of Meta-Search Engine 12

Fig. 2.3 Architecture of Semantic Web 14

Fig. 2.4 RDF graph 22

Fig. 2.5 Example of RDFa 24

Fig. 2.6 Example in OIL Language Format 25

Fig. 2.7 Ontology in DAML 26

Fig. 2.8 Ontology in OWL Language 27

Fig. 2.9 SWRL Rule 32

Fig. 2.10 Example of RuleML 33

Fig. 2.11 Syntax of SqishQL 35

Fig. 2.12 Example of SPARQL Query 37

Fig. 2.13 Architecture of Swoogle Search Engine 40

Fig. 2.14 Architecture of Falcon Search Engine 42

Fig. 2.15 Architecture of Hakia Search Engine 44

Fig. 2.16 Architecture of Semantic Web Search Engine 46

Fig. 3.1 Sample Family Tree as Instances for Class Person 55

Fig. 3.2 Single Ontology Approach 57

Fig. 3.3 Multiple Ontology Approach 57

Fig. 3.4 Hybrid Ontology Approach 58

Fig. 4.1 Proposed Research Objective of The Proposed System 77

Fig. 4.2 Functional Diagram of the Proposed System “Jobology” 78

Fig. 4.3 Proposed Design of Jobology Search Engine 80

Fig. 4.4 Pseudo Code for Ontojobextractor Module 81

Fig. 4.5 Pseudo Code for Ontology Alignment Module 82

Fig. 4.6 Pseudo Code for Query Processing Module 83

Fig. 5.1 Snapshot of Class Hierarchy of Timesjob Ontology 86

file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513621
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513622
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513623
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513624
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513625
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513630
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513632
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513633
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513634
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513637
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513639
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513640
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513641
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513642
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513643
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513645
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513646
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513647
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513648

xii

Fig. 5.2 Snapshot of Object Property Hierarchy of Timesjob Ontology 87

Fig. 5.3 Snapshot of Data Property Hierarchy of Timesjob Ontology 88

Fig. 5.4 Onto Visualizer Result of Timesjob Ontology 88

Fig. 5.5 Snapshot of Class Hierarchy of Naukri Ontology 89

Fig. 5.6 Snapshot of Object Property Hierarchy of Naukri Ontology 90

Fig. 5.7 Snapshot of Data Property Hierarchy of Naukri Ontology 91

Fig. 5.8 OntoVisualizer Result of Naukri Ontology 91

Fig. 5.9 Snapshot of Class Hierarchy of Shine Ontology 92

Fig. 5.10 Snapshot of Object Property Hierarchy of Shine Ontology 93

Fig. 5.11 Snapshot of Data Property Hierarchy of Shine Ontology 94

Fig. 5.12 OntoVisualizer Result of Shine Ontology 94

Fig. 5.13 Class Hierarchy of Student Profile 95

Fig. 5.14 Object Property Using Protégé 96

Fig. 5.15 Data Properties of Student Ontology Using Protégé 97

Fig. 5.16 Execution of Query for Timesjob Ontology 99

Fig. 6.1 Snapshot of Search Results From www.Shine.Com 102

Fig. 6.2 Process of Populating Ontology from Job Board 103

Fig. 6.3 Process of Building Urls 105

Fig. 6.4 Algorithm of Query URL Builder 106

Fig. 6.5 Snippets of URLs Generated from URL_BUILDER 107

Fig. 6.6 Algorithm of Downloader Process 108

Fig. 6.7 Algorithm of Selector Process 108

Fig. 6.8 Algorithm of Information Extraction Process 109

Fig. 6.9 Sample of Extracted Information from Jobboard 109

Fig. 6.10 Structured Information Generated by Ontology Populator 110

Fig. 6.11 Keyword Combination as an Output from Keyword Combination Generator111

Fig. 6.12 Generated Urls As an Output from Query URL Builder 112

Fig. 6.13 Snapshot of Extracted Data from The Jobboard 112

Fig. 6.14 Ontovisualizer Results of Naukri Ontology with Instances 113

Fig. 7.1 Architecture Off Building Global Indexes or Alignment 116

file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513649
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513650
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513651
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513653
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513654
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513655
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513656
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513657
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513658
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513659
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513660
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513661
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513662
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513663
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513664
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513665
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513666
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513667
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513668
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513669
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513670
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513671
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513672
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513673
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513674
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513675
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513676
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513677
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513678

xiii

Fig. 7.2 Local Tables for Storing Ontology Specific Information 118

Fig. 7.3 Substring matching Algorithm 121

Fig. 7.4 Illustration of Finding Common Substring Between Two Strings 121

Fig. 7.5 Prefix Matching Algorithm 122

Fig. 7.6 Synonym Match Algorithm 123

Fig. 7.7 Schema of Concept Synonym Table (CST) 123

Fig. 7.8 Property Matching Algorithm 125

Fig. 7.9 Data Structure for Property Synonym Table 125

Fig. 7.10 Data Structures Used for Storing Information in Output Layer 126

Fig. 7.11 Algorithm for Building Global Concept Index 129

Fig. 7.12 Illustration of building Global Concept Index 131

Fig. 7.13 Algorithm for Building Global Object Property Index 132

Fig. 7.14 Algorithm for Building Global Dataproperty Index 133

Fig. 7.15 Snapshot of Global Concept Index 134

Fig. 7.16 Snapshot of Global Object Property Index 134

Fig. 7.17 Snapshot of Global Data Property Index 135

Fig. 8.1 Architecture of Query Processing Process 138

Fig. 8.2 Schema of Various Data Structures Used in Query Processor 140

Fig. 8.3 Tokenizer Algorithm 144

Fig. 8.4 Token mapper Algorithm 144

Fig. 8.5 Dataset_Concept Mapper Algorithm 145

Fig. 8.6 Token_Concept mapper algorithm 145

Fig. 8.7 Property Finder Algorithm 146

Fig. 8.8 Property Table Transformer Algorithm 147

Fig. 8.9 SPARQL Query Generator 147

Fig. 8.10 Filter Combination Generator 148

Fig. 8.11 Process of SPARQL Query Generator 149

Fig. 8.12 Process of Filter Combination Generator 150

Fig. 8.13 Process of Result Merger 151

Fig. 8.14 Formation of Inverse Property Table 152

file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513679
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513680
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513681
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513682
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513683
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513684
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513685
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513687
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513688
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513689
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513690
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513691
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513692
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513694
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513695
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513696
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513697
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513698
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513699
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513700
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513701
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513702
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513703
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513704
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513705
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513706
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513707
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513708

xiv

Fig. 8.15 Illustration of Creating Filters 153

Fig. 8.16 SPARQL Queries 154

Fig. 8.17 Jobology Result Output 155

Fig. 8.18 Precision Analysis of Queries for Query Set1 159

Fig. 8.19 Average Precision of Queries for Query Set1 159

Fig. 8.20 Precision Analysis of Queries for Query Set2 160

Fig. 8.21 Average Precision of Queries for Query Set2 161

Fig. 8.22 Precision Analysis of Queries for Query Set 3 162

Fig. 8.23 Average Precision of Queries for Query Set3 163

Fig. 8.24 Plotted Values of Precision of Query Set 1 164

Fig. 8.25 Plotted Values of Precision of Query Set 2 164

Fig. 8.26 Plotted values of Precision of Query Set 3 165

Fig. 8.27 Plotted Values of Average Precision of Query Sets 165

file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513709
file:///C:/Users/ejaravi/Desktop/PHD/Final%20Preparation_v1.docx%23_Toc532513716

xv

LIST OF TABLES

Table 2.1 RDF Vocabulary 22

Table 2.2 RDFS Vocabulary 23

Table 2.3 DAML Language Constructs 25

Table 2.4 Semantic Reasoners 28

Table 2.5 Comparative study of Ontology Development Tools 31

Table 2.6 Comparative Study of Semantic Search Engines 48

Table 2.7 Summarization of various Ontology Tools 50

Table 3.1 Human Family Tree Ontology Super Class Description 53

Table 3.2 Sample Object Property with its Sub-properties 54

Table 3.3 BloodGroup Chart 55

Table 3.4 Comparative Study on Various Ontology Management Tools 70

Table 5.1 Classes for Timesjob Ontology 86

Table 5.2 Properties for Timesjob Ontology 87

Table 5.3 Classes for Naukri Ontology 89

Table 5.4 Properties for Naukri Ontology 90

Table 5.5 Classes for Shine Ontology 92

Table 5.6 Classes for Shine Ontology 93

Table 5.7 Student Ontology Super Class Description 95

Table 5.8 Sample Object Properties of Student Ontology 96

Table 5.9 Set of Queries to Be Executed in The Domain of Job 98

Table 7.1 Description of Local Concept Table 118

Table 7.2 Description of Local Object Property Table 119

xvi

Table 7.3 Description of Local Data Property Table 119

Table 7.4 Description of Fields of Concept Synonym Table 124

Table 7.5 Property Synonym Table 126

Table 7.6 Description of fields of Global Concept Index 127

Table 7.7 Description of fields of Global Object Property Index 127

Table 7.8 Description of fields of Global Data Property Index 128

Table 8.1 List of Datasets 137

Table 8.2 Description of Token Buffer 140

Table 8.3 Description of Dataset Table 141

Table 8.4 Description of Token_Dataset Table 141

Table 8.5 Description of Concept_Dataset Table 141

Table 8.6 Description of Instance_Concept Table 142

Table 8.7 Description of Object Property Table 142

Table 8.8 Description of Data Property Table 142

Table 8.9 Description of Property Table 143

Table 8.10 Query Set 1 158

Table 8.11 Comparative Analysis Between Existing and Proposed Systems 158

Table 8.12 Query Set 2 159

Table 8.13 Comparative Analysis Between Existing and Proposed Systems 160

Table 8.14 Query Set 3 161

Table 8.15 Comparative Analysis Between Existing and Proposed Systems 162

Table 8.16 Average Precision with Respect to Queries of Query Set 1 163

Table 8.17 Average Precision with Respect to Queries of Query Set 2 164

Table 8.18 Average Precision with Respect to Queries of Query Set 3 165

xvii

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

ARPANET Advanced Research Projects Agency Network

DAML DARPA Agent Markup Language

DAML+OIL DARPA Agent Markup Language + Ontology Inference Layer

DBLP DataBase systems and Logic Programming

EU European Union

Flogic Frame Logic

GUI Graphical User Interface

IR Information Retrieval

KIF Knowledge Interchange Format

OCML Options Configuration Modeling Language

OIL Ontology Inference Layer

OILEd OIL Editor

OML Ontology Markup Language

OWL Web Ontology Language

OWL-DL Web Ontology Layer- Description Logic

QDex Query Detection & Extraction

RDF Resource Description Framework

RDFa Resource Description framework with attributes

RDQL RDF Query Language

RuleML Rule Markup Language

SAOR Scalable Authoritative OWL Reasoner

SeRQL Sesame RDF Query Language

SHOE Simple HTML Ontology Extension

SPARQL SPARQL Protocol and RDF Query Language

SquishQL SQL like Query Language

SWDB Semantic Web DataBase

SWO Semantic Web Object

TCP/IP Transmission Control Protocol/Internet Protocol

URI Uniform resource Identifier

URL Uniform resource Locator

WWW World Wide Web

XML Extensible markup Language

1

Chapter I

1 INTRODUCTION

 GENERAL

World Wide Web (WWW) [1] is regarded as the largest human construct in history which

has narrowed the distance and enhanced the communication between individuals.

Generally, user considers the term “Internet” [2, 3] and “The Web” interchangeably but in

the actual, they are different but related. Internet is a massive network of networks, a

networking infrastructure. It connects millions of computers together globally, forming a

network in which any computer can communicate with any other computer. Web is a way

of accessing information over the medium of the internet. It is an information sharing

model that is built on the top of internet. It uses browsers to access web documents called

webpages that are linked to each other via hyperlinks.

The development journey of WWW is broadly divided into three phases named as Web1.0,

Web2.0 and Web3.0 [4, 5]. Web1.0, which is also named as web of documents, considers

web as read only web. The main purpose of this phase was to provide content via static

webpages. It was referred as first generation of WWW which was basically defined as:

Web 1.0 is an information space in which the items of internet referred to as resources are

identified by global identifier called as Uniform Resource Identifiers (URIs).

Web 2.0, which is also known as current web, is the second generation of web. It is defined

as:

Web 2.0 is the combination of concepts, trends and technologies that focus on user

collaboration, sharing of user generated content and social networking.

The technologies of Web 2.0 allow assembling and managing large global crowds with

common interests in social interactions. In this era, the web user cannot only read the

content but also write, modify and update the content online, it supports collaboration and

help to gather collective intelligence. This feature brought revolution in WWW resulting

2

in availability of billions of web pages and created the need of information retrieval tools

as it was not possible for user to learn URLs of every webpage.

Web Mining [6, 7, 8] or Web Information Retrieval (Web IR) is the process of extracting

useful information from among the petabytes of data that make up the WWW.

With such a large collection of information, search engines [9, 10] are emerging as an

important information retrieval tool for searching the relevant information. A search engine

provides a user an interface through which he/she enters his/ her query in natural language

and in return, search engine provides a list of ranked web pages to user. For this purpose,

search engine has many vital components such as crawler, indexer, query processor, ranker

etc. Search engine takes query from user via user interface which is a short piece of text

and because of unstructured behavior of data [11] in current web, query processor is not

able to understand the semantic intend of the query and thus retrieves results only based on

keyword matching i.e. lexical matching [12]; and sometimes results in generation of

irrelevant results as engine is not able to understood the intend (context) of the user.

To deal with this issue, Tim- Berner Lee envisioned semantic web [13, 14] which emphasis

on data rather than documents this is also known as Web 3.0.

Web 3.0 is an extension of the WWW where it can be expressed a natural language

understandable and usable by software agents, thus permitting finding, sharing and

integrating information easily.

In this, data is represented in structured format using defined languages and constructs. To

make computers understand the meanings of things, each and every entity is uniquely

identified as URI. This way, it deals with the ambiguity that comes with piece of text.

By knowing the advantages of semantic web and availability of abundant resources in the

current web, there is a need to develop a system that represent semi-structured or

unstructured data on the current web in structured format using the technologies provided

by semantic web. This way, computer will also be able to understand intend of the user

query and contribute in retrieving more relevant results. In this thesis, the domain of jobs

has been taken into consideration and a system named as “Jobology”: An Ontology Driven

Information System in Semantic Web is proposed which transforms semi-structured data

3

available on the current web in the domain of job into structured format using various

components. These components are proposed and explained in the forthcoming chapters,

which help the machine to understand the meaning of the content and correspondingly

retrieve more relevant results with respect to user query.

 SEMANTIC WEB TECHNOLOGIES

As Per W3C’s official

“Semantic Web is defined as a Common framework that allows data to be shared and

reused across application, enterprise, and community boundaries”

From a technical point of view, the Semantic Web consists primarily of three technical

standards:

• RDF (Resource Description Framework) [15,16]

RDF is data modeling language for the Semantic Web. All Semantic Web information

is stored and represented in the RDF.

• SPARQL (SPARQL Protocol and RDF Query Language) [17,18]

SPARQL is the query language of Semantic Web. It is specifically designed for

querying data across various systems.

• OWL (Web Ontology Language) [19,20]

OWL is the schema language, or knowledge representation (KR) language [21], of

the Semantic Web.

 MOTIVATION

Current web tools are keyword based and they produce a list of webpages by matching

terms of query with the webpages content. In this web, Computers are used for data

presentation only. Due to unstructured nature of data, computers are not able to understand

the meaning of content; thus, making them helpless and relying only on keyword based

search system. In contrast with this, Semantic Web is a development of the WWW in which

data is represented in structured format using semantic web technologies standards such as

RDF, OWL etc. In this, computers understand the meaning of data as they are represented

in structured format. This factor is making semantic web quite popular and now developers

4

have started representing their data using semantic web technologies to enhance the quality

of search results by understanding the meaning of their query. The motivation that leads to

get into this work is discussed as below:

a) Representing semi-structured data in structured form

A lot of research is going in semantic web as it is an emerging field; researchers have

started representing their knowledge using these structured languages. But, current

web is also carrying a huge amount of relevant data either in unstructured or semi-

structured form [22]. So, there is a need to design a system which extracts relevant

content from the current web and transform into structured format using semantic web

technologies so that they can be compatible with existing data in semantic web.

b) Centralized Information System

There exist various websites in the current web related to one domain providing same

services. For instance, there are many Jobboards such as naukri.com, monster.com,

timesjob.com etc. which provides same kind of services to its users and these

Jobboards have the same target audience. In the desire to get the best opportunity,

Job seeker generally enroll with all possible Jobboards, but handling these profiles is

very tedious for user. Therefore, there is a need to design an Information System that

aligns data belonging to desperate data sources and provide results at one place. But,

only few research efforts have been found where unstructured and semi-structured

data has been tagged with the semantic web made metadata. Therefore, there is a

requirement to create an information system that uses existing webpages as input,

represent them in structured form using ontologies and then aligning [23] various

websites of same domain and performing searching operation.

c) Cross Domain Interoperability

Interoperability [24] is the method in which two separate systems belonging to

different domains takes the services of each other. Two systems become interoperable

when they have common interest, understanding and some agreement. For instance,

university domain has an interest in job domain because it is university one of the

service to provide jobs to its students. Therefore, there is a need to design a system in

5

which information systems are interoperable across domains to provide services of

one domain to another domain’s users.

 PROBLEM DEFINITION

The overall goal of the proposed work is to build an Information System that first converts

semi-structured data available on the current web into structured format belonging to the

same domain and providing more relevant results to its users. Not only this, it also provides

inter-operability between two domains so that complex queries could be handled.

 OBJECTIVES OF THE PROPOSED WORK

The specific objectives of the present work are as follows:

a) Creation of vocabulary for annotating data of Jobboards

To convert semi-structured data into structured form, a way to how that knowledge is

to be represented is to be decided.

Proposal: In this work, corresponding to selected website (Jobboard site) ontology is

developed which define vocabulary that represent all the relevant entities of those

websites in the conceptual form.

b) To develop a mechanism to mine only relevant webpages from the Jobboards

The entire URLs of the Jobboards may not be relevant for the information system, so

there is a need to filter out the irrelevant webpages from mining.

Proposal: In this work, one technique is constructed which creates the URLs of the

webpages which will provide desired data.

c) Automatic identification of relevant section in webpages for data extraction

The entire content of the information source may not be relevant for the system, so

there is a need to filter out the irrelevant content and focus on relevant content on that

webpage.

Proposal: In this work, a mechanism is constructed which extracts only the required

data from the webpage.

6

d) Conversion of semi-structured data into structured format

A mechanism needs to be employed which will represent extracted semi-structured

data into the structured format.

Proposal: Regarding this, a mechanism is built which transforms extracted semi-

structured data from the current web into structured form which is well understood

by computer.

e) Globalization of heterogeneous data sources

To develop an information system, data extracted from different Jobboards needs to

be present at the same place to facilitate the user. Since every Jobboard has its own

ontology, therefore, their local ontologies should be aligned to represent them at the

global level.

Proposal: In this work, Global indexes are maintained that would be helpful in query

planning.

f) Efficient query processing system

A query processing system needs to be build that will take keywords from user as

query and plan query that can be run on structured content.

Proposal: In this work, a method is proposed that converts user keyword based query

into SPARQL language query that is compatible with structured data.

g) Collaborative search system

There is a need of an information system in the domain of Jobboard that provides

search results by collaborating with individual Jobboards and provides relevant

results at one place.

Proposal: In this work, a user interface is provided to user which takes input from the

user in the form of keywords and retrieves results from the selected Jobboards at one

place.

h) Cross-domain interoperability

There is a need to design a platform where user can enter his profile such as

educational information, personal information, job preferences etc. initially and then

search system provides him the results accordingly.

7

Proposal: In this work, the job seeker ontology is built which takes required

information from user in various domains and then this ontology is mapped with

Search system which yields relevant results for the job seeker.

To achieve these objectives, a thorough knowledge of the domain must be collected, based

on which ontology will be developed. Ontology development, data extraction, concept

matching, alignment between ontologies and search system needs to be developed build

the whole information system. To assure the practical implications of the objectives

undertaken, the system should support scalability, extensibility, robustness and

improvement over the evaluation metrics. An ontology driven information system

“Jobology” has been developed that represent data in structured format and yields high

performance.

 ORGANIZATION OF THE THESIS

The present thesis is organized into nine chapters and is shown in Fig. 1.1. The content of

each chapter is summarized as under:

Chapter II reviews the introduction of current web and semantic web. This chapter

discusses the various information retrieval tools, evolution of semantic web and its

architecture, its need, the concept of ontologies and research work carried out in semantic

search engines.

Chapter III presents the process of ontology development with example and various

ontology management techniques such as ontology merging and ontology alignment,

ontology integration. Research carried out in the literature for ontology management has

also been discussed in detail along with comparative study.

Chapter IV presents the architecture of novel ontology based information system for

semantic web. The phases of development of proposed system have been introduced in

brief. The methodology formulated for the research has been discussed in this chapter.

Chapter V discusses the ontology development in the domain of job with respect to

selected Jobboards and in the domain of Student.

Chapter VI discusses an architecture which converts semi-structured data extracted from

current web into structured format. The chapter discusses the architecture of

8

OntoJobextractor and its components in details with screenshots depicting the intermediate

results at various phases.

Chapter VII explains architecture of Ontology alignment between ontologies. Various

data structures are defined which are required for building indexes.

 Chapter VIII presents architecture of “Ontojob” query processor which builds SPARQL

query which will be fired on structured data. It also covers the concept of cross domain

interoperability which is proposed in this thesis along with the result analysis.

Chapter IX presents the contributions of the present research and suggestions for future

research.

Chapter III

Ontology Management tools

Chapter V

Ontology

Development

in the

domain of

Job board

Chapter VI

Ontojobextractor:

Relevant

Information

Extraction from

Job boards

Chapter VII

Building

Global

Indexers for

Ontology

Alignment

Chapter VIII

“OntoJob” Query

Processor: An

Ontology Driven

Query Processing

Method.

Chapter IV

JOBOLOGY: Search system for providing relevant Jobs using ontology

Chapter-IX

Conclusion & Future Scope

Chapter I

Introduction

Chapter II

Current Web & Semantic Web:

A Review

Fig. 1.1 Depiction of Flow of outline of the thesis

9

Chapter II

2 CURRENT WEB & SEMANTIC WEB: A REVIEW

 INTRODUCTION

Internet [2] is the collection of large number of interconnected computers distributed across

different geographical location over the world. The evolution of internet started by US

department of Defense for the development of ARPANET [25] (Advanced Research

Projects Agency Network) project. The initial purpose was to communicate with and share

computer resources among mainly scientific users at the connected institutions. The

development of TCP/IP [26] protocols in the 1970 made it possible to expand the size of

the network.

In 1980, while working at the CERN, the European particle physics laboratory in Geneva,

Tim-Berner-Lee wrote a program for storing information using random association. This

formed the conceptual basis for the global hypertext project which was later proposed in

1989 as World Wide Web [1]. Tim- Berner-Lee envisioned WWW by proposing the

linking of documents over the internet using hypertext. To make WWW executable, he

developed the necessary tools such as HTTP [27], a web server, a language to display

information which is also known as HTML [28] (Hyper Text Markup Language) and a web

browser [29]. With all these tools Web became social. The Web is commonly understood

to have had three overlapping phases of development. Under Web 1.0, the purpose of search

engine such as World Wide Web Worm (WWWW) [30] was purely on determining the

size of the web and content relevance was ignored. Because of the limited resources, their

indexing and hence searching were limited to the titles and headings found in the web

pages. During the phase of Web 2.0 [31], with the exponential growth in the quality and

complexity of information sources on the internet, IR systems evolved from a simple

concern with the storage and distribution of artefacts to encompass a broader concern with

the transfer of meaningful information. Over the last many years, many efforts are being

put to deal with this complexity effectively and efficiently. Finding information from such

a large information collection is unprecedently a very tough task. However, various IR

10

tools [32] such as Search engines, Web directories, OPAC (Online Public Access

Catalogue), online database, digital library and Web portals are available via the internet.

The upcoming sections present a meticulous study of current web. A portrayal of semantic

web is provided in the subsequent sections.

 INFORMATION RETRIEVAL TOOLS

The workings of IR tools are explained briefly as follows:

a) Search Engines

A Search Engine [10] is a program designed to search for information on the WWW.

The search results presented in a list consist of web pages, images, information and

other types of files. The architecture of a general search engine contains a front-end

process and a back-end process as shown in Fig. 2.1.

In the front-end side, user submits the search query to the search engine interface. The

query processor then parses the search request into a form that the search engine can

understand, and then it executes the search operation on the index files [10, 33]. After

ranking [10, 34], the search results are returned to the user. In the back-end, the

crawler [10, 35] module (spider or robot) fetches the web pages from the Web; the

indexing subsystem parses those Web pages and stores them into the index files.

 Front End Process

Search Engine

Interface
Query Processor

Ranker

Back End Process

query

result

s

Index Files

WWW Web

pages

request

Indexer Crawler

Web

pages

Fig. 2.1 Architecture of Search Engine

query

Web

pages

11

b) Web Directory

A Web Directory [35] organizes Web sites by subject, and is usually maintained by

humans instead of software. The searcher looks at sites organized in a series of

categories and menus. It does not display results in the form of web pages based on

keywords rather results of directory are in the form of links that contains category and

sub categories. The database size of directory is smaller as compared to engine’s

database; it is human-sited directory and not crawled by crawlers.

c) Digital Library

A digital library [36] also named as digital repository or digital collection is an online

database of digital objects that can includes text, images, audio, video or digital media

formats. It provides high quality resources that have been filtered by library

professional and subject experts and added manually. For example; American memory

is a digital library within the library of congress.

d) Online databases

These databases provide access to remote databases through a database vendor or

service provider. For example; Elsevier, IEEE, ACM etc. are some examples of online

databases.

e) OPAC (Online Public Access Catalogue)

It is a computerized catalogue [37] containing bibliographic records of items in a

library. Medline, ERIC, PsyCINFO item are some catalogues that index journal

articles and other research data

f) Meta-Search Engines

A Meta-Search engine [9, 38] performs a search by calling on more than one search

engine to do the actual work. The general architecture of Meta-Search engine is shown

in Fig. 2.2 where it sends user requests to several other search engines and/or

databases and aggregates the results into a single list and displays them to their source.

Meta-Search Engines enable users to enter search criteria once and access several

search engines simultaneously. Meta-Search engines operate on the premise that the

Web is too large for any one search-engine to index it all and that more comprehensive

search results can be obtained by combining the results from several search engines.

12

 PROBLEM WITH CURRENT INFORMATION RETRIEVAL MODELS

Despite of the fact that WWW contains a lot of information and knowledge, search engines

usually serve only to deliver and present the content of documents describing the

knowledge. Apart from this, there exist other problems [39] that users are suffering from,

which are discussed as follows:

• Current search engines are unable to provide direct answers to queries.

• Current search engines process queries based on keywords. Thus, they retrieve all

web pages containing those keywords without considering the fact that an accurate

answer is produced on the basis of user’s context.

• Current search engines are unable to gather complex information.

• Current WWW contains a lot of information and knowledge, but current search

engines are unable to retrieve complex information. For instance, user fires a query

“find 10 engineering college for computer stream in India and the top computer

companies in their proximity”. Current search engines would not be able to yield

desired results. For the results, user has to separately fire the query and manually

merge the results.

• Current Search Engines are handicapped by being unable to figure out the context in

which a word is being used.

• Although the search engines are very helpful in finding information on the Internet

and are getting smarter with the passage of time, but they lack in finding the meanings

Search Engine 1 Search Engine 2 Search Engine n

Meta Search Engine

query response

Fig. 2.2 Architecture of Meta-Search Engine

13

of the terms, expressions used in the Web pages and the relationships between them.

The problem comes due to the existence of words which have many meanings also

known as polysemy [40] and several words having same meaning also known as

synonymy [40] in natura1 languages. Thus, when a user gives a search query like

“Flip-Flop” to find the definition of “Flip-Flop” in Computer Science domain, the

most accredited search engine, Google, is unable to find the right document (no

document is relevant among the top ten results returned). This is because, Google

does not know which Flip-Flop the user is talking about; a kind of female shoes, or a

device for Electronics which is used for storing one bit memory storage. It was

possible for Google to find the right document only if it knew the relationship between

the two terms given to it; “Flip-Flop” and “Electronics”.

To deal with such problem, Tim Berners-Lee, Hendler and Lassila presented a vision of a

Web in which information is given well-defined meaning, better enabling computers to

understand the meaning of content and help people to provide relevant information which

is called Semantic Web [14]. The detail of Semantic web is presented in the next section.

 INTRODUCTION TO SEMANTIC WEB

Tim-Berner-Lee, inventor of WWW and director of W3C envisioned about Semantic Web.

The goal of semantic Web [14] is to represent data in structured format which would help

machines to understand more information on the web which supports in richer discovery

and data integration from different sources via linking hereby producing more exact results

to the user as compared to current web search engines.

• Architecture of Semantic Web

Semantic Web is the new generation Web that tries to represent information such that

it can be used by machines, not just for display purposes, but for automation,

integration, and reuse across applications. The architecture of semantic Web [41]

(W3C) is shown in Fig. 2.3. The semantic Web technologies offer a new approach to

managing information and processes, the fundamental principle of which is the

creation and use of semantic metadata. All layers of semantic web are explained in

detail as below:

14

a) URI

A Universal Resource Identifier (URI) [14] is a formatted string that serves as a means

of identifying abstract or physical resource. A URI can be further classified as a

locator, a name, or both. Uniform resource locator (URL) refers to the subset of URI

that identifies resources via a representation of their primary access mechanism. A

uniform resource name (URN) refers to the subset of URI that is required to remain

globally unique and persistent even when the resource ceases to exist or becomes

unavailable.

b) Unicode

Unicode provides a unique number for every character, independently of the

underlying platform, program, or language.

c) XML and XML Namespace

XML (eXtensible Markup Language) [16] with XML namespace and XML schema

definitions makes sure that there is a common syntax used in the semantic web. XML

namespaces allow specifying different markup vocabularies in one XML document.

XML schema serves for expressing schema definition of a XML document.

d) RDF and RDF Schema

On top of XML, is the Resource Description Framework (RDF) [42], for representing

information about resources in a graph form. RDF is based on triples, resource-

predicate-object. RDF Schema (RDFS) [43] defines the vocabulary of RDF model. It

Unicode Unicode

XML+ NS+ xmlschema

D
ig

it
al

 S
ig

n
at

u
re

RDF+ rdfschema

Ontology Vocabulary

Logic

Proof

Trust

Self

describing

document

Data

Data

Rules

Fig. 2.3 Architecture of Semantic Web

15

provides a mechanism to describe domain-specific properties and classes of resources

to which those properties can be applied, using a set of basic modeling primitives

(class, subclass-of, property, subproperty-of, domain, range, type). However, RDFS

is rather simple and it still does not provide exact semantics of a domain.

e) Ontology

Ontology [19] comprises a set of knowledge terms, including the vocabulary, the

semantic interconnections, simple rules of inference and logic for some topic.

Ontologies applied to the Web are creating the semantic Web. Ontologies facilitate

knowledge sharing [44] and provide reusable Web contents, Web services [45], and

applications. Few of the ontology languages are DAML (DARPA Agent Markup

Language) [46], OIL (Ontology Interference Layer) [47, 48] and OWL (Web

Ontology Language) [19]. OWL is developed starting from description logic and

DAML+OIL [46]. OWL is a set of XML elements and attributes, with well-defined

meaning, that are used to define terms and their relationships (e.g. Class,

equivalentProperty, intersectionOf, unionOf, etc.). OWL elements extend the set of

RDF and RDFS elements, and the OWL namespace is used to denote OWL encoding.

f) Logic, Proof, Trust and Digital Signature

The logic layer [13, 49] is used to enhance the ontology language further and to allow

the writing of application specific declarative knowledge. The proof layer involves

the actual deductive process as well as the representation of proofs in Web languages

and proof validation. Finally, the Trust layer will emerge using digital signatures [13]

and other kinds of knowledge, based on recommendations by trusted agents or on

rating and certification agencies and consumer bodies.

For the semantic Web to become more expressive enough to help in a wide range of

situations, it will become necessary to construct a powerful logic language for making

inferences. The next step in the architecture is ‘Trust’ and ‘Proof’. Trust and Proof is

mainly concerned with two principles. First, the original source does make a statement

(proof) and second, the source should be trustworthy (trust). Proof will be achieved on the

Semantic Web by one or more different methods. Digital signatures are envisioned to play

an important role in proof. In the next section ontologies and their role in the creation of

the Semantic Web are discussed in detail.

16

 ONTOLOGY

The word ontology is employed in the field of AI research, as it is useful to make the

conceptualizations [50] of a domain explicit which enables their comparison and analyzes.

Several definitions have been given by different researchers which are defined as below:

a) As per Gruber in 1993, Ontology is a formal, explicit specification of a shared

conceptualization [51].

b) Fensel in 2001, defined Ontology as an abstract model of a phenomenon termed as

"conceptualization", a precise mathematical description hints the word "formal", the

precision of concepts and their relationships are expressed by the term "explicit"’ and

the existence of an agreement between ontology users is hinted by the term "shared"

[52].

c) Russell & Norving in 1995 established that Ontology is a formal description of the

concepts and relations which can exist in a community of agents [53].

d) Swartout et al. in 1996 defined Ontology as a hierarchically structured set of terms to

describe a domain that can be used as a skeletal foundation for a knowledge base [54].

e) As per Noy & McGuinness in 2001, defined Ontology is a formal explicit

representation of concepts in a domain, properties of each concept describe

characteristics and attributes of the concept known as slots and constrains on these

slots. Sometimes concepts are termed as classes, properties are also known as roles

while facets are used rather than slots [55].

f) Fonseca et al. in 2002 defined Ontology as a theory which uses a specific vocabulary

to describe entities, classes, properties and related functions with certain point of view

[56].

g) As per Starlab in 2003; Ontology includes a specification of the terms used,

("terminology") and agreements to determine the meaning of these terms, along with

the relationships between them [57].

From these definitions, some essential aspects of ontologies are identified such as:

17

• Ontologies are used to describe a specific domain. − The terms and relations are

clearly defined in that domain.

• There is a mechanism to organize the terms, (commonly a hierarchical structure is

used as well as IS−A or HAS−A relationships).

• There is an agreement between users of ontology in such a way the meaning of the

terms is used consistently.

2.5.1 Main Functions of Ontologies

There are various functions of ontologies [58, 59] which are discussed as below:

a) Ontologies can be used to support a great variety of tasks in diverse research areas

such as knowledge representation, natural language processing, information retrieval,

databases, knowledge management, on line database integration, digital libraries,

geographic information systems, visual information retrieval or multi agent systems.

b) Ontology provides meta-information which describes data semantics.

c) Ontologies enable shared knowledge and reuse where information resources can be

communicated between human or software agents.

d) Semantically relationships in ontologies are machine readable, in such a way they

enable making statements and asking queries about a subject domain due to the use

of a conceptualization, which describes entities and their relationships. This

conceptualization enables that software agent of a vocabulary to represent and to

communicate knowledge. The usefulness of ontologies in agent based systems can be

briefly summarized as they enable knowledge level interoperation.

e) In research areas, ontologies support shared understanding, interoperability between

tools, systems engineering, reusability and declarative specification.

f) Ontologies are used to build knowledge bases.

g) Ontologies are able to operate as repositories to organize information for specific

communities. They are used as a tool for knowledge acquisition, (teamwork can use

ontologies as a common support to classify the knowledge of an organization).

h) Ontologies allow users to reuse knowledge in new systems. They can form a base to

construct knowledge representation languages. Semantic integration of

heterogeneous information sources such as digital libraries can benefit with the

18

incorporation of ontologies. Some applications use domain ontology to integrate

information resources and others allow each resource to use its own ontology. Each

user can also have his own ontology as per his/her interests, language or role in a

determine domain.

i) Ontologies provide a source of precisely defined terms. In information retrieval

applications, ontologies serve to disambiguate user queries, to elaborate taxonomies

of terms or thesaurus to enhance the quality of retrieved results. Machine−learning

techniques are also used to extend ontologies based on user’s interactions.

2.5.2 Reasons for Developing Ontology

Ontology is the most important component of semantic web which is used to represent

domain knowledge. According to Noy & McGuinnes; following reasons have been

identified for the development of ontology [55]:

a) To share common understanding of the structure of information between people

or software agents

Ontologies enable the concepts to be defined in a way that can be shared by people or

agents. For example, if several websites contain information about a product and these

websites shares the same ontology then agent must be able to aggregate the

information about the product from the different sites and present it to the user or any

required application.

b) To enable reuse of domain knowledge

To design ontology from scratch is a tedious and time consuming task. Hence,

ontology defined for domain must be designed to cover the concepts so that it can be

reused/ extended by some application rather than creating. This created ontology can

be shared by keeping them in an ontology repository.

c) To make domain assumptions explicit

Explicit specification for domain knowledge makes it easy to change the assumption

if the knowledge of that domain changes. It easily allows a new user to understand

the domain terms easily.

19

d) To separate domain knowledge from operational knowledge

It is a better idea to separate operational knowledge from the domain knowledge from

the knowledge management perspective because it leads to an inefficient system, such

a design hinders knowledge engineer’s ability to express deeper relationship among

knowledge items [60].

e) To analyze domain knowledge

Ontologies are used to explain a domain completely with concepts, properties and

relations that exists between them. Such a formal specification helps in analyzing a

domain explicitly and allows knowledge reuse.

2.5.3 Kinds of Ontology

Ontologies are categorized into different kinds based on formality of the language or the

level of dependence on a task or point of view.

a) Top level ontology [61]

It describes general concepts like space, time, matter, object, event or action, which

do not depend on a problem or domain. However, the development of general enough

top level ontology has not been accomplished yet.

b) Domain ontologies and task ontologies [62]

They describe the vocabulary for a generic domain (like biology or medicine), a task

or activity (such as selling) by means of specialized terms.

c) Application ontologies [63]

They describe concepts which depend on a domain and task. The concepts respond to

roles played by domain entities while performing certain task.

By knowing the kind of ontology according to a particular classification, it is useful to lead

to the ontology building process.

 LANGUAGES TO SUPPORT ONTOLOGY MANAGEMENT

There are various languages in which ontology can be specified. The language specifies

the formal semantics of a language. The language adds the expressiveness to the

representation of knowledge allowing the inferences and the reasoning support making the

20

semantics of the language machine- accessible. The details of various ontological modeling

languages are given as below:

a) KIF [64]

KIF short for Knowledge Interchange Format, is a language based on first order logic

created in 1992 as an interchange format for diverse knowledge related systems. It

was created by Michael Genesereth, Richard Fikes and others participating in the

DARPA knowledge Sharing Effort. KIF has a declarative semantics. It is meant to

describe facts about the world rather than processes or procedures. Knowledge can be

described as objects, functions, relations, and rules. It is a formal language, i.e. it can

express arbitrary statements in first order logic [47] and can support reasoners

[65] that can prove the consistency of a set of KIF statements. KIF also supports non-

monotonic reasoning.

b) Loom [66]

Loom is a knowledge representation language implemented by researchers in the AI

research group at the University of Southern California’s Information Sciences

Institute. Loom is not designed for implementing Ontologies, but for general KBs. It

is developed based on DLs and production rules, and offers automatic classifications

of concepts.

c) OCML [67]

OCML short for Options Configuration Modeling Language, was created in 1993 at

the Open University KMI as a kind of ‘‘Operational Ontolingua’’. Indeed, most of

the definitions that can express in OCML are analogous to the corresponding

definitions in Ontolingua. OCML was constructed for developing executable

Ontologies and models in problem solving methods.

d) FLogic [68]

FLogic short for Frame Logic, merges frames and first order logic, to allow concepts,

Concept Taxonomies, Functions, Binary Relations, Instances, Axioms and Deductive

rules representation. Ontobroker [69] can be used underlying FLogic based inference

engine to check constraint and deduce new information.

https://en.wikipedia.org/wiki/Richard_Fikes
https://en.wikipedia.org/wiki/Declarative_knowledge
https://en.wikipedia.org/wiki/First_order_logic
https://en.wikipedia.org/wiki/Reasoning_system
https://en.wikipedia.org/wiki/Non-monotonic_reasoning
https://en.wikipedia.org/wiki/Non-monotonic_reasoning

21

e) SHOE [70]

SHOE was built in 1996 as a Simple Html Ontology Extension allowing web page

authors the annotation of their web pages with machine-readable knowledge. SHOE

makes the possibility for the agents to gather meaningful information about Web

pages and Documents, which improves search mechanisms, and knowledge

gathering. Moreover, SHOE combines Markup Languages, Knowledge

Representation, Datalog and Ontologies features aiming to address the unique

problems of the semantics on the Web.

f) OML [71]

OML Short for Ontology Markup Language, OML was initially developed at the

University of Washington, and partially based on SHOE. It was initially considered

an XML serialization of SHOE [70]. Additionally, OML forms a subset of CKML

(Conceptual Markup Language) that allows rich knowledge representation

capabilities.

g) XML [15, 16]

It is a W3C recommendation stands for Extensible Markup Language, was built in

1996 much like HTML and designed to describe data and not to display data. As an

effect, XML has been used to modify SHOE syntax and subsequently, additional

ontology languages were built on the XML syntax.

h) XOL [72]

XOL short for Ontology Exchange Language was developed by the AI center of SRI

International, in 1999. It is designed by the US bioinformatics community and based

on XML language. Any tool is allocated for the development of Ontologies using

XOL. Although, based on syntax of XML, one can use an XML editor to author XOL

files.

i) RDF [15, 16, 17]

RDF stands for Resource Description Framework, was developed by the W3C to

describe Web resources. It is based on representing resource using Subject-Predicate-

Object known as triple. The subject denotes the resource; predicate denotes traits or

22

aspects of the resource and expresses the relationship between the subject and object.

For example, to represent the notion “color of the apple is red” in RDF is as the triple:

a subject denoting “apple”, predicate denoting “color” and object denoting “red”.

The structure of any expression in RDF is a collection of triples, each consisting of a

subject, predicate and an object. A set of such triples is called RDF graph. It is

visualized as shown in Fig. 2.4.

The vocabulary defined by RDF specification is shown in Table 2.1.

 Table 2.1 RDF Vocabulary

j) RDFS [73]

RDFS stands for RDF Schema and was built by the W3C as an extension to RDF with

Frame- based Primitives. It is a semantic extension of RDF. It provides mechanism

S.No. RDF

Vocabulary Description

1 rdf: Literal the class of XML literal specification

2 rdf: property the class of properties

3 rdf: statement the class of XML statements

4 rdf: Alt container of alternatives

5 rdf: Bag unordered container

6 rdf: seq ordered container

7 rdf: list the class of RDF lists

8

rdf: type

an instance of rdf: property used to state that a

resource is an instance of a class.

9 rdf: first he first item in the subject RDF list.

10 rdf: rest the rest of the subject RDF list after rdf: first.

11 rdf:value idiomatic property used for structured values.

12 rdf: subject the subject of the subject RDF statement.

13 rdf: predicate the predicate of the subject RDF statement.

14 rdf: object the object of the subject RDF statement.

Subject Object
Predicate

Fig. 2.4 RDF graph

23

for describing groups of related resources and the relationships between the resources.

These resources are used to determine characteristics of other resources such as

domain and range of properties. The vocabulary defined by RDFS specification is

defined in Table 2.2.

Table 2.2 RDFS Vocabulary

S.No. Constructs Description

1 rdfs:resource the class of XML literal specification

2 rdf:class the class of properties

3 rdf: literal the class of XML statements
4 rdfs: datatype container of alternatives

5 rdf: langstring unordered container

6 rdf:HTML ordered container

7 rdf: property the class of RDF lists

8 rdfs: range It is an instance of rdf: property.

9 rdfs: domain It is an instance of rdf: property.

10 rdfs: subclassof

it is an instance of rdf: property that is used

to state that all the instances of one class are

instances of other.

11 rdf: subpropoertyof

it is an instance of rdf: property that is used

to state that all resources related to one

property are also related to other.

12 rdfs: label

it is an instance of rdf: property that may be

used to provide a human readable

version of a resource's name

13 rdfs: comment

it is an instance of rdf: propoerty that may

be used to provide a human readable

 description of a resource.

k) RDFa [74]

It stands for Resource Description Framework in Attributes. It is a W3C

Recommendation that adds a set of attributes-level extension to HTML, XHTML [75]

and various XML based documents types for embedding rich metadata within web

documents. The following example as shown in Fig. 2.5 Example of RDF shows the

addition of Dublin Core metadata [76] to an XML element in an XHTML file.

24

Fig. 2.5 Example of RDFa

l) OIL [77]

OIL stands for Ontology Interchange Language and is based on RDF and RDFs which

supports a well-defined semantic vocabulary and reasoning constructs for ontology

development. OIL was developed as a research product of European Union Project

(EU). It included following aspects:

• A more interactive choice of the modeling primitives and richer ways to define

concepts and attributes.

• The definition of a formal semantic for OIL.

• The development of customized editors to inference engines to work with OIL.

It is frame based system which provides a context for modeling one aspect of a

domain. In OIL, knowledge is represented via Description Logic which describes

knowledge in terms of concepts and role restrictions that can automatically derive

classification taxonomies. It is based on the web standards of W3C that has syntax

of XML, RDF and RDFS. Knowing the fact that a single ontology language cannot

fulfill all the needs of semantic web’s large range of applications, OIL has organized

a series of ever increasing layers of sublanguages. Each additional layer adds the

functionality and complexity of previous one. Consider a simple example of ontology

defined in OIL language specification. The OIL expression shown in Fig. 2.6 defines

Herbivore as a class, which is a subclass of animal and disjoint of all carnivores.

It encounters that herbivore is a subclass of animal and a subclass of a second class

which it cannot understand properly. This seems to preserve complicated semantics

for simple applications.

<div xmlns: dc= “http:purl.org/dc/elements/1.1/”

About “http:www.example.com/books/test”>

 Data structures

 Dr. A.K. Sharma

 2010-01-01

25

Fig. 2.6 Example in OIL Language Format

m) DAML [78]

DAML is short form for DARPA Markup Language. It is a semantic markup language

that is specifically an extension to ML and the RDF. It is used for the U.S. Defense

Advanced Research Project Agency (DARPA) and compared to the XML standard it

offers a better capacity to express semantics which means a much higher level of

interoperability between websites. Certain language constructs of DAML are defined

in Table 2.3 and example in DAML language is shown in Fig. 2.7.

Table 2.3 DAML Language Constructs

S.No. Construct Description

1

Daml:restriction with

daml:onproperty

specifies a slot being restricted on the property

specified.

2 Daml:intersectioOf disjunction of class expression

3 Daml:unionOf conjunction of class expression

4 Daml:complementOf negation of class expression

5 Daml:mincardinality minimum cardinality constraint on a property

6 Daml:maxcardinality maximum cardinality constraint on a property

7 Daml:transitiveproperty specifying the transitive property

8 Daml:inverseOf specifying the inverse property

The example shown in Fig. 2.7 describes ontology in DAML for a class child which

is subclass of class person. It specifies that the child can have one mother by limiting

the cardinality on property #hasmother to one. Property #hasparent has cardinality

two, which is specified by <daml:unionOf> construct, specified with class mother

and father.

<rdfs:Class rdf:ID= “herbivore”>

<rdf:type rdf:resource= “http:www.ontoknowledge.org/oil/RDFS-

Schema/#DefinedClass”/>

<rdfs:subclassof rdf:resource=”#animal”/>

<rdfs:subclassof>

<OIL:NOT>

<OIL:hasoperand rdf:resource= “# carnivore/”>

</OIL:NOT>

</rdfs:subclassof>

</<rdfs:Class >

26

Fig. 2.7 Ontology in DAML

n) DAML+OIL [46]

DAML+OIL is the result of merging DAML-ONT (an early result of the DARPA

Agent Markup Language (DAML) Program) and OIL (the Ontology Inference

Layer), developed by a group of largely European researchers, several of whom were

members of the European-funded On-To- knowledge consortium. As it is an ontology

language, DAML+OIL is designed to describe the structure of a domain.

DAML+OIL takes an object-oriented approach, with the structure of the domain

being described in terms of classes and properties. DAML+ OIL languages allow

Concepts, Taxonomies, Functions, Binary Relations and Instances representation.

The tools that can author DAML+OIL Ontologies are OILEd [79], OntoEdit [80],

Protégé2000 [81] and WebODE [82].

o) OWL [83]

OWL stands for Web Ontology Language, created in 2001 by a working group formed

by W3C. It has emerged from DAML+OIL language on the recommendation of W3C.

This language provides more vocabulary for describing properties and classes among

others, relation between classes (e.g.; disjointness), cardinality (e.g.; “exactly one”),

equality, richer typing of properties, characteristics of properties (e.g.; symmetry,

transitive etc.) and enumerated classes.

OWL provides three increasable expressive sublanguages [19, 83]: OWL Lite, OWL

DL, OWL Full.

<daml:Class rdf:ID= “child”>

<daml:subClassof rdf:resource= “#person”> <daml :restriction>

<daml:onProperty rdf:resource= “#hasMother”/>

<daml:cardinality> 1</ daml:cardinality >

</daml :restriction></daml:subClassof>

<daml:subClassof>

<daml :restriction maxcardinality= “2”>

<daml:onProperty rdf:resource= “#hasParents”/>

<daml:cardinality> 2</ daml:cardinality > <daml:Class>

<daml:unionOf rdf:parseType= “daml:collection”>

<daml:Class rdf:about= “Father”/>

<daml:Class rdf:about= “Mother”/>

</daml:Class </daml :restriction > </daml:subClassof>

</daml:Class>

27

• OWL Lite: It supports those users who are looking for classification hierarchy

and simple constraints. For example; while it supports cardinality constraints, it

only permits cardinality values of 0 and 1. It has a lower formal complexity than

OWL DL.

• OWL DL: It is more expressive than OWL- Lite. It includes all OWL languages

constructs, but they can be used only under restriction. It is named due to its

correspondence with description logic, a field of research that has studied the

logics that form the formal foundation of OWL.

• OWL Full: It has the maximum expressiveness and the syntactic freedom of RDF

with no computational guarantees. It allows ontology to augment the meaning of

the pre-defined vocabulary.

In the example as shown in Fig. 2.8, OWL ontology with three plant classes are

defined. The flowering plants class and shrubs class are both subclasses of

the planttype class.

Fig. 2.8 Ontology in OWL Language

The quality and correctness of ontologies play a vital role in semantic representation

and knowledge sharing. To ensure the quality of ontologies, there is a need for dealing

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:plants="http://www.linkeddatatools.com/plants#">

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#planttype">

<rdfs:label>The plant type</rdfs:label>

<rdfs:comment>The class of all plant types.</rdfs:comment> </owl:Class>

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#flowers">

<rdfs:subClassOf rdf:resource="http://www.linkeddatatools.com/plants#planttype"/>

<rdfs:label>Flowering plants</rdfs:label>

<rdfs:comment>Flowering plants, also known as angiosperms.</rdfs:comment>

</owl:Class>

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#shrubs">

<rdfs:subClassOf rdf:resource="http://www.linkeddatatools.com/plants#planttype"/>

<rdfs:label>Shrubbery</rdfs:label>

<rdfs:comment>Shrubs, a plant which branches from the base.</rdfs:comment>

</owl:Class>

<rdf:Description rdf:about="http://www.linkeddatatools.com/plants#magnolia">

<rdf:type rdf:resource="http://www.linkeddatatools.com/plants#flowers"/>

</rdf:Description>

</rdf:RDF>

28

with the inconsistency and uncertainty in the ontologies of real-world assumptions.

To deal with this, in the next section semantic reasoners are discussed.

 SEMANTIC REASONERS

A semantic reasoner [84], reasoning engine, rules engine, or simply a reasoner, is a piece

of software to infer logical consequences from a set of asserted facts or axioms. Reasoner

mainly deals with the inconsistency and uncertainty in the constructed ontology.

• Inconsistent ontology [85] means that an error or a conflict exist in ontology, because

of which some concepts in the ontology cannot be interpreted correctly. The

inconsistency results in false semantic understanding and knowledge representation.

• An uncertain ontology [86] means that the correctness of the ontology is probabilistic.

Ontology reasoning reduces the redundancy of information in knowledge base and

finds the conflicts in knowledge content. There are some examples of reasoners which

are used widely. They are explained as below in Table 2.4.

Table 2.4 Semantic Reasoners
S.

No

.

Reasoner Free/

Licensed

Language

built on

Supported

Interface

Services Supported

Syntax

Supported

ontologies

1 Fact++

(Univ. of

Manchester)

[87]

Free C++ Protégé,

Command

Line,

OWL API

realisation,

classification,

satisfiability,

entailment,

consistency

OWL2DL

2 Hermit

(Univ. of

Oxford)

[88]

Free Java Protégé,

Command

Line,

OWL API

realisation,

classification,

satisfiability,

entailment,

consistency

All

OWLAPI

OWL2DL

3 DBOWL

(Univ. of

Malaga) [89]

Licensed

classification,

satisfiability,

conjunctive

query

answering,

consistency

RDF/XML OWL

4 Jfact

(Univ. of

Manchester)

[90]

Java Protégé realisation,

classification,

satisfiability,

entailment,

consistency

https://en.wikipedia.org/wiki/Logical_consequence
https://en.wikipedia.org/wiki/Axioms

29

5 Ontop

(Univ. of

Bozen

Bolzano) [91]

Protégé,

OWLAPI

conjunctive

query

answering,

realization

All APIs virtual

RDF graph

using

SPARQL

6 Pellet

(Clark &

Persia) [92,

93]

Free Java Jena,

Protégé,

Command

Line,

OWLAPI

realisation,

classification,

satisfiability,

conjunctive

query

answering,

entailment,

consistency,

explanation

Turtle,

RDF/XML,

Krss2,

OWL/XML

, functional

Manchester

OWL2 and

SWRL

7 Racer

(Concordia

Univ.,

Canada;

Univ.

of Lubeck,

Germany)

[94, 95]

OWLLink,

Protégé,

Command

Line,

OWLAPI

realisation,

classification,

satisfiability,

conjunctive

 query

answering,

entailment,

consistency,

explanation

RDF/XML,

OWL/XML

,

functional,

All OWL

APIs

In the next section, various ontology development tools are discussed which will be

required for the construction of ontology.

 ONTOLOGY DEVELOPMENT TOOLS

Several software tools related to Ontologies have been proposed by researchers in Semantic

web. Especially, there exist significant attention accorded to Semantic web editors

(responsible to the creation and manipulation of Ontologies). Some of these tools are

explained as below:

a) OntoEdit

OntoEdit [80] is an Ontology Editor integrating various aspects of ontology

engineering. OntoEdit is quite exceptional in its category since it is based on a modern

method for ontology development and because it makes comprehensive use of

inference.

b) Protégé

Protégé [81] is an ontology editor created at Stanford University and is very popular

in the field of Semantic Web and the level of computer science research. Protégé is

free, developed in Java and its source code is released under a free license (the Mozilla

30

Public License). Protégé can read and save ontologies in the ontologies formats: RDF,

RDFS, OWL, etc. It is recognized for its ability to work on large Ontologies.

c) OILEd

OIL Editor [79] (OilEd) is a simple ontology editor that supports OIL-based

Ontologies construction. The basic design has been deeply influenced by similar tools

such as Protégé and OntoEdit, but OilEd has extended these approaches in several

manners, especially using an extension of expressive power and a reasoner. OilEd

supports the construction of OIL based Ontologies as an ontology editor.

d) Ontolingua

The Ontolingua [58] is an ontology tool created for Knowledge System Laboratory at

Stanford University. Ontolingua is devoted for Ontologies development using a form-

based Web interface. The ontology editor of Ontolingua is a tool supporting

distributed, browsing, collaborative editing and Ontologies creation. Using

Ontolingua, it is possible to export or import the following formats: KIF [24],

DAML+ OIL [23], OKBC [96], LOOM [66], Ontolingua and CLIPS (C Language

Integrated Production System) [97]. Additionally, it is also possible to only import

Classic Ocelot and Protégé format, but not their export.

e) WebODE

WebODE [82], described in the Ontological Engineering Group webpage, was built

as a Scalable, Extensible, Integrated workbench that covers and gave support to most

of the activities involved in the ontology development process (conceptualization,

reasoning, exchange, etc.) and supplied a comprehensive set of ontology related

services that permit interoperation with other information systems. WebODE exports

to WebODE’s XML, RDF(S), Prolog, OIL, Java/Jess, DAML+OIL, and OWL, and

imports from WebODE’s XML, RDF(S), UML, X-CARIN and OWL.

f) WebOnto

WebOnto [98] is a tool which provides a web-based visualization, browsing and

editing support to develop and maintain Ontologies and knowledge models specified

in OCML [67]. An ontology can be viewed as a model of the conceptual structure of

some domain and WebOnto provides the capability to represent this graphically.

31

g) SWOOP

SWOOP [99] short for Semantic Web Ontology Editor. It is a tool for creating, editing,

and debugging OWL Ontologies. It was produced by the MIND lab at University of

Maryland, College Park, but is now an open source project with contributors from all

over the world.

h) TopBraid Composer

The Free Edition (FE) of Top-Braid Composer [100] is a professional tool for

ontologies development. It uses the Eclipse platform [101] and the Jena API [102].

TopBraid Composer is a complete editor for RDF(S) and OWL models; additionally,

it is a platform for other RDF-based components and services.

The comparative analysis of the above discussed development tools has been shown in

Table 2.5. The comparison is done based on release date, base language, whether the tool

is freely available or licensed, and whether they use any ontology library.

Table 2.5 Comparative study of Ontology Development Tools

S.No. Tool

Release

Date Base Language Availability

Ontology

Library

1 Ontoedit 2004 F-Logic Free No

2 OILEd 2003 DAML+OIL Free Yes

3 Protégé 2004

OKBC+CLOS based meta-

data Free Yes

4 Ontolingua 2001 Ontolingua Free Yes

5 WebODE 2002 HTML form & Java applet Free No

6 WebOnto 2001 OCML Free Yes

7 SWOOP 2007 OWL Free No

8

Topbraid

Composer 2011 RDFS/OWL License Yes

Among these tools, protégé is the most widely used tool for ontology development because

of the plug-ins and the features it supports. The next section discusses about the rule

languages with inferential capabilities for ontologies.

32

 ONTOLOGY RULE LANGUAGES

Ontologies are the mechanism for knowledge representation which can be specified by

using different languages like RDF, RDF Schema, OWL etc. These languages offer a wide

variety of expressiveness constructs to represent a domain. The classes, properties,

property restrictions can be easily implemented using these languages. For inferential

capability, that is to deduce new facts from the knowledge base. Various rule languages

are used on these languages. The various rule languages [103] which are widely used for

inference mechanism are:

a) SWRL (Semantic Web Rule Language)

The Semantic Web Rule Language (SWRL) [104, 105] is a language for the Semantic

Web that can be used to express rules as well as logic. The specification was

submitted in May 2004 to the W3C by the National Research Council of Canada,

Network Inference (since acquired by web Methods), and Stanford University in

association with the Joint US/EU ad hoc Agent Markup Language Committee. SWRL

allows users to write Horn-like rules that can be expressed in terms of OWL concepts

and that can reason about OWL individuals. SWRL rules are of the form antecedent-

consequent pair where antecedent is referred to as body part of the rule and

consequent refers to the head part of the rule. The head and body part of the rule may

be conjunctions of one or more atoms. A SWRL rule is of the form:

A1,………….An →B1,………………….Bn

where A1,………….An refers to the head part of the rule and comma represent the

conjunctions of one or more atoms and B1,………………….Bn refers to the body

part of the rule. For example, consider family knowledge base whose SWRL rules

for the same is defined as specified in Fig. 2.5.

Fig. 2.9 SWRL Rule

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/National_Research_Council_of_Canada
https://en.wikipedia.org/wiki/WebMethods
https://en.wikipedia.org/wiki/Stanford_University

33

Fig. 2.9 shows SWRL rules implemented in Protégé. Consider one of the rules

Person(?p),bornInYear(?p,?year),subtract(?age,?nowyear,?year),thisyear(?nowyear)→hasAge(?p,?age)

This rule calculates the age of the person by subtracting born year from current year.

b) Rule Markup Language (RuleML)

RuleML [106] is a Rule Markup language for Semantic Web. RuleML has four

categories of rules which are defined as below:

• General reaction rules

These rules are applied in forward direction for observing/ checking events/conditions

and performing an action when all events/ conditions have been perceived/ fulfilled.

• Integrity constraint rules

These rules are also forward oriented, i.e. triggered by updates, mainly for efficiency

reasons.

• Derivation rules

The category of these rules can be applied in the forward direction as well as in

backward direction, the latter reducing the proof of a goal (conclusion) to proofs of

all its sub goals.

Fig. 2.10 Example of RuleML

<implies

<head>

<atom>

<rel>discount</rel>

<var>customer</var>

<Ind> 10% </Ind>

</atom></head>

<body>

<if>

<atom>

<rel>spend</rel>

<var>customer</var>

<Ind> 5000rs </Ind>

<Ind> bill </Ind>

</atom>

</if>

</body>

</implies>

34

• Facts rules

These classes of rules are used for an application direction.

The rule “The customer is given 10% discount if he spends Rs.5000 for a bill” is

represented in syntax of RuleML as shown in Error! Reference source not found.

In the example, where t starts and end with <implies> </implies> syntax and is

divided into <head><atom> and <body><atom>part. The relation predicate

(discount, spend) is represented by <rel> tag. The variables (customer) are

represented with <var> tag and constant values (10%, 5000rs) are represented by

<ind> individual tag.

The next section discusses about semantic web query languages.

 SEMANTIC WEB QUERY LANGUAGES

Several formalisms have been proposed for representing data and metadata on the Semantic

Web. RDF and OWL allow one to describe relationships between data items, such as

concept hierarchies and relations between the concepts. Now, in order access data,

Semantic Web query languages [107] are required. A wide range of query languages for

the Semantic Web exist which are discussed as below:

a) SquishQL (SQL like Query language)

Squish query [108] syntax is like SQL query language. It is a query language based

on graph navigation. SQL query language for RDF provides consistent, human-

understandable, access to repositories of semantic data, whether stored files or large

databases, enabling application programmers to create semantic web applications

quickly. For example, consider a query written in SquishQL language syntax as

shown in Fig. 2.11. The figure shows a query in SquishQL which selects title from

http://example.com/xmleurope/presentations.rdf document by selecting the document

where the predicate <dc:title> and the document are of type FOAF documents. Using

clause specifies abbreviation for long URIs by defining a string prefix; this example

specifies URIs for Dublin Core (DC), FOAF (Friend-of-a-friend), RDF (Resource

Description Framework.)

http://example.com/xmleurope/presentations.rdf

35

b) RDQL

RDQL [109] originated with the language SquishQL, which evolved into RDQL and

then was later extended to the language SPARQL. These languages take RDF as triple

data without schema or ontology information unless explicitly included in the RDF

source. The syntax of RDQL is similar to SQL select clause but it does not include

from clause. Consider the example of RDQL query shown below:

Select ?x where (?x, <rdfs:label>, “abc”)

Above query lists all resources with “abc” in the variable x.

c) SeRQL (Sesame RDF Query Language)

SeRQL (pronounced “circle”) [110] is considered as second generation RDF Query

language. This language is based upon earlier query languages such as RDQL and

N3. SeRQL uses a path expression syntax that is similar to the syntax used in RQL,

and is based on the graph nature of RDF; the path is expressed as a collection of nodes

and edges, where each node is denoted by surrounding curly brackets.

{node} edge {node} edge {node}

Consider an example to query, RDF graph for Book with Author name is Dr. AK

Sharma, the path expression for this query would be specified by

{Book}<foo:hasAuthor> {Author}<rdf:type> {foo:Dr. AK Sharma>}

This query will list all Books whose author is Dr. AK Sharma.

d) SPARQL (SPARQL Protocol and RDF Query Language)

SPARQL [111, 112], pronounced ‘sparkle’, is the standard query language and

protocol for Linked Open Data on the web or for semantic graph databases (also

Select ?title

From http://example.com/xmleurope/presentations.rdf

Where (?doc,<dc:title>,?title)

(?doc,<rdf:type>,<foaff:Document>)

Using

dc for http://purl.org/dc/elements/1.1/,

foaf for <http://xmlns.com/foaf/0.1>,>,

rdf for http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 2.11 Syntax of SqishQL

https://www.ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
http://example.com/xmleurope/presentations.rdf
http://purl.org/dc/elements/1.1/

36

called RDF triple stores).It enables users to query information from databases or any

data source that can be mapped to RDF. The SPARQL standard is designed and

endorsed by the W3C and helps users and developers focus on what they would like

to know instead of how a database is organized. Just like SQL allows users to retrieve

and modify data in a relational database, SPARQL provides the same functionality

for NoSQL graph databases like Ontotext’s GraphDB.

In addition, a SPARQL query can also be executed on any database that can be viewed

as RDF via a middleware. This feature makes SPARQL a powerful language for

computation, filtering, aggregation and sub query functionality.

A SPARQL query consists of a set of triple patterns in which each element (the

subject, predicate and object) can be a variable (wildcard). Solutions to the variables

are then found by matching the patterns in the query to triples in the dataset.

SPARQL has four types of queries [111, 112], which can be used to:

• ASK whether there is at least one match of the query pattern in the RDF graph

data;

• SELECT all or some of those matches in a tabular form (including aggregation,

sampling and pagination through OFFSET and LIMIT);

• CONSTRUCT an RDF graph by substituting the variables in these matches in a

set of triple templates;

• DESCRIBE the matches found by constructing a relevant RDF graph.

Like SQL, which is used for querying structured databases, SPARQL queries are used

to query unstructured databases and have a SELECT-FROM-WHERE structure.

There are other query languages which are considered as first generation query

languages, which has a good expressive query constructs but they are not supported

by all the tools for ontology development and lack interoperability feature, hence

these query languages are not considered as the standard languages for querying. For

example, consider a semantic data fragment of an FOAF ontology [113] which consist

of name, designation and email-address and other information of a person. Query on

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/2007/12/sparql-pressrelease
https://www.ontotext.com/knowledgehub/fundamentals/nosql-graph-database/
https://www.ontotext.com/products/graphdb/

37

such data to query name, designation with SPARQL can be used as shown in Fig.

2.12.

The above query written in SPARQL retrieves name and designation of a person

which is represented using “?x” variable. The main query constructs [114] used in

this query are as follows:

• PREFIX- PREFIX keyword is used to declare a namespace for a URI.

• SELECT-This keyword is used to specify data items that will be included in the

result set. In this for example variable name, designation is included in result set.

• FROM- This keyword specifies the data set on which the query will be executed.

• WHERE-This keyword specifies the triple/graph pattern which query will match

against a RDF graph. Variable names have question mark in their beginning. This

triple query will be evaluated against all the triple that exist in the semantic data.

In the proposed work, system takes keyword based query from the user and

transforms into SPARQL query to fire on the respective ontologies to get the relevant

results.

e) SQWRL (Semantic Query enhanced web rule Language) [115, 116]

It also has SQL-like operations to query knowledgebase of OWL. It is considered as

an expressive language for performing queries on OWL ontologies. SQWRL takes a

standard SWRL rule antecedent and effectively treats it as a pattern specification for

a query. It replaces the rule consequent with a retrieval specification. The core

SQWRL operator is sqwrl: select. Consider an example, Query: “Return all persons

whose age is greater than 18”. Its respective SPARQL query is shown as below.

Person(?p)^hasage(?p,?a)^swrlb: greaterthen(?a,18)-> sqwrl: select(?p, ?a)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?designation WHERE

{ ?x foaf: name ?name.

 ?x foaf: designation ?designation.

}

Fig. 2.12 Example of SPARQL Query

38

Upon running the above query, it returns a list of person whose age is greater than 18.

 PROGRAMMING THE SEMANTIC WEB

There are several ways to implement semantic web application using current and emerging

standards and technologies namely the Jena framework, Protégé-OWL API and the

WonderWeb OWL API, which are all available for Java language.

a) JENA

Jena (Jena 2002; Jena 2005) [117, 118] is a Java framework for building semantic

Web applications developed by the HP Labs Semantic Web Program. It provides a

programmatic environment for RDF, RDFS and OWL, including a rule-based

inference engine and a query language for RDF called RDQL. This API supports

several ontology description languages such as DAML, DAML+OIL and OWL. Jena

OWL API supports all three OWL sublanguages, namely OWL Lite, OWL DL and

OWL Full. Specifying an URI to an OWL ontology, Jena parses the ontology and

creates a model for it. With this model, it is possible to manipulate the ontology, create

new OWL classes, properties or individuals (instances). Jena includes an inference

engine which gives reasoning capabilities. Jena provides three different reasoners that

can be attached to an ontology model, each of them providing a different degree of

reasoning capability.

b) Protégé API

The Protégé-OWL API [119, 120] is an open source Java library for OWL and

RDF(S). This API provides classes and methods to load and store OWL files, to query

and manipulate OWL data models, and to perform reasoning. This API, which is part

of the Protégé-OWL plug-in, extends the Protégé Core System based on frames so

that it can support OWL ontologies and allows users to develop OWL plug-ins for

Protégé or even to create standalone applications. Protégé-OWL API uses Jena

framework for the parsing and reasoning over OWL ontologies and provides

additional support for programming graphical user interfaces based on Java Swing

library.

39

c) OWLAPI

WonderWeb OWL API [121] (OWLAPI 2006) is another API providing

programmatic services to manipulate OWL ontologies. The OWL API is a Java

interface and implementation for the W3C Web Ontology Language OWL. The latest

version of the API is focused towards OWL 2, which encompasses OWL-Lite, OWL-

DL and some elements of OWL-Full. It can also infer new knowledge once a reasoner

is attached to the ontology model. Pellet is one of the reasoners that are currently

supported.

In the last few years, due to the popularity of semantic web, size of semantic web data such

as ontologies, annotated structured data has increased very rapidly. To search semantic

data, current search engines are not efficient and due to this, several semantic search

engines have emerged recently. In the next section, architectures of some popular semantic

search engines are explained followed by comparative analysis based on some parameters.

 SEMANTIC SEARCH ENGINES

To access structured data, a number of semantic search engines has been introduced which

understands the meaning of data and helps in displaying more exact result as compared to

current search engines. Among them some of the existing semantic search engines has

selected for discussion in this section with their architectures.

2.12.1 Swoogle

Swoogle [122, 123] is a crawler based indexing and retrieval system for semantic web

documents written in RDF and OWL. SWDs are further categorized as SWO (Semantic

Web Ontologies) and SWDB (Semantic Web Database). A document is considered as

SWO when a significant proportion of the statements it makes define new terms or extends

the definition of terms defined in other SWDs. A document is considered as SWDB when

it does not define or extend a significant number of terms. Discovered documents are also

indexed by an IR system which uses URIrefs as keywords to find relevant documents. The

key goal in building Swoogle is to design a system that can handle millions and even tens

of millions of documents. The architecture of Swoogle is shown in Fig. 2.13 as below.

http://owlapi.sourceforge.net/
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/2001/sw/wiki/OWL

40

Swoogle architecture can be broken into four major components: SWD discovery,

metadata creation, data analysis and interface.

a) SWD Discovery

Swoogle adopts a hybrid approach to harvest the semantic web. It collects candidate

URLs to find and cache SWDs using four mechanisms: submitted URLs of SEDs and

sites, a web crawler that explores promising sites, a customized meta-crawler that

discovers likely URLs using conventional search engines, swooglebot semantic web

crawler which validates and analyses SWDs to produce new candidates.

b) Indexing

This component analyses the discovered SWDs and generates metadata about SWDs

at both the syntax and semantic level. It captures features like encodings namely

“RDF/XML”, N-triple, language such as OWL, DAML, RDFS, RDF. It records

ontology properties such as label, comment, version info. It also focuses on SWD

level relations such as term reference relations between two SWDs, imports, extends

etc. which are extracted from SWD by analyzing triples containing indicators such as

owl:imports, daml:imports, rdfs:subclassof.

Fig. 2.13 Architecture of Swoogle Search Engine

Web Crawler
Candidate

URLs

SWD

Discovery

 Metadata

creation

SWD Cache

IR Analyzer

Data

analysis

SWD analyzer

Interface

Web Server

Web Service

SWD Metadata

Agent Service

WWW

SWD Reader

41

c) Analysis

This component uses the created metadata to derive analytical reports such as

classification of SWOs and SWDB, ranking SWDs using rational surfer model.

d) Services

The interface component focuses on providing data services such as search services

that search ontologies at the term level.

2.12.2 Falcon

It is a keyword based semantic search engine [124, 125] which generates all the

ranked RDF documents that includes the terms in the fired query. For example, user

wants to know people peter mika, then corresponding to this query, it tries to generates

if those RDF documents that contains this kind of information and at the snippet that

exact information is shown so that user does not need to crawl unnecessarily to other

pages. It displays required information on the snippet itself, therefore user does not

need to explore in that page also. The Architecture of Falcon is described in Fig. 2.14.

a) RDF Crawler

An RDF crawler is setup to crawl RDF documents. It creates queries by enumerating

general keywords and sent them to Google and swoogle to generate RDF documents.

The crawler is also customized to download RDF documents from DBpedia,

Hannover, DBLP Bibliography.

b) Document level analysis

It contains Jena parser which parses the cache documents collected by RDF crawler.

Everything in RDF document is represented by URIs, it may happen that new

discovered URIs may further dereference to another SWD, therefore, they are queued

in the seed to explore more RDF documents. As we know, traditional search engines

index extracted terms from the crawled documents a map query terms resulting in

displaying set of documents containing the terms present in the query. But here, in

semantic web, semantic objects are identified by URIs, from which only limited

useful terms (may be just local terms) can be extracted. So, widely used current

semantic search engine use both local name and their associated literal of semantic

42

web objects to form their textual description and then build the inverted index but this

limits the indexing. Falcon expands the textual description of URI by including not

only its local name and its associated literal values, but also description about its

neighboring semantic web objects in RDF graph. For this, it creates a virtual

document which contains for each object, its local name, associated literals and labels

of its neighboring objects in RDF graph. This virtual document will be used in

indexing.

Fig. 2.14 Architecture of Falcon Search Engine

c) Global Analysis

Before indexing, vocabulary identification and then reasoning using class inclusion

relation is preformed and then indexing is performed.

43

d) Summarization

A query dependent snippet of knowledge is provided to facilitate end user to gather

its information from the snippet itself without exploring into that document and stored

into summary cache with respect to that object.

e) User Interface

Just as Traditional Web search engines, which provide Web Pages that contain the

keywords in a query at the user interface, this engine also does the same but it is not

easy for the user to specify a dimension of knowledge about the subject, except for

resubmitting queries with different combinations of keywords to try his/her luck in

traditional search engines. To move out users from such kind of problems, falcon

organizes its knowledge by utilizing typing information which is associated with its

objects. Therefore, using this typing information, different dimensions of an object

can be recognized and correspondingly its knowledge can be organized which helps

its users to focus in one direction only.

2.12.3 Hakia [126]

Conventional search engines such as Google, yahoo, Bing etc. are keyword based search

engines which retrieve a list of HTML documents in a rank order containing the terms

present in the fired query. The processing of these search engines is syntactic in nature and

does not understand content and query like how the human brain processes natural

language. To deal with this, Hakia Corp. introduced a semantic search technology based

search engine named as Hakia that bring relevant results based on concept match rather

than keyword match and popularity ranking.

The Architecture of Hakia is described as shown in Fig. 2.15 and the description of various

components is given below:

a) Crawler

Hakia crawls credible sites recommended by librarian, so that a collection of relevant

documents can be formed. The result is the collection of quality pages in topics such

as health, finance, environment, science and others. It also uses feeds from news,

blogs, and databases to get the dynamic content.

44

Fig. 2.15 Architecture of Hakia Search Engine

b) QDexing

After collecting data from different segments, QDex (stands for Query Detection &

Extraction) analyzes each web page much more intensely. It extracts all the possible

queries that can be asked to that page by decomposing sentences into sequences of

words which generates the vast number of queries out of which only few dozen

queries make sense. To deal with this challenge, Hakia uses one system which is

known as Commercial ontology which helps in extracting senseful queries out from

the exploratory space.

c) Commercial Ontology

Here, all the extracted queries are further analyzed such as morphological analysis,

generalization, and characterization and thus queries are categorized into various

senses they convey.

45

d) QDex Storage

Hakia QDexes every document and extracts queries for each document. Some queries

repeat as they are extracted from different pages. Thus, for each query, a QDex file is

created which contains information about the document, paragraph from which that

query was extracted. If the query is new, a new file is created. After that, each Qdex

file is placed in a known destination via hash-mode operation. All this work is

performed offline.

e) Query Processor

The query is sent to the query analyzer which uses fall back algorithm to generate the

sense and context of that query and with hash mode, their destination is known exactly

and correspondingly all the requested QDex files are retrieved.

f) Ranking

From the above process, a pool of relevant paragraph comes from the Qdex system

for given query term. Then, the final relevancy is determined by the semantic analysis

ranking algorithm based on advanced sentence analysis and concept match between

the query and the best sentence for each paragraph which will be highlighted in the

snippet to attract the user.

2.12.4 Semantic Web Search Engine (SWSE) [127, 128]

The search engine as shown in Fig. 2.16 starts with a set of seed URIs, retrieves to content

of URIs, parses and writes content to disk and recursively extracts new URIs for crawling.

Currently, it crawls RDF/XML syntax documents which are most commonly used for

publishing RDF on the web.

a) Consolidation

On semantic web, every object is identified by URIs and it has allowed publishers to

create their own URIs for representing an object. This facility creates a problem in

integrating knowledge about that object at one place because that object is named by

different URIs. Consolidation is a step which provides a mean of identifying

equivalent entities in RDF data e.g. OWL defines the owl:sameas property which

relates two equivalent entities; entities representing the same real world individual

46

but identified incongruously. This would enable the merging of information

contributed on an entity given by heterogeneous source without the need for

consistent URI naming of entities.

b) Ranking

Considering ranking as an important mechanism in the search process with the

function of prioritizing data elements, it uses linked based analysis, proven for HTML

web, for ranking linking data entities. Given that the notion of a hyperlink is missing

in RDF web: linked data principles mandate implicit links to other data sources

through re-use of dereferenceable URLs.

c) Reasoning

By appending instance data (i.e. assertion data) describing about the object, SWSE

introduced scalable authoritative OWL reasoned (SAOR) system for performing large

scale materialization using a rule based approach which helps to infer logical

consequences from a set of facts or axioms described using classes and properties.

The system does not produce inferences that would over-burden the indexing process

and system should pre-compute inference to avoid the runtime expense otherwise it

would impact upon response time.

Fig. 2.16 Architecture of Semantic Web Search Engine

47

d) Indexing component

It employs an inverted index for keyword lookups based on RDF literals (text), and a

sparse index for lookups of structured data. With a pair of keys and pointers for every

entity in the data file, every entity in this file is associated with a pointer to the block

in the sorted data file. This block contains entity snippet containing a detailed

description which is formed by aggregating from many sources, description also

includes inferred data which is not necessarily been published but derived from the

existing data through reasoning.

e) Query processing and User interface

It accepts user queries, retrieves top k hits and requests the snippet result data for each

of the hits and displays as an output at interface.

2.12.5 DuckDuckGo [129]

It is a feature-rich semantic search engine which gives countless reasons to leave Google.

If we search for a term that has more than one meaning, it will give you the chance to

choose what you were originally looking for, with its disambiguation results. For example,

searching for the term Apple will give you a long list of possible meanings including fruit,

computer company, bank etc.

2.12.6 Sensebot [130]

Sensebot uses text mining to parse Web pages and identify their key semantic concepts. It

then performs multi document summarization of content to produce a coherent summary.

It gives a summarized accurate search results according to the query given. The summary

gives a good idea of the topic of the query. The summary is readable and coherent.

SenseBot saves time by providing an overview of the topic, and pointing to the right

sources. The search engine itself tries to understand the concept of the query, what it

contains and gives an appropriate result. The user need not go through many web pages to

get the results.

2.12.7 Powerset [131]

The Microsoft-acquired search engine Powerset focuses on doing only one thing and doing

it well by using natural language processing to understand the nature of the question and

48

returns pages containing the answer. All search results on Powerset come from Wikipedia,

making it the ultimate way to search Wikipedia, using semantics Search terms can be

formulated as questions, which will be answered, or as simple terms, and results will be

aggregated from all the relevant pages on Wikipedia. It helps to give comprehensive view

of the thing that user searches for. It aggregates the information provided by the different

resources. It provides a set of suggestions about the query given and the related queries.

2.12.8 Watson [132]

Watson is a gateway for the Semantic Web, which has been guided by the requirements of

Semantic Web applications and by lessons learnt from previous systems. It uses Ontology

crawling exploration technique. It provides explicit and implicit relations between

ontology, providing rich, semantic access to data, focusing on semantic quality. It exploits

the strengths of semantic technologies to provide fundamental functionalities for a more

suitable access to online knowledge.

The comparison of the above discussed Search Engines is performed based on various

measures like the approaches used, Output result format, Input format and Technique used.

The detailed comparison study is outlined in Table 2.6.

Table 2.6 Comparative Study of Semantic Search Engines

Search

Engine Approaches used

Output

Result

Format Input Format

Techniques

Used

Hakia It is based on producing

relevant results based

on concept match rather

than Keyword match

HTML

documents

Natural Language

questions or

Phrases, keywords.

QDEXing

(Query

Detection &

Extraction)

DuckDuckGo Results are compilation

of over 400 sources

such as Yahoo! Search

BOSS; Wikipedia;

Wolfram Alpha; Bing;

its own Web crawler

(the DuckDuckBot)

Classified

results with

their HTML

web pages

giving the

possible

meaning for

the query

entered.

Natural Language Clustered

approach and

NLP

techniques.

Cognition It produces results

based on

 ontology and wordnet

[166, 167] vocabulary.

HTML link

results

Natural Language

 phrases

It uses

Linguistic,

Boolean search,

fuzzy search

49

technologies to

produce results.

SenseBot Concept Search Summarized

results

Query using

keywords

Using text

mining

algorithms that

parse the web

pages to produce

results.

Powerset Based on giving results

searching the contents

of Wikipedia.

HTML Web

Pages

Query using

keywords, natural

language questions

or phrases

Powerset

semantic

indexing is

based on the

XLE (Xerox

Linguistic

Environment),

Natural

Language

Processing

technology

Google Keyword Matching HTML Web

Pages

Natural Language Page Rank

Algorithm

Swoogle 1. Search semantic web

ontologies and

documents

2. Searches SW terms

i.e.; URIs

3. provides metadata of

SWDs.

Finds

appropriate

ontologies

 and list them

in ranked

order.

Domain concepts 1. N Gram based

indexing

2. Ontology rank

based on

PageRank

Watson finds ontologies by

integrating

the search capabilities

Ontology

listing

Domain concepts 1. Watson

semantic

gateway

2. NeOn Toolkit

Falcon Concept Search Produces

ontology

listing and

generates

query relevant

structured

snippets

Keywords Popularity based

approach for

ranking of

concepts and

ontologies.

Semantic Web

Search Engine

(SWSE)

Keyword based search

engine for object,

operates over RDF data

Domain

concepts

Keywords 1. Inverted

indexing for

literals, sparse

indexing for

structured data

2. Ranking

through link

based analysis

Above table shows the comparative analysis of various search engines done based on input

format, out result format and the techniques used by these search engines. Generally, most

50

of the search engines that are used in current web searches based on keyword matching

like Google and semantic search engines which are used for finding ontology can be reused

for a domain. The example of such search engines is Watson, Falcon etc.

 SUMMARY

This chapter covers the complete literature required as pre-requisite before working on

semantic web applications. The literature started with problem identification in current web

then it moved towards semantic web as a solution of problems being faced in current web

to various technologies, tools, implementation software’s and semantic search engines. As

an ending pointing of this chapter, a summary table as shown in Table 2.7 which gives a

list of ontology tools which are used during various stages of ontology development.

Table 2.7 Summarization of various Ontology Tools

Tools Examples

Ontology Editor tools Protégé, SWOOP, NeOn toolkit, WeODE, OilEd, OntoEdit

Ontology Annotator tools Annotea

Ontology reasoning tools Pellet, racer, HermiT, Fact++, Kaon2

Ontology learning tools Protégé withLT, ODEMapster

Ontology evaluation tools Ontoanalyser, Ontoclean, radon

Ontology storage

Frameworks Redland, Sesame, Allegrograph, Virtuoso

Semantic Search Engines Swoogle, Hakia, Cognition, Sensebot, Powerset, SWSE

In continuity with this, in the next chapter, process of developing ontology along with

working example, various ontology management methods and tools with their comparative

study are explained in detail.

51

Chapter III

3 ONTOLOGY MANAGEMENT TOOLS

 INTRODUCTION

Ontology has been introduced in the semantic web with the intention of providing common

vocabulary specific to a domain to the experts so that they can get interlink, combine and

communicate knowledge. But, in actual it has been experienced that experts prefer to create

their own ontologies rather than existing ontologies which results in existence of different

conceptualization of the same domain. This practice has developed many challenges in

various fields such as information integration, information services etc. In order to handle

these challenges, there is a need to bridge the gaps between ontologies of same or different

domain to form a communication. In this chapter, various ontology management methods

such as ontology merging, ontology alignment and ontology integration has been

discussed.

In the upcoming section, process of developing ontology is discussed with complete

example.

 PROCESS OF DEVELOPING ONTOLOGY

The process of ontology development [55] is not a linear process rather is an iterative

process which requires the revision and refinement of concepts for the evolving ontology.

To understand the ontology development process, a Human Family Tree ontology [133]

was designed and developed during the course of work. Below is explained the

development process of family tree which explains each step depicting the ontology

lifecycle [134].

a) Determine the Domain and Scope of Ontology

The first step in the development of ontology involves determining the domain and

scope of ontology. The various things to be kept in mind while designing ontology

are as follows:

• Domain where the ontology design is to be applied.

52

• Application of the ontology.

• The characteristics of ontology.

• Type of application the ontology can be applied to.

• The type of question the ontology should be able to answer.

• User of ontology and maintenance of ontology.

• Languages to be used which will be appropriately mapped to the intended

application.

For example, while designing ontology for Human Family Tree

(i) Domain is: “Human Family”

(ii) Scope covered is: Person family and its medical history. This ontology design

describes the entities in relations and medical history of a person’s family domain.

Ontology scope refers to defining:

• Relation between persons that exist in a family

• Habits of person.

• Blood groups of the person.

b) Considering the reuse of Existing Ontology

Developing ontology from scratch is considered as a very difficult and time

consuming process which requires a lot of domain knowledge, so it is always

advisable to reuse the already existing ontology and extend it with own concepts to

meet one’s requirements.

The following things must be kept in the mind while considering the reuse of ontology

1. Application which can use the developed ontology for consideration of reuse.

2. Library from where ontology can also be reused rather and starting from the scratch

e.g. DAML Library [46] and Ontolingua library [58] has a large collection of

ontologies.

53

For current research, there was no existing ontology in the domain of Jobs that is

meeting the specified requirement therefore the ontologies have been designed from

scratch for the proposed research work.

c) Enumerate the important terms in ontology

All the important terms from the domain of interest are identified without worrying

about which term would be used for what purpose. For example, the terms father,

mother, brother, sister, habits, blood-group etc. are recognized.

d) Determine class hierarchy

At the basic level, 5 main super-classes are identified. They are explained as below

in Table 3.1.

Table 3.1 Human Family Tree Ontology Super Class Description

S.No. Class Description

1. Gender
This class tells the gender of the individual belonging

to class Person.

2. Person

This class consists of a hierarchy of sub-classes which

describes the maximum possible relations that might

exist in the biological family such as Parent, Sibling,

Relative, Grandparent, Spouse etc.

3. Blood group
This class consist the blood group type of the individual

belonging to class Person.

4. Lifestyle habits

This class holds the Lifestyle habits such as Alcohol,

Smoke, Exercise, Food preference, diet habits as

Subclass.

5. Medical history

This class holds diseases as subclass which passes from

one generation to next as hereditary disease. For

example, Diabetes, Cancer, Heart attack etc.

e) Define the properties of the class

In this step, to describe the internal structure of the concepts, properties are defined

which are used to link concepts. Two types of properties are defined:

• Object property

• Data property.

Object property links an individual to an individual. For example; hasChild data-

property links an individual of person class to the other individual of person class.

54

In this ontology, 14 main data-properties are defined which have further sub-

properties. Creating sub-properties have enhanced the flexibility. For example, with

the help of hasParent property, all the parent individuals can be retrieved during query

execution. A sample of object property which is used in this ontology is shown in

Table 3.2

Table 3.2 Sample Object Property with its Sub-properties

Property SubProperty Domain Range

HasSpouse

hasHusband Person Person

hasWife Person Person

Here, hasSpouse is the object property which has further two subproperties named as

hasHusband and hasWife. With this property, general spouse relations as well as

specialized husband and wife relation can also be determined.

f) Creating Instances of the Classes

For each class, various individuals are declared which are discussed as follows:

• Person Class

For this class, consider Mr. U.C. Gupta Family tree as a set of individuals which are

defined in Fig. 3.1 as follows:

Here, U.C.Gupta is an individual of class Person. This individual is related to Gender

class with hasGender property whose instance is Male, which says in simple English

that U.C. Gupta is a Male. With slash Manorama who is the wife of U.C. Gupta with

a property hasWife is assigned. U.C. Gupta has 4 children which are shown at level

2. Madan is a son of U.C. Gupta and Ritu is his Wife. This way whole family tree is

designed.

Initially some information using hasGender, hasWife and hasFather properties is

provided to everyone of class Person which would be helpful inferring new

knowledge.

55

Fig. 3.1 Sample Family Tree as Instances for Class Person

• BloodGroup Class

Table 3.3 defines the relationship between blood groups on the basis of which it is

decided who can donate blood to which other blood group person instance and from

whom person’s instance, other person instance can receive blood.

Table 3.3 BloodGroup Chart

Bloodgroup DonateBloodto ReceiveBloodfrom

A+ A+ , AB+ A+ , A- , O+ , O-

O+ O+ , A , B+ , AB+ O+ , O-

B+ B+ , AB+ B+ , B- , O+ , O-

AB+ AB+ Everyone

A- A+ , AB+ , A- , AB- A- , O-

O- Everyone O-

B- B+ , B- , AB+ , AB- B- , O-

AB- AB+ , AB- AB- , A- , B- , O-

Using this table, 8 instances of BloodGroup class are created and initially, to whom

one can donate blood to and from whom one can receive blood from using

candonatebloodto and canrecbfrom property is assigned to every bloodgroup

instance. In the same way instances of Medical_history, Gender and Lifestyle_habit

classes are created and defined.

Once the ontology is created, the next step to check the consistency of the ontology.

For this, Pellet 1.5.2 (direct) [92, 93] which is embedded in Protégé itself is used. This

completes the development of human family Tree ontology development.

Deepak/Pooja

U.C.Gupta/Manorama

Ranjna/Ravi Vandna/AshishMadan/Ritu

Aadya Yashi Devansh Riya Ridhima

56

 BENEFITS OF ONTOLOGY

Ontology has many benefits [135,136] out of which some are discussed as below:

a) One of the main features of ontologies is that, by having the essential relationships

between concepts built into them, they enable automated reasoning about data. Such

reasoning is easy to implement in semantic graph databases that use ontologies as

their semantic schemata.

b) Ontologies function like a ‘brain’. They ‘work and reason’ with concepts and

relationships in ways that are close to the way humans perceive interlinked concepts.

c) In addition to the reasoning feature, ontologies provide a more coherent and easy

navigation as users move from one concept to another in the ontology structure.

d) Ontologies are easy to extend as relationships and concept matching are easy to add

to existing ontologies. Thus, this model evolves with the growth of data without

impacting dependent processes and systems if something goes wrong or needs to be

changed.

e) Ontologies also provide the means to represent any data formats, including

unstructured, semi-structured or structured data, enabling smoother data integration,

easier concept and text mining, and data-driven analytics.

 ISSUES IN DATA SHARING AND ONTOLOGY INTEGRATION

Despite of various benefits of ontology, some issues [137] are encountered while

considering data sharing and data integration in a domain.

a) It is said to use existing ontology of a domain for representing data, but in actual; in

place of reusing existing ontologies of required domain, domain experts create their

own ontology leading in formation of multiple ontologies of the same domain

containing incomplete concepts and relations. This causes ontology heterogeneity

[138] and inconsistency problem.

b) Several challenges such as finding similarities and differences among ontologies in

automatic and semi-automatic way, defining mapping between ontologies,

composing mappings across different ontologies must be faced during managing

these diverse ontologies.

57

Therefore, for better and precise results, managing these heterogeneous ontologies is

necessary.

 ARCHITECTURES OF ONTOLOGY MANAGEMENT

There are three main architectures that are implemented in ontology-based data integration

applications, namely.

a) Single ontology approach

A single ontology approach [139] as shown in Fig. 3.2 is used as a global reference

model in the system. This is the simplest approach as it can be simulated by other

approaches.

b) Multiple ontologies

Multiple ontologies approach [139] as shown in Fig. 3.3, which models each data

source as an individual and are used in combination for integration. Although, this

approach is more flexible than single ontology approach, it requires creation of

mappings between the multiple ontologies.

Shared Vocabulary

Data Source 1 Data Source 2 Data Source n

Local ontology 1

Data Source 1

Local ontology2

Data Source 2

Local ontology n

Data Source n

Fig. 3.2 Single Ontology Approach

Fig. 3.3 Multiple Ontology Approach

58

c) Hybrid approaches

The hybrid approach [139] as shown in Fig. 3.4 involves the use of multiple

ontologies that subscribe to a common, top-level vocabulary. The top-level

vocabulary defines the basic terms of the domain. Thus, the hybrid approach makes

it easier to use multiple ontologies for integration in presence of the common

vocabulary.

In the current work, multiple ontologies approach is used. Using this approach, a

separate ontology is built with respect to every selected jobboard. A lot of work has

been done in ontology management using above mentioned approaches. Among

them, some of the existing ontology management techniques has selected for

discussion in the next section.

 ONTOLOGY MANAGEMENT METHODS

Ontology management [140] includes operations such as ontology integration [140],

ontology merging [140] and ontology alignment [140]. Ontology merging is the process of

generating a single coherent ontology from two or more existing and different ontologies

related to the same subject. Ontology alignment is the task of creating links between two

original ontologies. Ontology integration is the process of generating a single ontology in

Local ontology 1

Data Source 1

Local ontology 2

Data Source 2

Local ontology n

Data Source n

Shared vocabulary

Fig. 3.4 Hybrid Ontology Approach

59

one subject from two or more existing and different ontologies in different subjects. The

different subjects of different ontologies may be related.

3.6.1 Ontology Alignment Methods

Ontology alignment is the process of determining correspondences

between concepts in ontologies. A set of correspondences is also called an alignment.

There are three main dimensions for similarity- syntactic, semantic and structural, based

on which it finds correspondence between two concepts or relations of two different

ontologies. For example, one concept says ‘worker’ from one ontology O1 and another

concept ‘employee’ from other ontology O2. Syntactically, they are not similar but

semantically, they are same as they are synonym to each other. So, with these similarity

methods, alignment approach finds the correspondence between the concepts and relations

of two different ontologies. Some of the prevalent ontology alignment methods have been

discussed as below.

a) BLOOMS+ [141]

BLOOMS+ is an ontology alignment system based on bootstrapping information

already present on LOD (Link on Data) cloud. It utilizes the Wikipedia category

hierarchy for aligning ontologies. BLOOMS construct a forest (i.e. a set of trees) TC

(BLOOM forest for concept C) for each matching candidate class name Ci. It

tokenizes the name of C and removes stop-words from the name and then it gives

resulting terms as a search string to retrieve relevant Wikipedia pages using

Wikipedia search web service. BLOOMS+ treats each page as a possible sense Si of

C and constructs a category hierarchy tree. It then compares each class C’s forest TC

in the source ontology with each class D’s in forest TD in the target ontology to

determine their similarity. Once the class similarity has been determined, it then

computes contextual similarity. It uses superclass of C and D to determine if they are

contextually same. Using class similarity and context similarity, BLOOMS+ finally

determines whether C & D should be aligned.

https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Ontologies

60

b) ASMOV [142, 143]

It is short for Automated Semantic Matching of Ontologies with Verification. This

method uses lexical and structural characteristics of two ontologies to iteratively

calculate a similarity measure between them. It derives an alignment and then verifies

to ensure that it does not contain semantic inconsistencies. It retrieves as input two

ontologies to be matched. ASMOV process is an iterative process and is divided into

two components: similarity calculation and similarity verification.

• The similarity calculation process computes a similarity value between all

possible pairs of entities, one from each of the two ontologies using four similarity

measures: lexical similarity, structural similarity, restriction similarity and

extensional similarity. This process results in a similarity matrix containing the

calculated similarity values for every pair of entities. From those similarity

matrices, a pre-alignment is extracted by selecting the maximum similarity value

for each entity.

• This pre-alignment is passed through a process of semantic verification which

eliminates correspondences that cannot be verified by the assertions in the

ontologies. Semantic verification process uses multiple entity correspondence,

crisscross correspondence, disjointness subsumption, contradiction subsumption,

equivalence incompleteness and domain range incompleteness for verification.

c) CIDER [144]

It is short for Context and Inference baseD alignER (CIDER), an ontology alignment

system that extracts the ontological context of the compared terms by using

synonyms, hyponyms, domains, etc. and then enriches such context by means of some

lightweight inference rules. It performs similarity by first extracting the ontological

context of each ontology term up to a certain depth (using synonym, hypernym,

hyponym, textual description, properties, domains, roles, associated concepts etc.)

using lightweight inference mechanism to add more semantic information that is not

explicit in the asserted ontologies. Then, it uses linguistic (using Levenhstein method)

and structural similarity (using vector space model) to find the similarity between

each pair of terms. After this, the different similarities are combined within an

61

Artificial Neural Network (ANN) to provide a final similarity degree. ANNs

constitute an adaptive type of systems composed of interconnected artificial neurons,

which change the structure based on external or internal information that flows

through the network during a learning phase. CIDER uses two different neural

networks for computing similarities between classes and properties, respectively.

Finally, a matrix M with all similarities is obtained. The final alignment A is then

extracted from this matrix M, finding the highest rated one-to-one relationships

among terms, and filtering out the ones that are below the given threshold.

d) RiMoM [145]

This multi-strategy ontology alignment framework aims at finding the optimal

alignment by combining different strategies. It uses five strategies- edit distance

based strategy, statistical learning based strategy for linguistic matching and three

similarity propagation based strategies (including concept to concept propagation

strategy, property propagation strategy and concept to property propagation

strategy) for structural matching. If two ontologies have high structure similarity

factors, then RiMoM employs an algorithm called similarity propagation to refine the

discovered alignments.

e) COMA 3.0 [146]

COmmon MAtcher (COMA) is a schema and ontology matching tool. It has four

modules where the three modules storage, match execution and mapping processing

follow the input-processing-output pattern and the user connection module provides

different ways to access the program. The storage consists of the importers that load

schemas, ontologies, existing mappings and auxiliary information in the repository.

From repository, these files can be directly used to carry out matching task. The match

execution is the core of COMA. It gets two schema or ontologies as input, runs several

matching algorithms on those ontologies and calculates the match result. In this

module, the execution engine determines the relevant schema components for

matching, applies multiple strategies and finally combines the partial results to the

final match result. The obtained mappings are further used as input in the next

iteration for further refinement. The match library is a large bundle of schema

62

matching strategies that can be combined to extensive workflows. The mapping

processing module allows automatically enriching mapping, merging module or

transforming data. The user connection module consists of full-fledged GUI to

provide convenient way to use COMA.

f) YAM++ [147]

YAM++ is a semi-automatic mapping tool which maps two ontologies at three levels.

At the first level, which is known as elementary level, it uses machine learning based

combination methods such as decision tree, SVM, Naive Bayes etc. For this, it takes

training data either from the user or from knowledge base. After this, at the second

level named as structural level, input ontologies are parsed and transformed into

graph data structure. For this, YAM++ takes elementary level mapping results as

input and runs a similarity flooding algorithm to run a similarity propagation process.

Finally, at the third level it performs semantic checking where it uses global constraint

optimization. The resultant mapping of the match process is displayed at the GUI and

then user judges if the mapping is correct or not according to his/her knowledge.

g) SIMTSS [148]

This method forms alignment between ontologies written in different languages such

as RDF, SKOS, turtle etc. including heterogeneous information. The result is new

data stored as an XML file stored in inference phases (query answering and

integrating data). The system is divided into five layers. The first layer called

Resource layer contains a collection of ontologies written in different languages. The

system integrates all the ontologies in the matching process by mapping only the

entities (concept, instances, and properties). In the pre-processing layer, ontologies

written in different languages are standardized to OWL and then are normalized

(lemmatization, lower case conversion, stop words and delete links). After this

process, these ontologies are moved to the matching process layer. It aims to find first

the relationship between their entities and degree of similarity by calculating the

similarity measure. It measures the similarity at three levels: terminological, structural

and semantic. Different methods are used at each level for similarity measurement

and correspondingly generate measures in matrix format. This matrix is given as the

63

input to the extracting alignment layer where an algorithm, Hungarian algorithm, is

applied which highlights the most correct matches and eliminates less relevant once.

The obtained alignments are stored as an XML file containing the two entities

matching similarity relationship and similarity values between them. At last, this file

is passed to the expert and configuration layer where expert confirms and suggests

another alignment; and finally configures the output by using available tools.

h) MAPSS [149]

It is an ontology alignment system that uses syntactic, structural and semantic metrics.

This method has evaluated wide range of string similarity metrics along with string

preprocessing strategies on different type of ontologies. It mainly concentrates on

following points:

• which effective string similarity metric for ontology alignment to choose if the

primary concern is precision, recall and f-measure,

• how to automatically select which string similarity metric and pre-processing

strategies are best without any training data available,

• It has grouped string metrics along three major axes: Global versus local, set

versus whole string and perfect sequence versus imperfect sequence. Global

versus local refers to the amount of information the metric needs to classify a pair

of strings as match or a non-match. Global metrics must compute some

information over all the strings in one or both ontologies before it can match any

strings whereas for local metrics it only requires only input string. Perfect

sequence metrics require characters to occur in the same position in both strings

in order to be considered a match. Imperfect sequence metrics equate matching

characters if their positions in the string differ by less than some threshold. A set

based string metric works by finding the degree of overlap between the words

contained in two strings. Word based set metrics are generally perform well on

long strings,

• For preprocessing, it has divided the categories in two major categories: syntactic

and semantic. Syntactic pre-processing methods are based on the characters in the

64

strings such as tokenization, normalization, stemming, stop-word removal.

Semantic methods relate to the meaning of the string.

i) SEM+ [150]

This is similarity based entity matching method, which implements a novel semantic

computation model called the information entropy and weighted similarity model to

suggest similarity measures between concepts from different ontologies and

vocabularies. Based on the similarity measures, SEM+ creates “same as” links among

those concepts. SEM+ also implements a new prefix based blocking algorithm, which

groups possible matching pairs into one block. This blocking algorithm reduces the

number of concepts pairs that are needed for similarity computation, which is useful

when it is required to perform mapping between two large domain ontologies. The

prefix blocking groups concepts that are likely to be similar to each other into one

block and dissimilar concepts into different blocks based on literal description of the

concepts such as rdfs:label, rdfs:comment. SEM+ builds an indexer of these literals

and computes the concept frequency of words appears in the literal description and

then compares only the prefix of concepts. Similar concepts come in one block and

thus prefix of that block get associated with the block. With this approach, similar

concepts come in one block which reduces the similarity computation between each

concept. For concept matching, it uses information entropy and weighted similarity

model.

j) MEDLEY [151]

MEDLEY is an ontology alignment system that uses lexical and structural methods

to compute the alignment between classes, properties and instances. It also uses an

external dictionary to tackle the problem of having concepts expressed in different

natural languages. In the primary step, each entity in the first ontology is aligned with

each entity in the second. In lexical metrics, it uses q-gram and levenshtein measure

to calculate the similarity measure between nodes and then structural treatment is

applied. For this, if an entity belonging to a given ontology has a neighbor that is

always a part of alignment set then the node, that neighbor is aligned to, must be a

neighbor of any prospective match for this entity.

65

k) RiMOM-IM [152]

The main idea behind the framework is to maximize the utilization of distinctive and

available matching information to handle large scale instance matching tasks in an

iterative way. It has proposed a new blocking method which uses predicate and their

distinctive object features to select candidate instance pairs and unique instance set

which effectively reduces the running time. For each candidate set, similarities over

all aligned predicates with similarity over predicates and then through aggregation,

final matching score of two instances is computed. For unique instance sets, it

iteratively uses unique subject matching and one left object matching to generate

aligned set until no new matching pairs are generated.

In the next section, the Ontology Merging methods proposed in the recent past have been

reviewed.

3.6.2 Ontology Merging Methods

The process of creation of a new ontology from two or more existing ontologies belonging

to same domain is known as ontology merging. For instance, say one ontology say O1

contains the information of ‘cars’ in the context of ‘brand’ and another ontology say O2

also explains information of car but in the context of ‘price’. By merging these two

ontologies O1 and O2, coverage area of car information can be extended and can be further

used for annotation.

A number of ontology merging methods have been proposed by various researchers out of

which some of the prevalent methods are discussed as below.

a) Chimaera [153]

Chimaera was developed at Knowledge Systems Laboratory at Stanford University

to aid users for browsing, editing, merging and diagnosing of ontologies. It is built on

top of the Ontolingua Distributed Collaborative Ontology Environment. The project

started with keeping the goal is to develop a tool that can give substantial assistance

for the task of merging knowledge bases produced by different users for different

purposes with different assumptions and different vocabulary. Later, the goals of

supporting testing and diagnosing ontologies arose as well. Chimaera merges two

66

semantically identical terms from different ontologies so that they can be referred to

by the same name in the resulting ontology. It identifies terms that are related via is-

a, disjointness or instance relationships and provide support for introducing those

relationships. Chimaera also supports the identification of the locations for editing

and performing the edits. To assist the user, Chimaera generates name resolution lists

that suggest terms that are candidates to be merged or to have taxonomic relationships

not yet included in the merged ontology. It also generates a taxonomy resolution list

where it suggests taxonomy areas that are candidates for reorganization. Based on

these lists, user decides what should be done.

b) ATOM [154]

ATOM is an asymmetric merge approach that gives preference to the target

taxonomy. In preliminary phases, it takes two taxonomies Os and Ot and a mapping

between them, provided by the set of concept correspondence and attribute

correspondence. Its goal is the generation of an integrated concept graph. The

main contribution of this work is new target-driven algorithm that

automatically integrates taxonomies. The base algorithm takes as input two

taxonomies and an equivalence matching between concepts. The algorithm generates

taxonomies that preserve all instances of the input taxonomies as well as the structure

of the target taxonomy. In contrast to previous work of ATOM, it does not necessarily

preserve all source concepts but aim at limiting the semantic overlap in the merged

taxonomy for improved understandability. This is achieved by utilizing the input

mapping and giving preference to the target taxonomy when the same concepts are

differently organized in source and target.

c) SAMBO [155]

This system is designed for Aligning and Merging Biomedical Ontologies. It is an

alignment method for defining the relationship between terms in different ontologies

and creating a new ontology containing the knowledge included in the source

ontologies. The framework of SAMBO consists of two parts. The first part computes

alignment suggestion. The second part interacts with the user to decide on the final

alignments. The alignment algorithm receives as input two source ontologies.

67

Alignment suggestions are then determined by combining and filtering the results

generated by one or more matchers. The suggestions are then presented to the user

who accepts or rejects them. SAMBO contains five basic matchers: two

terminological matchers, a structure-based matcher, a matcher based on domain

knowledge and a learning matcher for terminological matching. It uses n-gram and

edit distance and linguistic algorithm. Structural matchers are based on is-a and part-

of hierarchies of ontologies. This algorithm checks if two concepts lies in the similar

position with respect to is-a or part-of hierarchies relative to already aligned concepts

in the two ontologies, then they are likely to be similar as well. SAMBO matcher uses

UMLSK search that uses the meta-thesaurus in the Unified Medical Language

System. The fifth matcher is learner matcher which It is based on the intuition that a

similarity measure between concepts in different ontologies can be defined on the

probability that documents about one concept are also about the other concept and

vice-versa. SAMBO uses Naive Bayes classification algorithm.

d) HCONE [156]

It is short for Human-Centered Ontology Engineering. The goal of the approach is to

validate the mapping and to find the minimum set of axioms for the new merged

ontology. This approach is based on:

• capturing the intended informal interpretation of concepts by mapping them to

wordnet [166, 167] senses using lexical semantic indexing and

• exploiting the formal semantics of concepts definition by means of description.

In this approach, ontology concepts are being mapped to WordNet senses. Using this

mapping, HCONE merge constructs from the intermediate ontology that includes- a

vocabulary with the lexicalization of the specific senses of WordNet synsets

corresponding to the ontologies concepts and axioms that are translated axioms of the

original ontologies. Having specified the mappings to the hidden intermediate

ontology, the translated ontologies are merged following some merge actions such as

rename, merge and classify.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x4T5OfIAAAAJ&citation_for_view=x4T5OfIAAAAJ:u5HHmVD_uO8C

68

e) PROMPT [157]

PROMPT is based on ontology-merging and ontology-alignment algorithm. It takes

two ontologies as input and guides the user to generate a merged ontology as an

output. It creates an initial list of matches based on class names and then the user

triggers an operation by either selecting one of PROMPT’s suggestions from the list

or by using an ontology-editing environment to specify the desired operation directly.

f) Ontology Merging by Clustering & Inference Mechanism [158]

This method is based on the combination of statistical aspects represented by

hierarchical clustering techniques and the inference mechanism. It generates global

ontology automatically by four steps:

• It builds class of equivalent entities of different categories (concepts, properties,

instance) by applying a hierarchical clustering algorithm.

• It makes an inference on detected classes to find new axioms and solves

synonymy and homonymy conflicts. It also generates a set of concept pairs from

ontology hierarchies.

• It merges different sets together and uses classes of synonyms and sets of concept

pairs to solve semantic conflicts in the global set of concept pairs.

• Finally, it transforms this set to a new hierarchy which represents the global

ontology.

In the next section, some of the popular Ontology Integration approaches have been

discussed.

3.6.3 Ontology Integration Tools

The process of creation of new ontology by combining existing ontologies belonging to

different domains is known as ontology integration. For example, combining ontology A

of music domain and ontology B of singer domain and forming ontology C will hold the

knowledge of songs along with their singer’s information thereby expanding the coverage

area by using existing knowledge available on the web. Below are presented some

prevalent methods proposed by researchers in this area.

69

a) Merging of cross-domain lexical ontologies [159]

This method integrates multi-lingual thesaurus (AGROVOC, EUROVOC, GEMET,

UNESCO, URBISOC thesaurus) in order to build a first draft of domain ontology in

urbanism. The goal is to extract concepts and semantic relations from terms and

linguistic relations. This method merges the knowledge from different domains to

obtain a better definition of the urban domain. The process is composed of several

steps:

• Initially, system takes as input a set of thesaurus of different knowledge area and

transforms them in the same format to avoid from format related issues that may

arise during the merging process.

• Once, thesauri get transformed in the common format, the next objective is to

extract the concepts related to urbanism from the analyzed thesauri. For this, it

uses linguistic similarity between the concepts for mapping. In the mapping

process, every concept of every thesaurus is compared with every concept of the

other treasures to find equivalence. Each set of mapped concepts is grouped into

a cluster which is identified with the one of the URI of the original concepts.

• The clusters generated in the previous step describe the urban terminology used

in different knowledge area. Now, the next task is to build a relation between

these clusters to generate a network of urban concepts that can be seen as an urban

ontology.

• For this, relations of the concepts contained in each cluster are used as a basis for

the generation of the relations between clusters. Finally, to facilitate the

visualization and reusability of the generated output, it is transformed into XML

and OWL formats.

b) Integration of different web portals [160]

This technique combines domain ontologies and semantic web services to provide an

integrated access to the information provided by different web portals. In order to

provide this functionality, it provides a user interface that allows users to express their

query using an ontology guided tool which assist users to express their goals. The

70

domain ontology is loaded through the Protégé OWL API and its main concepts are

used to form a simple menu where the user can choose the type of the objects they are

looking for.

Through the query component, the system searches and selects the most appropriate

web services by accessing their semantic description.

The comparison of various ontology management methods is performed on various

parameters like operation, input, output, knowledge source and concept matching

methods etc. The detailed comparison study is outlined in Table 3.4.

Table 3.4 Comparative Study on Various Ontology Management Tools

S.

No.

Ontology

Mgmt.

Methods

Operation Input Output
Knowledge

source

Concept

matching

methods

Language

1 BLOOMS+
Ontology

Alignment

two

ontologies

alignment

between those

ontologies

Wikipedia

pages

Retrieves

synset of

each concept

from

Wikipedia

pages and

uses them as

context of

that concept.

OWL

2 ASMOV
Ontology

Matching

two

ontologies

alignment

between those

ontologies

set of input

alignment

containing a

set of

predetermin

ed

corresponde

nce.

Lexical

similarity,

structural

similarity,

restriction

similarity and

extensional

similarity

OWL

3 CIDER
Ontology

Alignment

two

ontologies

alignment

between those

ontologies

wordnet

Uses ANN

for final

similarity

measure by

combining

semantic,

lexical and

structural

similarity.

OWL

4 RiMOM
Ontology

Alignment

two

ontologies

alignment

between those

ontologies

None

Lexical and

structural

similarity.

OWL

5 COMA 3.0
Ontology

Matching

two

ontologies
 None OWL

71

alignment

between those

ontologies

6 YAM++
Ontology

mapping

two

ontologies

mapping

between two

ontologies

training

data at

elementary

level

Machine

learning

based

method,

structural and

at last

semantic

matching.

OWL

7 SIMTSS
Ontology

Alignment

two

ontologies
XML file None

terminologica

l, structural

and semantic.

RDF,

SKOS,

turtle

8 MAPSS
Ontology

Alignment

syntactic,

structural &

semantic

metrics

9 SEM+
Ontology

Alignment

two

ontologies

alignment b/w

those

ontologies

 None

information

entropy &

weighted

similarity

model

OWL

10 MEDLEY
Ontology

Alignment

two

ontologies

alignment

between those

ontologies

external

dictionary

lexical and

structural

methods

OWL

11
RiMOM-

IM

instance

matching

two

ontologies

alignment

between those

ontologies

 None

Finds

similarity

over aligned

predicates for

instance set,

uses unique

subject

matching.

OWL

12 Chimarea
Ontology

merging

initially

two

knowledge

bases, later

on two

ontologies

merged

ontology
 None

Identifies

similarity via

is-a,

disjointness

or instance

relationships

between two

terms.

initially

knowledge

bases,

later on

OWL

13 SAMBO

Ontology

alignment

and

merging

two

ontologies

merged

ontology
 None

A structure-

based

matcher, a

matcher

based on

domain

knowledge

OWL

72

and a

learning

matcher for

terminologica

l matching

14 HCONE
Ontology

merging

two

ontologies

merged

ontology
Wordnet

Semantic

matching
OWL

15 PROMPT
Ontology

merging

two

ontologies

merged

 ontology
 None

Concept

name

string

matching

OWL

16

Ontology

merging by

clustering

&

inference

mechanism

Ontology

merging

two

ontologies

merged

 ontology
Wordnet

Terminologic

al and

structural

matching

OWL

17

Merging of

cross

domain

lexical

ontologies

Ontology

Integration

Thesaurus

of different

knowledge

area

merged

ontology
 None

Linguistic

matching

different

knowledge

bases of

different

formats

 SUMMARY

After going through the literature review on current web and semantic web, it has been

found that in the last few years, due to the popularity of semantic web, developers have

started representing their knowledge in structured format using semantic web languages

constructs. But, current web is also carrying a huge amount of relevant unstructured data.

If this huge repository of unstructured data can be represented into structured form, then

more relevant information can be provided to the user. For instance, in the domain of job,

there are hundreds of Jobboards which facilitates jobs to its users. But, these Jobboards

uses keyword based matching system for retrieving the outputs corresponding to user’s

query. If the semantic web technologies could be included with these existing knowledges

available on the web, then coverage area of semantic web can be widened. But, only few

research efforts have been found where unstructured and semi-structured data has been

73

tagged with the semantic web made metadata. Therefore, there is a requirement to create

an Information System that uses existing webpages as input, represent them in structured

form using ontologies and then aligning various websites of same domain and upgrading

the search systems.

In the next chapter, architecture of Ontology driven Information System for Semantic Web

is presented which provides job information for its users at one place by extracting semi-

structured data from different Jobboards. The descriptions of various components of

proposed Information system are discussed in subsequent chapters.

74

75

Chapter IV

4 JOBOLOGY: SEARCH SYSTEM FOR PROVIDING

RELEVANT JOBS USING ONTOLOGY

 GENERAL

In the world of internet, Job portals / Jobboard sites are like the meeting point for the

recruiters as well as the job seekers where both aims at meeting their individual

requirements. Job seekers try to find a job opportunity from these Jobboard. But, there are

a number of difficulties through which job seeker go through while accessing these

Jobboard sites which are discussed as below:

a) Multi-Registration

The present market is too much crowded with different job portals. Therefore, to grab

the best opportunities, job seeker registers himself with most of the sites which makes

the process cumbersome for him.

b) High noise low output

Currently, almost every portal works based on keyword matching. Therefore, if a job

seeker is looking for advanced java jobs which generally indicate ‘advanced java’ as

a skill. It retrieves even those jobs also which require core java skills yielding

irrelevant results to the user.

c) Irrelevant results

Sometimes, when a user searches a job with designation, for instance “project

manager”, the search will bring up results in a number of different sectors and

possibly different locations.

Therefore, looking at the above issues, a semantic search based “Jobology”

framework has been proposed which retrieves relevant jobs to jobseekers depending

upon his information need by pulling up results from different Jobboard sites in one

go.

76

 JOBOLOGY SEARCH SYSTEM

The proposed Jobology search system functionality includes

• Deploying the strategy for crawling [161] the domain specific semi-structured web

pages.

• Converting the extracted semi-structured data into structured format using ontology.

• Provision for alignment between ontologies belonging to different data sources.

• Applying semantic query on the integrated data sources.

The stepwise details of the design of the proposed system to achieve the proposed research

objectives have been depicted in Fig. 4.1.

Step 1: Development of ontology in a particular domain

In the first step, ontology with respect to each selected Jobboard site was developed. For

the present research, OWLAPI [120] is used with Java platform for designing the

ontologies and protégé software tool which is an open source tool is used for visualizing

the ontologies. Each Jobboard ontology deals with the information related to job profile

such as job titles, job location, job keyskills, job salary package, job experience, job

description, type of job etc.

Step 2: Development of query based URL builder

Query based URL builder builds URLs of the data sources/ webpages from where desired

data should be extracted. This eliminates visiting of undesired webpages of Jobboard sites.

Step 3: Development of OntoJobExtractor module

The data extraction module extracts the desired data from the webpage with respect to each

job post and stores it in a repository.

Step 4: Annotation of extracted data with Jobboard ontologies

This module annotates the extracted data using the ontologies created with respect to

Jobboard sites.

77

Step 5: Development of ontology alignment process

The ontology alignment module aligns the ontologies of same domain. It generates some

global data structures which are used during query processing.

Development of ontologies with respect to selected Jobboard sites

Development of Query based URL builder

Development of data extraction module

Annotation of extracted data with particular Jobboard ontology

Development of ontology alignment module

Development of Jobology Query Processor

Output1: Results from Jobology

Search System

Output2: Results from conventional

mechanism

Compare

Analyzed results

Check if

desired

objectives are

met or not

Loop back to the

steps to meet the

target objective

Deploy system

and go for

possible future

work extensions

No Yes

Fig. 4.1 Proposed Research Objective of The Proposed System

78

Step6: Development of OntoJob query processing module

This module translates user query into SPARQL queries with respect to each ontology

which in turn are submitted on ontologies to retrieve matching jobs with respect to the

query from all the ontologies at one place.

Step7: Comparison of outputs

The results obtained from Jobology search system thereof form the output set 1. The same

query when submitted to Job boards retrieves the results forming the output set 2. These

outputs are then compared and the results are analyzed for the input queries.

Step8: Check if the desired objectives are met

The results of the developed system are compared with conventional system. If the

objectives are met, the system will be deployed and the possible future extensions of the

work can be carried out otherwise the system needs to be modified with different

perspectives.

 FUNCTIONAL DIAGRAM OF THE PROPOSED SYSTEM

The macro architecture of the proposed system as two phase diagram is given in Fig. 4.2.

Fig. 4.2 depicts the two-phase development of the system where phase1 is query

independent and phase II depicts query dependent phase. The query dependent phase

includes mapping keywords of user query with the concepts and generates automatic

Phase II Phase I

 Query Dependent Phase Query Independent Phase

 Search

module

Query Processing

module

User

 Ontology

Alignment

Module

Data

Extraction

module

Structured

Data

Development of various ontologies

Fig. 4.2 Functional Diagram of the Proposed System “Jobology”

79

SPARQL queries [17, 18] with respect to every job board. The results are merged and

presented to user in the sorted order at the same platform according to user’s preferences.

Query independent phase includes the development of ontology using OWLAPI [120] in

Java platform and protégé development tool for visualization, extracting semi-structured

relevant data from the webpages and converting them into structured data by annotating

the semi-structured data with ontologies.

In this chapter, the proposed framework Jobology search system has been discussed. This

chapter discusses architecture of searching semi-structured web pages of Jobboard domain

which are annotated with the knowledge representative techniques called ontology. The

ontologies are well represented with semantic web languages RDF [15, 16], OWL [118]

etc. and can be created using various open source commercial tools like protégé [81],

ALTOVA [162] semantic works. The annotation of semi-structured content with

ontologies help machines to understand the semantic information represented and

henceforth results into a more accurate retrieval of results for a query. The implementation

of the proposed approach in the forthcoming chapters indicates that web information can

be represented well with ontologies leading to better information retrieval. The research

carried out envisions an approach of annotating semi-structured contents from Job boards

only, which can be extended in future to include company’s recruitment webpages and

other resources also to widen the scope of more job opportunities to the job seekers.

 COMPONENT DETAILS OF JOBOLOGY SEARCH SYSTEM

The proposed architecture consists of the following functional components.

• Ontology development module

• Data Extraction module

• Ontology Alignment module

• Query processor module.

• Search module

The detailed architecture of Jobology search system is shown in Fig. 4.3.

80

Fig. 4.3 Proposed Design of Jobology Search Engine

81

Each component of the proposed Jobology search system has been discussed in brief in

this chapter and details of each component with implementation are discussed in the

subsequent chapters.

4.4.1 Ontology Development Module

Large numbers of development frameworks are available for ontology engineering like

protégé [81], Ontostudio [163], SWOOP [99], NeON toolkit [165], Altova semantic works

[162] etc. In the current research, protégé development framework has been used for

development of ontology in the Job domain. In this, with respect to every job boards, an

independent ontology is developed consisting of specific concepts and properties using

protégé tool. The consistency of the developed concepts can be checked by the different

available reasoners. Different plugins reasoners available for protégé framework are pellet

[92], fact++ [87], Hermit [88], RACER [94, 95] etc. Pellet reasoner is used to check the

consistency of the concepts used. Query retrieval can be done in protégé framework using

DL (Description Logic) Query [164], SPARQL (SPARQL Protocol and RDF Query

Language) [17, 18]. SPARQL Query Language has been used to retrieve and manipulate

data. This module has been discussed in detail in Chapter V.

4.4.2 Data Extraction Module

This is an important module that extracts relevant data from the desired webpages of Job

boards and annotates them using ontology. The output of the data extraction module is

given as input to the ontology alignment module. Fig. 4.4 shows the macro level algorithm

for data extraction.

Initially using QueryURL Builder process, first it creates URLs of the webpages which are

to be visited and adds them in a queue. Then, Downloader process; visits and downloads

OntojobExtractor()

{

QueryURL Builder module();

Downloader module();

Selector module();

Data extractor module();

Ontology updater module();

}

Fig. 4.4 Pseudo Code for Ontojobextractor Module

82

the webpages. Selector process selects the webpage from the repository and forward to the

data extractor module which extracts relevant content from the webpage and finally using

ontology updater process, it transforms the semi-structured content into structured format.

The detail of this module has been discussed in Data Extraction: A framework for

populating ontology with instances of Jobboard sites in Chapter VI.

4.4.3 Ontology Alignment Module

This proposed ontology alignment module is responsible for developing alignment

between various ontologies of same domain. It takes N number of data sources ontologies

from the knowledge base side and develops global indexes which will be required during

query processing. The source ontologies remain intact during this process. The algorithm

for ontology alignment is depicted in Fig. 4.5 below which builds Global Concept Index,

Global Object Property Index and Global Data Property Index. The detail of this module

has been discussed in Chapter VII.

4.4.4 Search Module

The search module provides an interface through which user interacts with the Jobology

search system. It provides a form where user enters its query. This query is then forwarded

to query processing interface for execution.

4.4.5 Query Processing Module

This module processes the query given by user in the form of keywords. It converts the

keyword based query into SPARQL format. The algorithm for query processing module

is described in Fig. 4.6. The detail of this module has been discussed in Chapter VIII.

Ontology Alignment ()

{

While(empty(ontology reporsitory)) do

{

Ontology parsing module();

Build global concept index();

Build global object property index();

Build global data property index();

}

Fig. 4.5 Pseudo Code for Ontology Alignment Module

83

 SUMMARY

In this chapter, the proposed framework Jobology Search System has been discussed. This

chapter discusses framework of searching semi-structured web pages of job board domain

which are annotated with the knowledge representative techniques called ontology. The

annotation of semi-structured content with ontologies help machines to understand the

semantic information represented and henceforth results into a more accurate retrieval of

results for a query. The implementation of the proposed approach in the forthcoming

chapters indicates that web information can be represented well with ontologies leading to

better information retrieval. The research carried out envisions an approach of annotating

semi-structured contents from Jobboards only, which can be extended in future to include

company’s recruitment webpages and other resources also to widen the scope of more job

opportunities to the job seekers using Jobology Search System architecture discussed in

this research.

Query Processing Module()

{

Input(search term)

Tokenize the search terms.

Match in the datasets.

Find the concept to which they belong.

Design SPARQL query.

Apply SPARQL query in ontologies.

Sort the results based on date/ relevance.

Display to the user.

}

Fig. 4.6 Pseudo Code for Query Processing Module

84

85

Chapter V

5 ONTOLOGY DEVELOPMENT IN THE DOMAIN OF

JOBBOARDS

 GENERAL

There are large numbers of Job boards available on the web which provides job information

to the students. Data available on these Jobboards are semi-structured [24] in nature. To

convert these semi-structured data into structured format [15] using semantic web

technologies, ontologies need to be constructed. In this chapter using multiple ontology

approach, ontologies with respect to Jobboards and Student are defined. Jobseeker

ontology will be used in cross domain integration.

 ONTOLOGY DEVELOPMENT FOR JOB BOARDS

Ontology is the study or concern about what kind of things exist- what entities are in the

universe. Keeping this concept in mind, in the proposed system three jobboard sites named

as www.Naukri.com, www.Timesjob.com and www.Shine.com are selected for the

execution of the system. An individual ontology with respect to each site is developed.

Student ontology is also developed which will be used in annotating the student profile.

For the development of ontology [55], an iterative ontology development process as

discussed in Chapter III has been followed.

The ontologies developed for research purpose for above mentioned Jobboards and student

domains are:

a) Timesjob ontology

b) Shine Ontology

c) Naukri Ontology

d) Student Ontology

These ontologies have been discussed in detail as follows:

http://www.naukri.com/
http://www.timesjob.com/
http://www.shine.com/

86

a) Timesjob ontology

This ontology contains concepts related to job entity presented to user by

Timesjob.com like title of the job entity; its location etc. and various other properties

are also covered. The steps followed for developing Timesjob Ontology are as

follows:

• Identifying Concepts

The different classes/ concepts for Timesjob ontology as retrieved from the

corresponding Jobboard are depicted in Table 5.1.

Table 5.1 Classes for Timesjob Ontology

S. No.

Class

1

Job

2 Experience

3 Location

4 Functional Area

5 Qualification

6 Industry

7 Salary

The snapshot of Timesjob Ontology Class hierarchy depicting all these classes is

shown in Fig. 5.1.

• Identifying Properties

In this step, the properties that exist between different classes i.e. data properties

which define the relation between a class and value of a class; and object properties

that define the relation between two classes has been defined. The different properties

for Timesjob ontology are depicted in Table 5.2

Fig. 5.1 Snapshot of Class Hierarchy of Timesjob Ontology

87

Table 5.2 Properties for Timesjob Ontology

Property Domain

Range Type of Property

hasCompany Job xsd:string Data Property

hasTitle Job xsd:string Data Property

hasDateofPost Job xsd:string Data Property

hasSkillset Job xsd:string Data Property

hasSpecialization Job xsd:string Data Property

hasIndustry Job Industry Object Property

hasQualification Job Qualification Object Property

hasExp Job Experience Object Property

hasLoc Job Location Object Property

hasSal Job Salary Object Property

hasIndustry Job Industry Object Property

belongstojobfunc Job Functional_area Object Property

The snapshot of Timesjob Ontology ObjectProperty and Data Property hierarchy is

shown in Fig. 5.2 and Fig. 5.3.

Fig. 5.2 Snapshot of Object Property Hierarchy of Timesjob Ontology

88

Fig. 5.4 shows the OntoGraph Visualizer of Timesjob Ontology. In this ontology,

classes such as qualification, salary, location etc. along with various relationships that

exist between classes and their values were developed which give the job information

in Timesjob.com.

Fig. 5.3 Snapshot of Data Property Hierarchy of Timesjob Ontology

Fig. 5.4 Onto Visualizer Result of Timesjob Ontology

89

b) Naukri Ontology

This ontology creates a set of concepts representing the attributes of job post such as

experience, title, designation etc. provided by the respective Jobboard.

• Identifying Concepts

 The different classes for Naukri ontology are depicted in Table 5.3.

Table 5.3 Classes for Naukri Ontology

S.No. Class S. No. Class
1 Education 6 Industry
2 Employment_type 7 Salary
3 Experience 8 Location
4 Functional_Area 9 Role
5 Job 10 Role Category

The snapshot of Naukri Ontology Class hierarchy containing the set concepts which

will be used to annotate the information provided by Naukri.com job board is shown

in Fig. 5.5.

Fig. 5.5 Snapshot of Class Hierarchy of Naukri Ontology

• Identifying Properties

Once the conceptual model of the ontology has been defined, next step is to establish

the relation between them. The different properties for Naukri ontology are depicted

in Table 5.4.

90

Table 5.4 Properties for Naukri Ontology

Property Domain Range Type of Property

hasEducation Job Education Object Property

hasExperience Job Experience Object Property

hasFunctional_area Job Functional_area Object Property

hasLocation Job Location Object Property

hasIndustry Job Industry Object Property

hasRole Job Role Object Property

hasRole_Category Job Role_Category Object Property

hasSalary Job Salary Object Property

hasDesignation Job xsd:string Data Property

hasDate Job xsd:datetime Data Property

hasDesc Job xsd:string Data Property

hasKeyskill Job xsd:string Data Property

hasOrganization Job xsd:string Data Property

hasURL Job xsd:string Data Property

The snapshot of Naukri Ontology ObjectProperty and Data Property hierarchy is

shown in Fig. 5.6 and Fig. 5.7 . Fig. 5.6 shows the object properties that exist between

two classes. For instance; hasSalary exist between class job and class salary. This

property will exist between two class objects. For instance, post111 (an instance of

job class) hasSalary 2 lac (an instance of salary class).

Fig. 5.6 Snapshot of Object Property Hierarchy of Naukri Ontology

91

Fig. 5.8 shows the OntoGraph Visualizer of Naukri Ontology. In this ontology, classes

Fig. 5.8 shows the OntoGraph Visualizer of Naukri Ontology.In this ontology, classes

such as role, industry, employment type etc. were developed which give the job

information in Naukri.com.

c) Shine Ontology

This ontology contains concepts related to job entity presented to user by Shine.com.

The steps followed for developing Shine Ontology are as follows:

Fig. 5.7 Snapshot of Data Property Hierarchy of Naukri Ontology

Fig. 5.8 OntoVisualizer Result of Naukri Ontology

92

• Identifying Concepts

 The different classes for Shine ontology are depicted in Table 5.5.

Table 5.5 Classes for Shine Ontology

S.No. Class

1 Department

2 Industry

3 Experience

4 Place

5 Job

6 Sal

The snapshot of Shine Ontology Class hierarchy is shown in Fig. 5.9. The classes

shown below will be used to annotate the information extracted from Shine Job board

to enrich it semantically.

• Identifying Properties

 In this step, to describe the internal structure of the chosen concepts, properties are

identified. The different properties for Shine ontology are depicted in Table 5.6

Fig. 5.9 Snapshot of Class Hierarchy of Shine Ontology

93

Table 5.6 Classes for Shine Ontology

Property Domain Range Type of Property

hasDepartment Job Department Object Property

hasmaxExp Job Experience Object Property

hasminExp Job Experience Object Property

hasPlace Job Place Object Property

hasSal Job Sal Object Property

hasIndustry Job Industry Object Property

hasJobtitle Job xsd:string Data Property

hasDateoffpost Job xsd:datetime Data Property

Hasotherskill Job xsd:string Data Property

Hasskill Job xsd:string Data Property

hasVenue Job xsd:string Data Property

The snapshot of Shine Ontology ObjectProperty and Data Property hierarchy is shown in

Fig. 5.10 and Fig 5.11.

Fig. 5.10 Snapshot of Object Property Hierarchy of Shine Ontology

94

 Fig. 5.12 shows the OntoGraph Visualizer of Shine Ontology. In this ontology, classes

such as place, department, Sal etc. were developed which gives the job information in

Shine.com.

d) Student Ontology

This ontology represents knowledge related to student profile that is required during

searching of suitable job. This ontology covers the educational, personal, career

related information and career preferences of student.

• Determine class hierarchy

At the basic level, there are 14 main classes which are explained in Table 5.7

Fig. 5.11 Snapshot of Data Property Hierarchy of Shine Ontology

Fig. 5.12 OntoVisualizer Result of Shine Ontology

95

Table 5.7 Student Ontology Super Class Description

Class Description

Student This class contains the instances of student whose profile is maintaining using

this ontology.

Skills This class tells the skillset of instance that belongs to student class.

Highest

qualification

This class contains the various qualifications as its subclasses such as Post-

graduation, graduation, others.

University This class contains the list of universities to which student can belongs to.

Branch This class contains the branches in which student has taken his highest

qualification.

Institute This class contains the list of institutes as instances which can be selected by

student to convey the information from where he has done his education.

Work experience This class gives option weather student is fresher or experienced.

Work

preferences

This class gives option to student if he wants full time or part time job.

State This class contains the list of states from where student can choose and tell to

which state he belongs to.

Job roles This class contains a list of job roles that a student is looking for.

Academic

Project

This class tells the types of academic projects that student instance has done.

Rating This class contains the English communication rating to which one student

belongs to.

Sublocation This class contains a list of sub-location in the state where student resides.

Gender This class tells the gender of instance that belongs to student class.

These main classes further have subclasses which are shown in Fig. 5.13.

Once the classes have been identified and created, next step is to establish a relation

between these classes in order to infer new data. This is performed in next step.

Fig. 5.13 Class Hierarchy of Student Ontology Using Protégé 5.2

96

• Define the properties of the class

In this ontology, in total 32 data and object properties are defined including sub-

properties. Creating sub-properties has enhanced the flexibility. Each property is

assigned with domain and range. Properties link individual from the domain to

individuals from the range. For example, in our ontology, the property

“belongstobranch” would probably link individuals of class student to individuals

belonging to the class Branch. A sample of object property which is used in this

ontology is shown in Table 5.8 and rest of the properties is shown in Fig. 5.14.

Table 5.8 Sample Object Properties of Student Ontology

Property Domain Range

belongstobranch Student Branch

 hasjobpreferences Student Job preferences

where “belongstobranch” is the object property having student as domain and branch

as range which indicates instance of student say ram belongs to branch say ‘cse’ where

‘cse’ is an instance of branch class. With this property relation between two instances

belonging to different classes can be determined.

Data Properties that is included in this ontology is shown in Fig. 5.15.

 Fig. 5.14 Object Property of Student Ontology using Protégé 5.2

97

 QUERY PROCESSING IN ONTOLOGY

To validate and verify the correctness of the developed ontology, various query languages

and rule languages can be used, some of which are given below:

• DL Query

• SPARQL Query

• SWRL Rules

• RDQL

Among all these language, SPARQL Query Tab provides a powerful and easy to use

feature for searching the classified ontology. It is a standard Protégé plug-in, available both

as a tab and viewed as a view widget that can be positioned into any other tab.

To validate and verify the ontology regarding different competency questions, SPARQL

was used in the proposed work. The set of queries and SPARQL Query format designed

for the ontology developed in the domain of job has been indicated in

Table 5.9.

Fig. 5.15 Data Properties of Student Ontology Using Protégé 5.2

98

Table 5.9 Set of Queries to Be Executed in The Domain of Job

Query SPARQL Query

Python,

Delhi

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?job ?title ?skill ?location where" {

"?job p:hasloc ?location."+ "?job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?location= “Delhi”)."

}

Python,

XML,

Delhi

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?job ?title ?skill ?location where" {

"?job p:hasloc ?location."+ "?job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?skill= “XML”)."+

“FILTER(?location=”Delhi”)."

}

union

{

"?job p:hasloc ?location."+ "?job p:hasskill ?skill."+

“FILTER(?skill=”Python”)." + “FILTER(?location= “Delhi”)."

}

union

{

"?job p:hasloc ?location."+ "?job p:hasskill ?skill."+

“FILTER(?skill=”XML”)." + “FILTER(?location= “Delhi”)."

}

Java,

8yrs

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?job ?title ?skill ?location ?exp where" {

"?job p:hasloc ?location."+ "?job p:hasexperience ?exp."+

 “FILTER(?skill=”Java”)." + “FILTER(?minexp= “8 yrs”)."

}

PHP,

5yrs

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?job ?title ?skill ?location ?exp where" {

"?job p:hasloc ?location."+ "?job p:hasexperience ?exp."+

 “FILTER(?skill=”PHP”)." + “FILTER(?minexp= “5 yrs”)."

}

The queries mentioned in

Table 5.9 have been executed on defined ontologies in the Job domain. One of the results

of SPARQL query corresponding to the query ‘JS’ executed on the developed ontology is

depicted in Fig. 5.16.

99

For the query “JS” as skill depicts the list of job post which requires JS as skillset in the

result. The correct result of SPARQL query indicates that the ontology has been well

designed and returns the results for individuals and classes.

 SUMMARY

Building application specific ontologies is not a simple task as it requires a lot of effort and

time to invest in domain conceptualization. Three ontologies with respect to each Jobboard

site that are selected for implementation were designed in the domain of Jobboard sites. A

set of queries were generated and implemented with the help of SPARQL query language.

In the next chapter, it has been discussed that how the developed ontologies are used for

annotating respective Jobboards sites data. The chapter discusses about proposed

OntoJobextractor framework.

Fig. 5.16 Execution of Query for Timesjob Ontology

100

101

Chapter VI

6 ONTOJOBEXTRACTOR: RELEVANT INFORMATION

EXTRACTION FROM JOB BOARDS

 GENERAL

There are multitude of different job searching techniques and platforms available for job

seekers such as networking events, social media, staffing firms, company career pages,

online job boards, professional organization websites etc. Out of all these options,

nowadays, online job boards remain one of the best ways to find out about available jobs

and submit application for the same. But, the present job market in India is too much

crowded with different job portals. Some of the problems that job seekers generally

experience are as follows:

a) High noise low output

Almost every portal works on basic keyword matching which makes it easy for

everyone to browse and apply for any job posting. But the problem is that this one-

click way to “show internet” leads to many irrelevant search results that are further

filtered by the job seeker manually.

For instance, upon firing the query Advanced Java as skill and Delhi as location on

the www.Shine .com, it displayed 45 results. A snippet these of search results are

shown in Fig. 6.1. Since this job board search system is keyword based, it displayed

all the job post having either Advanced or Java or Advanced Java in its text part

without knowing the fact whether it is a skill or some other attribute of the job post.

After analyzing the results, it was identified that out of 45 search results, only 12 job

posts were identified as relevant.

b) Individual registration problem

In order to get maximum job opportunities, job seeker makes individual profile on

different career portals and job boards which ultimately makes job seeking process

cumbersome for the user.

102

c) Spam problem

Spamming is one of the often-cited problems with mainstream job boards like

Naukri.com. When a job seeker creates a profile, it becomes a part of job board

database, which is not only accessed by recruiters but also portal’s partners.

In addition to job related information, job seeker starts getting many other mails viz

staffing agency writes to pay money for training and assessment, offers to join remote

learning program, convincing to join MBA from institutes which ultimately harasses

the job seeker.

Looking at the above issues, an “Ontojobextractor” system is proposed which extracts only

job post related relevant information from the job board pages and enriches them

semantically using ontology. This process ensures that the job post repository contains

quality Job posts.

 PROPOSED APPROACH FOR EXTRACTING RELEVANT

INFORMATION FROM JOBBOARD

In general, a Job board’s web page consists of several job posts comprising of the contents

giving details about it. Thus, the technique presented in the current section focuses on

extracting those contents with respect to each job post. The proposed OntoJobextractor

 Fig. 6.1 Snapshot of Search Results From www.Shine.Com

http://www.shine.com/

103

system visits web pages and extracts relevant content from it. This extracted information

is in semi-structured/unstructured format which in turn enriched with the information

semantically using ontology by the system and converted into structured data. The process

of data extraction starts with building URLs which are to be crawled for extracting desired

data. The architecture of building ontology from job board website is shown below in Fig.

6.2.

The system maintains multiple datasets: A Skill dataset (a list of keyskills), Location

dataset (a list of locations in terms of cities of India), Experience dataset (a list of

experience a job is looking for, in terms of years) and Salary dataset (a list of salary which

a job is offering in terms of salary per annum). Using these datasets, URLs are built. These

URLS are then added in the URL Queue from where downloader picks the URL and

downloads the respective webpages. The downloaded pages are temporarily stored in

Webpage Repository (WebR). Upon getting a signal from downloader; selector selects the

2. Select webpage

URL Store
Downloader

Query URL

Builder

Information

extractor

Page

Buffer

Webpage

Repository

(WebR)

WWW

Selector
 KnowledgeBase

URL

1. Download
3. Extract data

4. Update

 ontology

Ontology

Ontology

populator DATASETS

Structured KnowledgeBase

Fig. 6.2 Process of Populating Ontology from Job Board

2. Select Page

104

webpage from WebR and store the webpage into page buffer. Information Extractor

fetches webpage from the buffer and starts extracting data from that webpage once it gets

signals from selector and stores the selected semi-structured extracted information in the

knowledgebase. The Ontology Populator module takes this knowledgebase as an input

and transforms semi-structured information into structured format by annotating data using

ontology. The Information Extractor performs the same operation for other webpages also

and thus new extracted data keeps on updating in the ontology using ontology updater

process.

There are five main processes of the proposed system shown in Figure:

• QueryURL Builder

• Downloader

• Selector

• Information Extractor

• Ontology Populator

The detailed explanation of these modules is given in the following subsections:

6.2.1 Query URL Builder

Generally, Jobboard sites apart from job posts provide many other services such as question

paper sets for job preparation, preparing resume for interview etc. The main motive behind

this module is to create URLs of those webpages only whose information is to be extracted.

It takes job board URL format, keywords from respective datasets as an input and generates

URLs which are then added to the URL Queue for further processing. The format of URLs

is specific to different Jobboard sites. The general steps for building the URLs are discussed

in Fig. 6.3.

The process starts with fetching keywords from skill dataset, location dataset, salary

dataset, experience dataset and a list of Jobboard sites whose webpages are to be extracted

from the dataset. After fetching, Fetcher keeps the keyword related data in the Keyword

buffer and job board list in the Jobboard Buffer. It then sends the signal to Keyword

Combination Generator.

105

This generator takes keywords from the keyword buffer as inputs and generates all the

possible combinations of keywords which are stored to keyword combination store. Once,

keyword combinations have been generated, it sends signal to select the job board whose

URLs are to be generated. Selector selects the job board from job board queue, adds it to

the Jobboard Buffer and sends signals to URL Generator. URL Generator gets Jobboard

ID as an input which helps the URL generator to select the algorithm to generate the URLs

corresponding to Jobboard ID as every Jobboard has different format of URL

representations.

Once the URLs have been generated, it stores them to the URL store and sends signal to

URL selector to select the URLs from URL store and enqueue to the URL queue. The

algorithm for building URLs is explained in Fig. 6.4.

Dataset

Fetcher

(Job board ID, Job board Name, Absolute URL)

Keyword

Combination

Generator

Keyword

Buffer

Job board Buffer

Fetch Keywords

 Keyword

Job board ID

1. Generate KW combinations

 Keywords

URL

generator Jobboard Queue

Keyword

Combination Store

 2. Select

jobboard

Selector

URL

URL Store
 3. Generate

URLs

URL

Selector

 4. Enqueue

URLs

URL

 URL Queue

Fig. 6.3 Process of Building Urls

106

The working of Query URL builder is explained with the help of illustration shown in Fig.

6.5

The URL’s lists in URL store in Fig. 6.5 are the URLs generated using URL_BUILDER.

The relevant URLs generated by applying the proposed approach on skill and location

datasets are given in Appendix-1. The output of Query URL Builder generated by proposed

system is shown in section 6.3 (Refer Fig. 6.12).

Query URL Builder ()

{

[Input]: Skill dataset SD, Location dataset LD, Jobboard Table JT.

[Output]: URLs

Select the JobboardID from the jobboard queue and add it to jobboard buffer.

Fetch skill and location keywords from SD and LD and store in the keyword buffer.

Signal (generate keyword, KW combinations)

Generate keyword combinations i.e. KC.

Store KC in Keyword Combination Store (KCS).

Signal (select jobboard)

While(Jobboard buffer not empty)

{

dequeue jobboard buffer.

Absolute address=Select jobboard absolute address.

while(KCS is not empty)

{

Relative address=create relative address according to selected jobboard URL format.

newURL= append(absolute address, relative address)

insert (URLStore, newURL)

}

Signal (Enqueue URLs)

Enqueue (URLQueue, URL Store)

}

Fig. 6.4 Algorithm of Query URL Builder

107

Fetcher

Keyword

Combination

Generator

Keyword Combination Store

PHP+ Delhi, PHP+ Mumbai,

PHP+ Bangalore, PHP+ Indore,

JAVA+ Delhi, JAVA+ Mumbai,

JAVA+ Bangalore, JAVA+

Indore, Python+ Delhi, Python+

Mumbai, Python+ Bangalore,

Python+ Indore, Angular JS+

Delhi, Angular JS + Mumbai,

Angular JS + Bangalore,

Angular JS + Indore

Selector

Keyword Buffer

Skill

PHP

JAVA

Python

Angular JS

Location

Delhi

Mumbai

Bangalore

Indore

Dataset

Jobboard Queue

(J1, Naukri, www.Naukri.com),

(J2,Timesjob,www.Timesjob.com),

(J3, Shine, www.Shine.com)

J1

URL Generator

URL Store

http://www.Naukri.com/PHP-jobs-in-Delhi, http://www.Naukri.com/PHP-jobs-in-Mumbai

http://www.Naukri.com/PHP-jobs-in-Bangalore, http://www.Naukri.com/PHP-jobs-in-Indore

http://www.Naukri.com/JAVA-jobs-in-Delhi, http://www.Naukri.com/ JAVA -jobs-in-Mumbai

http://www.Naukri.com/ JAVA -jobs-in-Bangalore, http://www.Naukri.com/ JAVA -jobs-in-

Indore

http://www.Naukri.com/Python-jobs-in-Delhi, http://www.Naukri.com/ Python -jobs-in-Mumbai

http://www.Naukri.com/ Python -jobs-in-Bangalore, http://www.Naukri.com/ Python -jobs-in-

Indore

http://www.Naukri.com/Angular JS-jobs-in-Delhi, http://www.Naukri.com/ Angular JS -jobs-in-

Mumbai, http://www.Naukri.com/ Angular JS -jobs-in-Bangalore, http://www.Naukri.com/

Angular JS -jobs-in-Indore

Fig. 6.5 Snippets of URLs Generated from URL_BUILDER

http://www.naukri.com/PHP-jobs-in-Delhi
http://www.naukri.com/PHP-jobs-in-Bangalore
http://www.naukri.com/JAVA-jobs-in-Delhi
http://www.naukri.com/Python-jobs-in-Delhi
http://www.naukri.com/Angular%20JS-jobs-in-Delhi

108

6.2.2 Downloader

The main purpose of downloader process is to download pages from the WWW. It waits

for a signal called ‘download’ from the ‘URL Query Builder’. Thereafter, it picks up the

URL from the ‘URL store’ and downloads the pages corresponding to that URL. The

algorithm to perform downloading process is explained as below in Fig. 6.6.

The downloaded webpages are stored in the WebR. Finally, it sends a signal called ‘select

page’ to the selector.

6.2.3 Selector

This process selects the webpage from the WebR. It waits for a signal called ‘select page’

from downloader. Thereafter, it picks up the webpage from WebR and places it in the page

buffer. The algorithm select page process is explained as below in Fig. 6.7

It finally sends a signal called ‘mine page’ to the Information Extractor.

Downloader()

{

[Input]: URL

[Output]: Webpage w.

wait(download)

Extract URL from the queue.

Fetch corresponding webpage w from the web.

store w in the WebR.

signal(select page).

}

Selector ()

{

[Input]: webpage w.

wait(select page)

pick a webpage w from WebR.

put w in the page buffer.

signal(mine page).

}

Fig. 6.6 Algorithm of Downloader Process

Fig. 6.7 Algorithm of Selector Process

109

6.2.4 Information Extractor

This module extracts information from the webpage. It waits for a signal called ‘mine

page’ from the selector process. Thereafter, it collects the webpage over which data is to

be extracted from the page buffer. The algorithm to perform data extraction process is

explained as below in Fig. 6.8.

As an output, this process stores all the job posts in knowledgebase. The samples of

extracted information related to jobs are shown in Fig. 6.9. These job lists are extracted

from www.Naukri.com.

The information extracted from www.Naukri.com, www.Timesjob.com and

www.Shine.com by applying the proposed approach has been given in Appendix-2.

InformationExtractor()

{

[Input]: Webpage w.

[Output]:extracted data.

wait(mine w)

select w from page buffer.

identify the DIV container from the w.

extract data.

parse the data.

store data into Knowledgebase.

}

Web Source : www.Naukri.com

POST NO : 2

Title : Core Java Developer - Associate / Sr. Associate Roles @ Sapient

Org : Sapient Consulting Pvt. Ltd

Skills : core java, spring, hibernate, webservices, multithreading, javascript, java...

Location : Delhi NCR

Experience : 5-10 yrs

Salary : Not disclosed

Datetime : 5 days ago

Description : -Providing technical expertise for every phase of the project lifecyclefrom concept

development to ...

Link : https://www.Naukri.com/job-listings-Core-Java-Developer-Associate-Sr-Associate-Roles-

Sapient-Sapient-Consulting-Pvt-Ltd-Delhi-NCR-5-to-10-years-

151217005123?src=jobsearchDesk&sid=15172923637258&xp=2&px=1260118000883?src=jobsearch

Desk&sid=15172923637258&xp=1&px=1

Fig. 6.8 Algorithm of Information Extraction Process

Fig. 6.9 Sample of Extracted Information from Jobboard

http://www.naukri.com/
http://www.naukri.com/
http://www.timesjob.com/
http://www.shine.com/

110

6.2.5 Ontology Populator

In order to enrich the extracted data semantically, this process annotates data stored in

knowledgebase using ontology.

A sample of output generated by Ontology Populator with respect to data stored in

knowledgebase is shown in Fig. 6.10.

 IMPLEMENTATION OF THE PROPOSED SYSTEM

To analyze the proposed work, various experiments have been conducted. The proposed

approach has been implemented in Java Eclipse. For the analysis of the proposed system,

<owl:NamedIndividual

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test3.owl#POST0000002">

<rdf:type rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test1.owl#job"/>

 <hascompany rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Sapient Consulting

Pvt. Ltd

</hascompany>

 <hasdescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Providing

technical expertise for every phase of the project lifecyclefrom concept development to…

</hasdescription>

<hasdt rdf:datatype="http://www.w3.org/2001/XMLSchema#string">5 days ago</hasdt>

<hasminexperience rdf:resource="5yrs"/>

<hasmaxexperience rdf:resource="10yrs"/>

<hasid rdf:resource=001"/>

<haslocation rdf:resource="Delhi"/>

<haslocation rdf:resource="NCR"/>

<hassalary rdf:resource="Not Disclosed"/>

<hasskillset rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> core java, spring,

hibernate, webservices, multithreading, javascript, java...

</hasskillset>

<hastitle rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Core Java Developer -

Associate / Sr. Associate Roles @ Sapient </hastitle>

 <hasurl rdf:datatype=": https://www.Naukri.com/job-listings-Core-Java-Developer-Associate-Sr-

Associate-Roles-Sapient-Sapient-Consulting-Pvt-Ltd-Delhi-NCR-5-to-10-years-

151217005123?src=jobsearchDesk&sid=15172923637258&xp=2&px=1260118000883?src=

jobsearchDesk&sid=15172923637258&xp=1&px=1”</hasurl>

 </owl:NamedIndividual>

Fig. 6.10 Structured Information Generated by Ontology Populator

111

keywords were generated. The dataset of keywords was maintained in MYSQL. The

snapshot of keyword generator module is shown in Fig. 6.11.

This module took input from Keyword Buffer which was maintained in SQL server and

generated all possible combinations. These keyword combinations were then used by

Query URL Builder that generated URLs of the webpages which are to be crawled. Then,

URLs of three job boards were built using Query URL Builder module. The snapshot of

generated URLs is shown in Fig. 6.12.

For instance, https://www.Naukri.com/JAVA-jobs-in-Mumbai-ex-3-qm-2 generated by

appending absolute URL of Jobboard with keyword combination generated by keyword

combination generator.

Fig. 6.11 Keyword Combination as An Output from Keyword Combination Generator

112

After this, relevant content from these webpages was extracted using Information Extractor

module. The snapshot of extracted information is shown in Fig. 6.13.

Fig. 6.12 Generated URLs as an Output from Query URL Builder

Fig. 6.13 Snapshot of Extracted Data from The Jobboard

113

And at last; this unstructured extracted information was annotated using job board specific

ontologies. The sample of extracted data annotated with ontology is given in Appendix-3.

The snapshot of structured information is shown in Fig 6.14.

From above Fig. 6.14 it can be observed that the extracted data is annotated using Naukri

ontology that was shown in Fig. 5.9 (Chapter V).

 SUMMARY

In this chapter, the complete processing of information extraction from the Jobboard sites

is presented. The extracted data is semi-structured in nature which is then enriched

semantically. By using Jobboard specific ontology, the system is implemented using the

most cutting edge technologies such as Ontology and SPARQL. In order to provide fresh

data to the user, system recrawls pages periodically. An Application of this type becomes

valuable when used across a large number of Jobboards to extract relevant information and

annotate using ontology. In the next chapter, these ontologies will be aligned to bring all

the relevant data at one place for user. Using this, with the help of single query, user will

be able to get desired results from different Jobboard websites at the same platform.

Fig. 6.14 Ontovisualizer Results of Naukri Ontology with Instances

114

115

Chapter VII

7 BUILDING GLOBAL INDEXES FOR ONTOLOGY

ALIGNMENT

 GENERAL

In the previous chapter, OntoJobExtractor module was explained for extracting relevant

information from Jobboards and transforming it into structured format using ontology with

semantically enriched content for better query processing. Moving ahead, next step is to

align these ontologies and providing a platform to user where he can get results from

various data sources. This requires ontology alignment between N number (where N>=2)

of different ontologies of same domain.

In this work, the ontologies are aligned based on syntactic and semantic criterion as

discussed, in the following section. A Global Concept Index, Global Data Property Index

and Global Object Property Index is created during the process that will play a vital role in

query processing.

 PROPOSED SYSTEM FOR BUILDING GLOBAL INDEXES FOR

ONTOLOGY ALIGNMENT

Ontology Alignment is the process of determining correspondence between concepts in

ontologies. It is a promising solution to the semantic heterogeneity problem. It finds

correspondence between semantically related entities of the ontologies. These

correspondences can be used for various tasks such as ontology merging, query answering

etc. The aim of the proposed work is to design a novel architecture for ontology alignment

as it can be seen in Fig. 7.1. On the knowledge base side, ontology layer is there, where N

number of source ontologies of the same domain retrieved from ontology database which

are to be aligned (Here N>=2). A Global Concept Index (GCI), Global Object Property

Index (GOBJPI) and Global Data Property Index (GDPI) are developed as an output which

store the information related to alignment of the source ontologies. The source ontologies

remain intact during the process i.e. no changes are made in source ontology.

116

The proposed method uses matching algorithms to perform alignments. It maintains data

structures necessary to keep track of concepts and their properties in the source ontologies.

It automatically generates a list of unique concepts without user interference by taking

Local Concept

Tables

Local Object

Property Tables

Local Data

Property Tables

Local Repository Layer

Global Indexer Layer

Global Concept

Indexer

Global Object

Property Indexer

Global Data

Property Indexer

Preprocessing Layer

Parser

Ontology Buffer

Concept

matching

Process

Object property

matching

Process

Data property

matching

Process

Matching Process Layer

Ontology Layer

Fig. 7.1 Architecture of Building Global Indexes or Alignment

117

reference from WordNet [166, 167] (for the synonyms) and builds Global Concept Index

(GCI). For property matching, along with WordNet, it takes suggestion from the user and

builds Global Object Property Index (GOBJPI) and Global Data Property Index (GDPI).

These indexes hold the record of unique concepts and properties thereby filling gaps

between conceptualization that were occurring before aligning the separate ontologies.

The proposed system consists of five layers: the bottom most layer i.e. Ontology Layer,

contains a collection of ontologies which are to be aligned. At Preprocessing Layer,

ontology buffer selects ontology which is to be parsed. Parser generate three tables with

respect to each ontology named as Local Concept Table (LCT), Local Object Property

Table(LOPT) and Local Data Property Table (LDPT). These tables are stored on Local

Repository Layer. The next layer toward upward direction is Matching Process Layer

which contains matching algorithms that will be used during alignment between

ontologies. The topmost layer, Global Index layer maintains three global indexes named

as Global Concept Index, Global Object Property Index and Global Data Property index.

These indexes maintain aligned information of ontologies.

The detailed explanation of these layers is presented in following subsections:

7.2.1 Ontology Layer

This layer keeps a repository of source ontologies collected from the ontology database

belonging to same domain which are to be aligned. The structure of the ontology contains

concepts that represent the entities belonging to one domain and the relationships between

those concepts which are maintained using properties.

7.2.2 Preprocessing Layer

At this layer, selected ontology from the ontology layer is kept in buffer and its parsing is

done by parser. Parser parses the ontology and generates following three tables

corresponding to the buffered ontology.

a) Local Concept Table

b) Local Object Property Table

c) Local Data Property Table

The schema of these data structures is shown in Fig. 7.2.

118

The three data structures are described in detail as follows.

a) Local Concept Table: Local concept table is a table that stores local information of

each concept belonging to its respective ontology. For example, it stores concept name,

its global id, its local id etc. The descriptions of various fields maintained in this table are

described in Table 7.1. This information helps source ontology concepts to get interlinked

with the Global Concept Index.

Table 7.1 Description of Local Concept Table

Field Description

OID Ontology ID.

LCID Unique id of concept c in the local ontology.

GCID Unique id of concept c belonging to the local ontology in the global concept index.

LCN Local Concept Name in local ontology.

URI Uniform Resource Identifier of concept c in the local ontology.

b) Local Object Property Table: Local object property table stores the local

information of each object property belonging to its respective ontology. for example, it

stores information about object property’s local id, its name, local concept id of domain

Local Concept Table

OID LCID GCID LCN URI

Local Object Property Table

OID LOPID GOPID URI LOPN

DOMAIN RANGE

LCID GCID LCID GCID

Local Data Property Table

OID LDPID GDPID URI LDPN

DOMAIN

RANGE

LCID GCID

Fig. 7.2 Local Tables for Storing Ontology Specific Information

119

and range etc. The descriptions of various fields are defined in Table 7.2. The information

stored in this table helps source ontology object properties to get interlinked with the

Global Object Property Index (GOBJPI).

Table 7.2 Description of Local Object Property Table

Field Description

OID Ontology id.

LOPID Unique id of object property obp in the local ontology.

LOPN Local Object Property name in local ontology.

DOMAIN Domain of the obp.

RANGE Range of the obp.

LCID Unique local concept id of domain and range respectively.

GCID Unique global concept id of domain and range respectively.

URI Uniform Resource Identifier of obp.

GOPID Unique id of obp belonging to the local ontology in the Global Object Property

Index.

c) Local Data Property Table: Local data property table stores the local information

of each data property belonging to its respective ontology. for example, it stores

information about data property’s local id, its name, local concept id of domain and range

etc. The descriptions of various fields are defined in Table 7.3. The information stored in

this table helps source ontology data properties to get interlinked with the Global Data

Property Index (GDPI).

Table 7.3 Description of Local Data Property Table

Field Description

OID Ontology ID.

LDPID Unique id of data property dp in the local ontology.

LDPN Local data property name in local ontology.

DOMAIN Domain of the dp.

RANGE Datatype.

LCID Unique local concept id of domain.

GCID Unique global concept id of domain.

GDPID Unique id of dp belonging to the local ontology in the Global Data Property Index.

URI Uniform Resource Identifier of dp.

The above mentioned three local tables are generated corresponding to all the source

ontologies after being processed by parser.

120

7.2.3 Local Repository Layer

This layer maintains a repository of Local Concept Tables (LCT), Local Object Property

Tables (LOBJPT) and Local Data Property Tables (LDPT) which are generated by the

preprocessing layer and store information of all the ontologies which are to be further

aligned.

7.2.4 Matching Process Layer

It has been experienced that different ontologies use different names to represent the same

entity. In this layer, by using Concept Matching (CM) and Property Matching (PM)

algorithm, those concepts and properties are uniquely identified from different ontologies

and thus can be addressed by the unique concepts and properties. The algorithms explained

below will be used while developing Global Indexes.

a) Concept Matching algorithm

As explained above, to collect the maximum concepts from the domain, similarity

between two concepts of different ontologies using syntactic and semantic matching

is done. For syntactic matching, the algorithm uses longest common substring

matching and prefix matching techniques. For semantic matching, it uses synonym

matching (taken from WordNet) to match the concepts belonging to different

ontologies. The following algorithms will be useful while constructing the GCI [169].

The description of longest common substring and prefix matching (syntactic based

concept string matching) and semantic based synonym matching is described as

follows:

 Algorithm 1: Concept String Matching

It takes two strings (say str1 and str2, which are labels of concepts) one given by GCI

and other from the LCT of another ontology; and performs substring matching on

both strings as explained in Fig. 7.3.

For instance, to find the substring matching between two strings named a keyskill and

skillset, a table LC is maintained as shown in Fig. 7.4 that stores the length of longest

common substrings. After applying the algorithm, the common substring comes out

to be “skill” with length 5 as highlighted in Fig. 7.4 and then the similarity factor

121

between these strings are performed by applying the above algorithm. The similarity

measure i.e. sm, came out to be 62%. If sm> threshold value, then these two strings

are considered as similar otherwise discarded.

Substring_Matching (str1, str2)

{

[Input:] str1 and str2 are two strings which are labels of concepts (which are to be matched)

given by GCI.

[Output:] true, if similarity_factor >= threshold value

 false, otherwise.

LC[m+1][n+1]; // Create a matrix to store lengths of longest common substrings.

m = strlen(X);

n = strlen(Y);

result = 0; // To store length of the longest common substring

for (int i=0; i<=m; i++) {

for (int j=0; j<=n; j++) {

if (i == 0 || j == 0)

LC[i][j] = 0;

else if (X[i-1] == Y[j-1])

{

LC[i][j] = LC[i-1][j-1] + 1;

result = max(result, LC[i][j]);

}

else LC[i][j] = 0;

} }

Sm=result/max(m,n)

if (sm > th) // th is a threshold value

return true

else

return false
}

 Fig. 7.3 Substring matching Algorithm

INPUT

OUTPUT

str1/

str2

 k e y s k i l l

str1/

str2

 k e y s k i l l

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

s 0 0 0 0 1 0 0 0 0

s 0 0 0 0 1 0 0 0 0

k 0 1 0 0 0 2 0 0 0

k 0 1 0 0 0 2 0 0 0

i 0 0 0 0 0 0 3 0 0

i 0 0 0 0 0 0 3 0 0

l 0 0 0 0 0 0 0 4 1

l 0 0 0 0 0 0 0 4 1

l 0 0 0 0 0 0 0 1 5

l 0 0 0 0 0 0 0 1 5

s 0 0 0 0 1 0 0 0 0

s 0 0 0 0 1 0 0 0 0

e 0 0 1 0 0 0 0 0 0

e 0 0 1 0 0 0 0 0 0

t 0 0 0 0 0 0 0 0 0

t 0 0 0 0 0 0 0 0 0

Fig. 7.4 Illustration of Finding Common Substring Between Two Strings

122

Algorithm 2: Prefix Matching

It is also experienced that developers use shorthand of the concepts while developing

ontology. For instance, for term “location”, developer usually uses “loc” which

signifies the same meaning. Therefore, in order to perform matching between a term

and its shorthand, prefix matching is performed. The algorithm to match a string with

another string written in shorthand form is discussed in Fig. 7.5

In this algorithm, result string contains the common outcome substring after

comparing the two strings. If the length of result string is greater than specified

threshold value then based on prefix matching, two strings are considered as similar

otherwise discarded.

Algorithm 3: Synonym Matching

If concepts are syntactically not same, then it may also happen that synonymy occurs

between them. For instance, if ontology Oi contains “company” and ontology Oj

contains “organization” as a concept then these two concepts are representing the

same entity. To deal this scenario, a Concept Synonym Table(CST) is maintained

which contains the synonym of concepts. In this case, a list of synonyms

corresponding to concept cj from the Concept Synonym table (CST) using cj’GCID is

Prefix_Matching (str1, str2)

{

[Input:] str1 and str2 are two strings which are labels of concepts (which are to be matched)

given by GCI.

[Output:] true, if result.count is greater than threshold value

 false, otherwise.

result= “”

str1len = str1.length();

 str2len = str2.length();

 for (i=0, j=0; i<=n1-1&&j<=n2-1; i++,j++)

 {

 if (str1[i] != str2[j])

 break;

result=result & str1[i];

 }

if (result.length > th)

return true;

else

return false;

Fig. 7.5 Prefix Matching Algorithm

123

retrieved and checked whether any one of synonym matches with ci. or not If yes,

then ci and cj are considered as same otherwise they are taken as different. The

algorithm to perform synonym matching is shown as below in Fig. 7.6

All identified concept’s synonyms are maintained in Concept Synonym Table (CST).

The description of CST is explained as follows:

• Concept Synonym Table:

This table stores a list of synonyms of concepts retrieved from wordNet. When a new

concept is added in the GCI, its corresponding synonyms are retrieved from the

wordnet and stored here so that a knowledge base of concept’s synonym can be

maintained. This would ultimately fasten the speed of matching process to match

concepts with its synonyms offline otherwise they must be retrieved from wordNet

every time. The schema of concept synonym table is shown in Fig. 7.7.

The descriptions of various fields maintained by this table are defined in Table 7.4.

Synonym_Match(ci,cj)

[Input:]Two concepts ci and cj, cj whose match is to be find out against second concept ci’s

synonyms.

[Output:] true, if cj got matched with any synonym of ci.

 false, otherwise.

Step1:[check if any synonym of ci gets matched with cj]

match=false // match is a Boolean which will store the final result if any match found or not.

Initially it is set to false which indicates that match is not found.

for each c є si with cj // The synonyms of ci are represented as si stored in CST

corresponding to ci’s GCID.

{

match=string_matching(cj,c);

if (match=true) then

return true;

}

return false;

Fig. 7.6 Synonym Match Algorithm

GCID GCN synonym

 Fig. 7.7 Schema of Concept Synonym Table (CST)

124

Table 7.4 Description of Fields of Concept Synonym Table

Field Description

GCID Unique id to each concept in the GCI.

GCN Name of the Global Concept in GCI.

synonym List of synonyms (nouns) from wordnet.

b) Property matching operation

In this operation, two properties pi & pj belonging to different ontologies Oi & Oj

respectively are matched to build a global object/data property index. But, before

working on matching process, stemming is applied on every object property and data

property. Stemming is the process that reduces all forms of the words to a base or

stemmed form. For example; if in one ontology Oi, there exists an object property

father whose domain and range is person and in another ontology Oj same object

property but with the name hasfather whose domain and range are person exist; in

this case, string matching operation would return false despite of the fact that both

properties are conveying the same meaning. To deal with this situation, stemming is

applied which will reduce both the properties to a base term which is father in the

present case. The algorithm to perform property matching is shown in Fig. 7.8.

The working of property matching algorithm is described as follows:

1) This algorithm is used as a function for building GOBJPI/GDPI.

2) It takes two properties Pi & Pj as parameter and before matching, it checks if their

domains and ranges match or not. If they match then it allows the process to go

further, otherwise at this step it returns false.

3) In case, if the above condition matches then the strings corresponding to these

properties strings are submitted for string matching to the string matching function.

a) If strings match, then these two properties are considered as same.

b) Otherwise, it is checked if they are synonyms of each other and for this they are

given to synonym_match function as shown in Fig. 7.6 as a parameter which

returns true or false. If function returns true, these properties are considered same

otherwise it goes to the next step.

4) If the above three steps do not identify if two properties are same, then it takes

suggestion from user and accordingly returns the result either as true or false.

125

• Property Synonym Table

This table stores a list of synonyms of properties retrieved from wordnet. When a new

property is added in the GOBJPI/ GDPI, its corresponding synonyms are retrieved

from the wordnet and stored here so that a knowledge base of property synonyms can

be maintained which would ultimately fasten the speed of matching properties with

its synonyms otherwise they have to be retrieved from WordNet every time.

The schema of maintaining property synonym data structure is shown in Fig. 7.9.

GPID GPN Synonym

Fig. 7.9 Data Structure for Property Synonym Table

The descriptions of various fields are defined in Table 7.5.

Property_Matching (obj1,obj2)

Step1: [Before matching two properties check if their domain and range same]

 If domain[objp1]==domain[objp2]then

 If range[objp1]==range[objp2]then

 Goto step2

 Else

 Return false

Step2:[Check if two properties objp1 and objp2 are lexically same]

 Flag=substring_matching(objp1,objp2)

 If flag== true

 Return flag;

 Else

 Goto step3

Step3:[Check if two object properties objp1 and objp2 are synonym of each other]

Flag=synonym_match(objp1,objp2)

If (flag==true)

Return flag;

Else

Goto step4

Step4:[User Suggestion]

Take feedback from user corresponding to the matching of object property and revert back to the

calling function accordingly.

If user answers yes

Return true;

Else

Return false;

Step 5: Exit

Fig. 7.8 Property Matching Algorithm

126

Table 7.5 Property Synonym Table

7.2.5 Alignment Layer

Once the concepts and properties that belong to different ontologies are matched, they are

stored in their respective indexes. This layer contains GCI which contains a list of unique

concepts which belong to that domain. Corresponding to those unique concepts, their

respective object properties and data properties are stored in GOBJPI and GDPI [170]. To

store such information, following data structures are used in the current work:

a) Global Concept Index

b) Global Object Property Index

c) Global Data Property Index

The schemas of these data structures are shown in Fig. 7.10.

The three data structures are described in detail as follows.

Field Description

GPID Unique id to each property in the global object and data index.

GPN Name of the global property in respective object and data property index.

synonym List of synonyms (verb) from WordNet.

Global Concept Index

GCID OID LCID LCN Link to next ontology

Global Object Property Index

GOPID
Domain

GCID

Range

GCID

OID

LOPID

LOPN

link to ontologies to which it belongs

DOMAIN RANGE

LCID LCN LCID LCN

Global Data Property Index

GDPID
Domain

GCID

Range

Datatype

OID

LDPID

LDPN

link to ontologies to which it belongs

DOMAIN RANGE

LCID LCN Datatype

Fig. 7.10 Data Structures Used for Storing Information in Output Layer

127

a) Global Concept Index

 It is well known that an index optimizes speed and performance in finding relevant

documents for a search query. Therefore, keeping this in mind, an index is maintained

that stores a list of global concepts identified after concept matching process along

with the information that contains the list of source ontologies in which this concept

was used. The description regarding various fields that are maintained in this table is

defined in Table 7.6 which helps global concepts to interlink with their respective

source ontologies

Table 7.6 Description of fields of Global Concept Index

Field Description

GCID Unique id to each concept in the global concept index

GCN Name of the global concept in concept index.

OID Ontology Id.

LCID Local ID of the concept in its ontology.

Next pointer Link to the next node.

b) Global Object Property Index

 Analogous to Global Concept Index, Global Object Property Index is maintained to

store the global object properties that are identified after object property matching

process. The descriptions regarding various fields that are maintained in this table are

defined as follows in Table 7.7 which helps global object properties to interlink with

their respective source ontologies.

Table 7.7 Description of fields of Global Object Property Index

Field Description

GOPID Unique id of obp belonging to the local ontology in the global object property index.

Domain Global object property domain concept.

Range Global object property range concept.

OID Ontology id.

LOPID Local Object property id.

LOPN Local Object Property name.

LCID Local concept id of domain and range respectively.

LCN Local concept name of domain and range respectively.

128

c) Global Data Property Index

 Global Object Property Index is maintained to store the global data properties that are

identified after object property matching process. The descriptions of various data fields

that are maintained in this table are given in Table 7.8 which help global data properties

to interlink with their respective source ontologies.

Table 7.8 Description of fields of Global Data Property Index

Field Description

GDPID Unique id of data property belonging to the local ontology in the global data property

index.

Domain Global object property domain concept.

Range Global object property range concept.

OID Ontology id.

LDPID Local data property.

LDPN Local Data Property name.

LCID Local concept name of domain respectively.

LCN Local concept name of domain respectively.

d) Building Global Concept Index

After performing the concept matching operation, their corresponding entries are

made in the Global Concept Index. The algorithm for building concept index is

explained in Fig. 7.11.

The process starts with assuming that GCI is initially empty and thus first ontology’s

(Oi’s) concepts (i. e; ci) are given as seed to the GCI from its Local Concept Table

(LCTi). Then, it starts taking other ontologies i.e; Oj’s LCTj and starts growing itself

by applying following steps.

A variable match is used corresponding to each concept cj which is to be matched

against set of concepts ci available in GCI. Initially, match is set to false which

indicates that there exists no match corresponding to the new concept.

In the next step, new concept cj is matched with every concept denoted as ci in the

GCI starting from the first entry. Here, first it is checked whether ci and cj are

syntactically same or not and for this, substring matching and prefix matching

algorithm is called. If concepts are found to be syntactically same, then same process

restarts for second concept. But, if they are not same, then synonyms are matched and

corresponding steps are taken. If cj gets matched with any synonym of ci retrieved

129

from CST, then respective information gets appended to the rear of ci links.

Otherwise, a new entry of concept cj is made in GCI.

The step by step illustration of proposed work is outlined in Fig. 7.12.

1) First, parser develops LCT with respect to given ontologies retrieved from the

source ontology layer. The LCT stores LCID, LCN, URI and GCID which will be

Building Global Concept Index(LCT)

 [Input]Local Concept Tables LCTj of ⱯOj є ontology repository

[Output]Collection of unified concepts in concept index

// Start of algorithm

[Initialization]

When global concept index is empty initially, assign all the concepts ci of ontology Oi from its

local concept table LCTi to the index as seed concepts.

For each concept cj of LCTj // This step adds all the concepts cj of Oj stored in LCTj in

GCI.

 {

match=false //match is a variable which holds result either as true or false. This indicates

whether concept //cj got matched with any concept ci in GCI or not. Initially it is set to false

indicating no match exists.

for each concept ci of GCI // this step performs matching operation where cj

is matched with //every concept ci in GCI until a

match is not found.

 {

Switch(1)

{

 case 1: match=substring_matching(cj,ci)

 if (match=true)

 break;

case 2: match=prefix_matching(cj,ci)

 if (match=true)

 break;

case 3:match=synonym_match(cj,ci)

If (match=true)

Break;

}

}

 }

If (match==true) // step to be taken if match found

{ create a new node corresponding to cj and link it with existing node ci and add ontology

name and local concept id in that node. }

Else // step to be taken if match is not found

{add cj as the new entry to the rear of concepts in the GCI .

}

}

Fig. 7.11 Algorithm for Building Global Concept Index

130

assigned to concept when this concept will be added in GCI. These LCT tables will

be used as input for building the GCI.

2) In this step, initially first ontology’s concepts are given as seed inputs to the GCI.

The GCI assigns unique GCID to these newly added concepts and contains the

information such as its local concept name and the name of the ontology to which this

concept belongs. Here for instance, concept “Job” belongs to ontology O1 and its

LCN is Job. So, GCI creates a new node where it stores these two-information’s

corresponding to its GCID. Likewise, it adds the same information for other seed

concepts in GCID.

3) A CST table containing a list of synonyms is maintained corresponding to all the

concepts which exist in GCI. For example, corresponding to Job concept, its

synonyms (occupation, business, line of work etc.) are maintained in CST. This table

also contains a list of entities which are identified on the similar syntactic matching.

For instance, skillset and keyskill are syntactically similar on the basis of substring

matching. Therefore, with respect to skillset; keyskill is also considered as similar and

thus listed in the CST for future reference.

4) From this step, onwards, main process of concept matching starts where it takes

concepts from the next ontology’s LCT and compares its concepts with the concepts

in the GCI. It uses concept matcher algorithm to match two concepts. For instance, it

starts with taking first concept from ontology O2’s LCT say keyskill. Now, Concept

matcher (CM) takes two parameters as an input; one concept “Keyskill” from

ontology O2’s LCT and one concept from GCI assuming “skillset” as concept chosen

from the GCI. Now first it checks whether it is a synonym of keyskill from CST. If

not, then then it performs substring matching followed by prefix matching in case

substring matching fails. In this example, keyskill and skillset comes out to be similar

thus, skillset get linked with keyskill in GCI. And along with this, CST is also updated

by adding skillset as similar concept with respect to keyskill for the future purpose as

shown using orange circle indicating that it got updated to CST after syntactic

matching.in the same way, using prefix matching, sal and salary comes out to be

131

similar. Therefore, they are also considered as similar and thus added in the CST

encircled using blue colour.

5) If no match is found then in that case, it added as a new concept in GCI as can be

seen for concept Education and industry encircled with green colour and its

corresponding synonyms are retrieved from the wordnet and added into CST for

future purpose.

P

a

r

s

e

r

Concept

Matcher

Fig. 7.12 Illustration of building Global Concept Index

132

e) Building Global Object Property Index

After performing the property matching operation, their corresponding entries are

made in the Global Object Property Index. The algorithm for Building Global Object

Property Index is explained in the Fig. 7.13.

The description of building global object property index algorithm is explained step by

step as follows:

1) Initially, it is assumed that Global Object Property Index is empty and thus first

ontology’s stemmed object properties are given as seed to the index from its Local

Object Property Table. The main process starts from next step.

2) A variable flag is used corresponding to each object property which is to be

matched against set of object properties available in the Global Object Property Index.

Initially, flag is set to false which indicates that there exists no match corresponding

to the new object property.

3) In the third step, new object property obji is matched with every object property

denoted as objj in the Global Object Property Index starting from the first entry in the

Building Global Object Property Index(objP)

 [Initialization]

When global objectproperty index is initially empty, assign all the objectproperty objp of ontology

O to the index as seed objectproperty, objp.

[Input] Stemmed objp of Ontology Oi

[Output]Collection of unified objectproperties in objectproperty index

// Start of algorithm

1. Flag=false

2. Get the objectproperty objp of ontology Oi from its corresponding local objectproperty

table LOPT.

3. Repeat until objectproperty objp is compared with each global objp of global index

3.1 calculate flag=property_Matching (ci,cj)

3.2 If (flag== true)

3.3 Create a new node and add the matched objectproperty to its corresponding matching

global objectproperty

Else

3.4 Add a new global objectproperty in the global objectproperty index.

Fig. 7.13 Algorithm for Building Global Object Property Index

133

Global Object Property Index. These two variables are given as parameter to property

matching algorithm which returns true or false.

4) If the flag is true, then it represents that it has found its matching object property in

Global Object Property Index and thus creates a new node that stores information as

explained in data structures discussed above corresponding to the object property objj

and append this node after the matched concept.

5) Otherwise, it creates a new entry in the Global Object Property Index and adds a

new node corresponding to it.

f) Building Global Data Property Index: Analogous to global object property index,

after performing the property matching operation, their corresponding entries are

made in the Global Data Property Index. The algorithm for Building Global Data

Property Index is explained in the Fig. 7.14.

The description of building global data property index algorithm is similar to global

object property index as explained above.

Building Global Data Property Index(dp)

 [Initialization]

When global dataproperty index is empty initially, assign all the dataproperty dp of ontology O to

the index as seed dataproperty, dp.

[Input] Stemmed dp of Ontology Oi

[Output]Collection of unified dataproperties in dataproperty index

// Start of algorithm

1. Flag=false

2. Get the dataproperty dp of ontology Oi from its corresponding local dataproperty table

DPTI.

3. Repeat until dataproperty objp is compared with each global dp of global index

3.1 calculate flag= property_Matching (dpi,dpj)

3.2 If (flag== true)

3.3 Create a new node and add the matched dataproperty to its corresponding matching

global dataproperty

Else

3.4 Add a new global dataproperty in the global dataproperty index.

Fig. 7.14 Algorithm for Building Global Dataproperty Index

134

 IMPLEMENTATION OF THE PROPOSED WORK

To analyze the proposed work, it has been implemented in Java Eclipse. The proposed

system, parsed local concept table, local data property table and object property tables were

stored in MYSQL database and then using respective matching algorithms final Global

Concept Index, Global Object Property Index and Global Data Property Index are

generated. The snapshots of various Global Concept Index, Global Object Property index

and Global Data Property Index are shown in Fig. 7.15, Fig. 7.16 and Fig. 7.17

respectively.

Fig. 7.16 Snapshot of Global Object Property Index

Fig. 7.15 Snapshot of Global Concept Index

135

 SUMMARY

In this chapter, a novel method for ontology alignment is proposed which supports

a) taking n number of ontologies as an input which are to be aligned concurrently,

b) performing semantic matching on concepts, data properties and object properties,

c) developing knowledge base of synonym of concepts and properties to fasten the

matching process,

d) building Global Concept Index, Global Data Property Index, Global Object Property

Index which store all information of the merged ontologies and maps them with their

local ontologies to which they actually belong, thereby supporting backward

engineering. These indexes will be very helpful in making query processing easier and

faster.

In the next chapter, emphasis will be on query processing module to make querying and

retrieval from the system systematic and fast.

Fig. 7.17 Snapshot of Global Data Property Index

136

137

Chapter VIII

8 ONTOJOB QUERY PROCESSOR: AN ONTOLOGY

DRIVEN QUERY PROCESSING METHOD

 GENERAL

In the previous chapter, Ontology alignment module was explained in which alignment

between the heterogeneous data sources was done using ontology. Moving ahead, next step

is to handle user queries and retrieve relevant results from multiple of data sources and

presenting to the user at one place.

In this work, “OntoJob” query processing design is being proposed that transforms

keyword based user query into SPARQL query with respect to each data source. These

queries are then run on their respective ontologies individually and then the results are

presented at one place by merging the result generated from different data sources. By

processing the query in such a way, navigation time of the user can be decreased while

increasing the precision of the results obtained.

 PROPOSED SYSTEM FOR ONTOJOB QUERY PROCESSING

The aim of the proposed work is to present a novel architecture for query processing on

aligned ontologies. Here, a repository of different datasets is maintained as listed in Table

8.1 which plays a very important role during query processing because ontologies are

normally defined at conceptual level.

Table 8.1 List of Datasets

S.No. Dataset Description

1 Skill Dataset List of skillsets.

2. Indlocation Dataset List of locations.

3. Salary Dataset List of salary packages from minimum to maximum range.

4. Experience Dataset List of experiences in terms of years a Job can ask for.

5. Designation dataset List of Job titles.

138

These datasets maintain a list of their respective data. These datasets are built by extracting

relevant data from various Job boards. With the recognition of new data, the information

gets updated in its corresponding dataset. The architecture of Query processor is shown in

Fig. 8.1.

User Interface

Tokenizer

Token buffer

Dataset

Repository Token Mapper

Property Table

Concept_dataset

mapper

Result Result

Result

Merger

Result

Query

Results

 SPARQL

query store

1. map

tokens with

dataset

Keywords

6. merge

results

SPARQL Query

generator

5. generate

query

Token_dataset

Table

2. map

Tokens with

concepts

SPARQL

query store

SPARQL

query store

Inverted Property

Table Token_Concept mapper Concept_dataset

Table

Instance_Concept

Table Property

table transformer 4. transform

table

3. find property

Property Finder

 Global Data Property Index

Global Object Property Index

Global Concept Index

Fig. 8.1 Architecture of Query Processing Process

139

At an abstract level, the process starts with tokenizing the query given by user which resides

at the Token Buffer. Query is entered by the user in keyword form and keywords are

separated by the delimiter by the user itself. Once the tokenization is done, tokenizer sends

signal to Token Mapper to find if token belongs to any dataset and respective information

gets stored in Token_Dataset table. At the back end, Dataset_Concept mapping table is

maintained which contains a list designating which concept is mapped with which dataset.

For instance, skill dataset contains a list of keyskills which can be the instance of skill

concept. Once this is done, token mapper sends the signal to Token_Concept mapper to

map the tokens with their respective concepts. For this, Token_Concept mapper refers

Token_Dataset table and Concept_Dataset table and generates Instance_Concept table.

Once, it is decided that token belongs to which concept; next task is to find the relation

between the classes and for this, Token_Concept mapper sends the signal to property finder

to find the relation and the ontologies in which those concepts and property exist.

The generated information gets stored in the Object Property table and Data Property

Table. Once this is done, property finder sends signal to Property Transformer which

creates an Inverse Property Table by placing all the properties at one place corresponding

to each ontology which would be helpful in planning a query with respect to selected

ontologies. Once this is done, Inverse Query Transformer sends signal to Query Generator

process to take input from Inverse Property Table and generate individual SPARQL

queries for selected ontologies. These queries are then fired to the respective ontologies

which in turn generates results. At last, Result Merger merges all the results and displays

it to the user at one place.

8.2.1 Various Data Structures used for Query Processing

The schemas of various data structures used during query processing are shown in Fig. 8.2

are explained as under.

1) Token Buffer

This buffer contains the tokens, t generated by tokenizer. The descriptions of various

fields maintained in this table are described in Table 8.2.

.

140

Table 8.2 Description of Token Buffer

Field Description

TID Unique id of token t in the query q.

TN Token Name in the query q.

Token Buffer

TID TN

 Token_Dataset Table

TID TN DSID

 Concept_dataset Table

GCID DSID DSN

 Instance_Concept Table

GCID TID TN

 Data Property Table

GDPID
Domain

GCID

Range

(Datatype)

OID

LDPID

LDPN

link to ontologies to which it belongs

DOMAIN RANGE

LCID LCN Datatype

 Object Property Table

GOPID
Domain

(GCID)

Range

(GCID)

OID

LOPID

LOPN

link to ontologies to which it belongs

DOMAIN RANGE

LCID LCN LCID LCN

 Inverted Property Table

OID

LOPID LOPN

Domain Range

LCID LCN LCID LCN

LDPID LDPN

Domain Range

LCID LCN Datatype

Fig. 8.2 Schema of Various Data Structures Used in Query Processor

141

2) Dataset Table

This table contains the list of datasets with their unique ids and names stored in dataset

repository. The description of various fields of Dataset Table, DS are described in

Table 8.3.

Table 8.3 Description of Dataset Table

Field Description

DSID Unique id of dataset ds in dataset repository.

DSN Name of Dataset ds.

3) Token_Dataset Table

Token mapper process finds whether a token belongs to any dataset maintained in

dataset repository and its corresponding information gets stored in Token_Dataset

Table, TDT. The descriptions of various fields of this table are described in Table 8.4.

Table 8.4 Description of Token_Dataset Table

Field Description

TID Unique id of token t in the query q.

TN Token Name in the query q.

DSID Unique Dataset id of ds.

4) Concept_Dataset Table

This table stores the mapping information between concept and dataset. For instance,

skill dataset is mapped with skill concept. The descriptions of various fields

maintained in Concept_Dataset Table, CDT table are described in Table 8.5.

Table 8.5 Description of Concept_Dataset Table

Field Description

GCID Global Concept id of the concept c maintained in GCI.

DSID Unique Dataset id of ds.

DSN Name of the dataset ds.

5) Token_Concept Table

This table stores the mapping information between token and concept. For instance,

if token ‘PHP’ belongs to skill dataset and skill dataset is mapped with skill concept

142

then PHP is considered as instance of skill concept. The descriptions of various fields

maintained in Token_Concept Table, TCT are described in Table 8.6.

Table 8.6 Description of Instance_Concept Table

Field Description

GCID Global Concept id of the concept c maintained in GCI.

TID Unique id of token t in the query q.

TN Token Name in the query q.

6) Property Table

Once the tokens get mapped with their respective concepts, next step is to find the relationship that

exists between the concepts. For this, all the relationships which are maintained between Job concept

and identified concept c are collected from GOPI and GDPI which in turn are maintained in

respective Object Property Table (OPT) and Data Property Table (DPT). The descriptions of various

fields maintained in Property Table, PT are described in Table 8.7 and

Table 8.8 respectively.

Table 8.7 Description of Object Property Table

Field Description

GOPID Unique id of op belonging to the local ontology O in the GOPI.

OID Ontology id of ontology O.

Domain GCID as domain of op.

Range GCID as range of op.

LOPID Local Object Property id of object property op.

LOPN Local Object Property name of op.

LCID Local concept id of domain and range of op respectively.

LCN Local concept name of domain and range of op respectively.

Table 8.8 Description of Data Property Table

Field Description

GDPID Unique id of data property dp belonging to the local ontology O in the GDPI.

Domain GCID as domain of dp.

Range GCID as range of dp.

OID Ontology id of Ontology O.

LDPID Local Data Property id of data property dp.

LDPN Local Data Property name of dp.

LCID Local concept id of domain and range of dp respectively.

LCN Local concept name of domain and range of dp respectively.

143

7) Inverted Property Table

This table is an inverted version of Property Table. It contains the list of properties

with respect to individual ontology which will help in constructing SPARQL query.

The descriptions of various fields maintained in Inverse Property Table, IPT are

described in Table 8.9.

Table 8.9 Description of Property Table

Field Description

OID Ontology ID of ontology O.

LOPID Local Object Property id of object property op.

LOPN Local Object Property name of op.

LCID Local concept id of domain and range respectively.

LDPID Local Data property id of data property dp.

LDPN Local Data Property name of dp.

The details of the various modules along with their working are outlined as below:

8.2.2 Component Modules of Query processor

The six main components that are used during query processing are given as:

a) Tokenizer

b) Token Mapper

c) Dataset_Concept Mapper

d) Token_Concept Mapper

e) Property finder

f) Property table transformer

A brief description of the above parameters is given below:

a) Tokenizer

It takes user query keywords as an input and split it into tokens. The generated tokens

are stored in token buffer. Once the tokens have been generated, it then sends signal

to token mapper for further process.

The algorithm for tokenizing the user query is shown Fig. 8.3.

144

b) Token Mapper

Upon getting the signals from Tokenizer, it finds to which dataset the token may

belong to. For instance, if a java as token is received from token buffer, and if that is

found in the skill dataset, then at the generalized level, it would be considered as skill.

The process of mapping a token with respective dataset is defined in Fig. 8.4.

Token_mapper(t)

{

[Input:]token t from token buffer.

[Output]:token_concept table.

wait(map token)

for each token t є token_buffer {

For each dataset ds є dataset_repository {

 if (t є ds)

{

store(t,dsname) to token_dataset table.

signal(map token with concept)

}

}

}

}

Fig. 8.3 Tokenizer Algorithm

Fig. 8.4 Token mapper Algorithm

Tokenizer (str, l, e, s,d1)

{ [Input:] keyword str given by the user via keyword interface.

 Location l given by the user via location interface.

Experience e given by the user via experience interface.

Salary s given by the user via salary interface.

Delimiter d1 between the keywords.

 [Output:] token_list stored in token_buffer [10][10].

 Initialize word=””

Initialize num=0

Str=str+d1

l=str.size

set i=0

while (i< l-1)

{

if(str[i]!=d1)

word=word+str[i]

elseif(word.size!=0)

{

token_list[num]=word // storing token in token buffer

num=num+1

}

word=””

}

return num;

Signal (map token)

}

145

c) Dataset_Concept Mapper

This process maps datasets present in dataset repository with the concepts indexed in

GCI. This is a single time process in which concepts are already mapped with the

datasets. For instance, skill concept is mapped with skill dataset; location concept is

mapped with location dataset and so on. The process of mapping a concept with

respective dataset is defined in Fig. 8.5.

d) Token_Concept Mapper

This process maps tokens with their respective concepts by referring token_dataset

table which contains a list of tokens along with the dataset (to which they belong) and

dataset_concept table which holds a list of concepts mapped with datasets. By joining

these two tables, the resultant table Token_concept table gets generated which

contains a list of instances with their respective concepts. The process of mapping a

concept with respective instances is given in Fig. 8.6.

Dataset_concept mapper (ds)

{

[Input:]Dataset ds є dataset repository.

Dataset repository={skillds, locds, expds, salds}

Global Concept Index, GCI.

[Output:]dataset_concept table.

Map skillds with skill concept.

Map locds with location concept.

Map expds with experience concept

Map salds with salary concept.

Generate dataset_concept table.

}

Token_Concept Mapper (tdt,cdt)

{

[Input:]Token_Dataset table.

 Dataset_concept table.

 [Output:]token_Concept table.

token_Concept table=Apply join between Token_Dataset table and Instance_Concept Table.

}

Fig. 8.5 Dataset_Concept Mapper Algorithm

Fig. 8.6 Token_Concept mapper algorithm

146

e) Property finder

Once the concept has been identified with respect to query keywords, Token_concept

mapper sends a signal to property finder to find the relation that exists between the

concept ‘Job’ and the identified concept. Property finder refers to GOPI and GDPI

and retrieves the property that exists between the two concepts and stores it into the

Object Property Table (OPT) and Data Property Table (DPT). Along with this, it

retrieves other information such as ontologies in which this property exists; and

concepts in domain and range which would be required during query building. Once

it is done, it sends transform property signal to Property Transformer process. The

process of property finding from the respective indexers is defined in Fig. 8.7.

f) Property Table Transformer

The data generated from Property Finder process gets collected in its respective OPT

and DPT. In this table, the head of every row is the property followed by the nodes

containing information about the ontology and local property. This defines the

ontologies in which the property exists. Property Table Transformer represents the

same information but in inverted form. This process upon getting the signals from

property finder process creates an Inverted property table in which each row is headed

with ontology name followed by the nodes containing the properties that are identified

from GOPI and GDPI with respect to the query. After this, a signal is sent to a

Property Finder (ci, cj)

{

[Input:] ci is a Job concept that will be domain for every property p.

 cj is a concept/datatype that will be range for the property p.

[Output:] OPT and DPT.

Wait (find property)

if p є GOPI then store p in OPT.

if p є GDPI then store p in DPT.

signal (transform table)

}

Fig. 8.7 Property Finder Algorithm

147

SPARQL_query_generator process. With this step, writing SPARQL query becomes

a simple process. The process of Property Table Transformer is defined in Fig. 8.8.

Once the instances get mapped with their respective concepts and properties have

been identified, next step is to generate SPARQL queries. In the next section, the

process of generation of SPARQL queries with respect to ontologies is presented.

 GENERATION OF SPARQL QUERIES

This phase generates SPARQL queries with respect to selected ontologies using

Token_Concept Table. The process of SPARQL Query Generator is shown in Fig. 8.9.

It starts working once it gets signal from the Inverse Property Transformer. It plans

separate queries corresponding to each ontology listed in the property table. It collects

Property_table_transformer(OPT, DPT)

{

[Input:]OPT and DPT.

[Output]: Inverted Property Table, IPT.

Wait(transform table)

Collect the ontologies to be indexed.

IPT=Index the properties by creating an inverted index.

Signal(generate query)

}

Fig. 8.8 Property Table Transformer Algorithm

SPARQL Query generator

Inverse Property Table

Token Concept Table

SPARQL Querybuilder Filter Combination

generator
Filter combination

Table

SPARQL Query Store

Fig. 8.9 SPARQL Query Generator

148

ontology name, property name, domain and range, and constructs separate SPARQL

queries with respect to the ontologies. It performs two tasks: It first, builds SPARQL

Queries using SPARQL Query builder process and second, generates filters that will be

appended to SPARQL queries using Filter combination generator. The process of

generating filters using Filter Combination generator is shown in Fig. 8.10.

The process of SPARQL query generation is defined in Fig. 8.11.

At one side, filter combination generator generates all the combinations of the tokens and

stores them in the filter combination table and on the other side, SPARQL querybuilder

builds SPARQL queries using inverse property table. it then appends filters in the query

by taking them from filter combination table and builds final SPARQL query.

Once the SPARQL queries have been generated, these are applied on their respective

ontologies to retrieve results which in turn are stored in their respective result tables. Along

with this, each row of the result table contains the count of filters taken from filter

combination table. For instance, if the filter_count of the retrieved Jobposts is 4, then this

designates that this Job post contains 4 keywords given by user. This will be required

during merging operation. Once this is done, it sends signal to result merger to merge the

results and present to the user.

Filter Combination Generator

Token_Seggregator
Token_Concept

Table

Skill combination

generator

 Location filter

table

Salary filter

table

Skill Combination

Table

Experience

 Filter table

Skill Filter

 Table

Filter appender Filter Combination Table

Fig. 8.10 Filter Combination Generator

149

SPARQL_Query_generator (PT, TCT)

{

[Input:]Property Table, PT; Token_Concept Table.

[Output:] SPARQL queries.

Wait (generate query)

Transform property table into ontology based property table.

For each ontology Oi

{

SPARQL query q=Build SPARQL query().

Filter_combination_table=Filter_combination_generator(TCT);

 While(!empty(filter combination table))

{

fi=Get a filter from filter combination table.

q=append(q,fi).

Store q in SPARQL Query Store

run q.

Store the results in Result table RTi.

}

Find and remove duplicate Jobpost from the result table.

Signal (merge results).

 }

}

Build SPARQL query()

{

Create a SPARQL query format where prop1, prop2 etc. are properties from inverted property table ;

?var1(domain) denotes to Job concept and ?var2,?var3(range) denotes to concept stored in

concept_instance table.

“PREFIX rdf:<>”

“PREFIX p:<>”

“select ?var1 ?var2… ?var k where {?var1 p:prop1 ?var2.

 ?var1 p:prop1 ?var3. … … ?var1 p:prop1 ?var k.

}”

Return query;

}

Instance_segregator()

{

Create a skill_instance schema with two fields: skill_num and skill_name;

Store the skill instances from instance_concept table into the skill_instance table;

Create a location_instance schema with two fields: loc_num and loc_name;

Store the location instances from instance_concept table into the location_instance table;

Create an exp_instance schema with three fields: exp_num, min_exp and max_exp;

Store the experience instances from instance_concept table into the exp_instance table;

Create a sal_instance table with two fields: sal_num and sal;

Store the salary instances from instance_concept table into the sal_instance table;

}

Fig. 8.11 Process of SPARQL Query Generator

150

The step by step process of Filter Combination Generator is shown in Fig. 8.12.

Filter_Combination_Generator(TCT)

{

// create all the possible combination of skill instances.

//no_of_skills is the total number of skills given by user in query.

n=1// no. of combination.

for(r=1;r<=no_of_skills;r++)

{

 skill_comb= Combination (skill_instance[],n,r RTr)

}

Filter_combination table= Concatenator(skill_comb,location_instance table,exp_instance table,

sal_instance table)//Concatenate skill_comb with location_instance table, exp_instance table and

salary_instance table if exist and store the results in filter_combination table.

Add filter_count column in Filter_combination table.

Count no. of filters in each row of filter_combination table and update the filter_count.

Return

}

Skill_Combination_generator (skill_instance,n,r)

{

// create a temporary table data that will store all the combination of skill.

Skill_comb = Combinationutil(skill_instance,data,0,n-1,r) // Store the possible generated skill

combinations in Skill_comb list.

Return skill_comb;

}

Combinationutil (skill_instance, data,start,end,index,r)

{

// skill instance is a list that stores all skill instances.

// data is a temporary table to store current combination.

// start and end are starting and ending indexes in skill_instance list.

// r is the size of a combination.

If(index== r)

{

For(j=0;j<r;j++)

Store skill_instance[skill_name] in data table.

return

}

For(i=start;i<=end && end- i+1>r-index;i++)

{

Data[index]=skill_instance[i].skill_num

Combinationutil(skill_instance, data,i+1,end,index+1,r)

}

}

Concatenator(skill_comb,location_instance table,exp_instance table, sal_instance table)

{

Concatenate skill_comb with location_instance table, exp_instance table and salary_instance table, if

exists and store the results in filter_combination table.

}

Fig. 8.12 Process of Filter Combination Generator

151

Once the SPARQL queries have been generated, these are applied on their respective

ontologies to retrieve results which in turn are stored in their respective result tables. Along

with this, each row of the result table contains the count of filters taken from filter

combination table. For instance, if the filter_count of the retrieved Jobposts is 4, then this

designates that this Job post contains 4 keywords given by user. This will be required

during merging operation. Once this is done, it sends signal to result merger to merge the

results and present to the user.

 RESULT MERGER

It merges the results upon getting the signal from query generator. Now the motive is to

provide those Jobposts on the top from various Job boards which contain maximum

keywords given by user at user interface. Therefore, looking at the filter_count in each

result table, merging operation is performed. For instance, Jobposts containing all the

keywords will be displayed on the top with Jobpost having less matching keywords

downwards. Further user can sort the results based on date and time of Job post uploaded.

The process of result merging is defined in Fig. 8.13.

 EXAMPLE ILLUSTRATION & IMPLEMENTATION

The illustration as shown in Fig. 8.14 shows the formation of Inverse Property table which

will be used for SPARQL query construction. Considering a query: Python, Java, XML.

Location: Delhi, Noida

Result_merger (RT1, RT2,.., RTn)

{

[Input:] result tables RTi

[Output:] results.

Wait (merge results)

merge (RT1,RT2,..,RTn)

Display results via user interface to user.

}

Fig. 8.13 Process of Result Merger

152

Tokenizer Token

mappe

r

Property Finder

Object Property Table

Query

Keyword:

Python, Java,

XML

Location:

Delhi, Noida

DS

Repository

Token_Concept Mapper

Concept_Dataset Table

GCID DSID DSN

GC1 DS1 Techskill

GC2 DS2 indlocati

on

Token Buffer

TID TN

T1 Python

T2 Java

T3 XML

T4 Delhi

T5 Noida

Token_Dataset Table

TID TN DSID

T1 Python DS1

T2 Java DS1

T3 XML DS1

T4 Delhi DS2

T5 Noida DS2

Instance_Concept Table

GCID TID TN

GC1 T1 Python

GC1 T2 Java

GC1 T3 XML

GC2 T4 Delhi

GC2 T5 Noida

Property Table Transformer

Inverse Property Table

SPARQL Query Generator

Fig. 8.14 Formation of Inverse Property Table

153

Once the Inverse Property table is generated, next step is to build filters. The illustration of

building filters is shown in Fig. 8.15.

Filter_combination table

ID Instance_Comb Filter_count

ID1 Skill:Python;Skill:Java;Skill:XML;Location:Delhi 4

ID2 Skill:Python;Skill:Java;Skill:XML;Location:Noida 4

ID3 Skill:Python;Skill:Java;Location:Delhi 3

ID4 Skill:Python;Skill:Java;Location:Noida 3

ID5 Skill:Python;Skill:XML;Location:Delhi 3

ID6 Skill:Python;Skill:XML;Location:Noida 3

ID8 Skill:Java;Skill:XML;Location:Delhi 3

ID8 Skill:Java;Skill:XML;Location:Noida 3

ID9 Skill:Python;Location:Delhi 2

ID10 Skill:Python;Location:Noida 2

ID11 Skill:Java;Location:Delhi 2

ID12 Skill:Java;Location:Noida 2

ID13 Skill:XML;Location:Delhi 2

ID14 Skill:XML;Location:Noida 2

Skill_Instance

Table SID SN

S1 Python

S2 Java

S3 XML

Token_Concept Table

GCID TID TN

GC1 T1 Python

GC1 T2 Java

GC1 T3 XML

GC2 T4 Delhi

GC2 T5 Noida

Instance

Segregator

Skill

Combination

generator

Location_Instance Table

LID GCN LN

L1 Location Delhi

L2 Location Noida

Skill_Comb Table

SCID GCN Skill_comb

SC1 Skill Python,Java,XML

SC2 Skill Python,Java

SC3 Skill Python,XML

SC4 Skill Java,XML

SC5 Skill Python

SC6 Skill Java

SC8 Skill XML

Concatenation

Fig. 8.15 Illustration of Creating Filters

154

The output of Filter Combination Generator i.e.; Filter Combination Table and Inverse

property table is given to SPARQL Query builder which yields various SPARQL queries.

The sample of newly generated SPARQL queries from the above process is shown in Fig.

8.16

QID SPARQL Query Filter_count

O1Q1

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p:

<http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?Job ?title ?skill ?location where" {

"?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

“FILTER(?skill=”XML”)."+ “FILTER(?location=”Delhi”)."

}

4

O1Q2

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p:

http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?Job ?title ?skill ?location where" {

"?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

“FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

“FILTER(?skill=”XML”)."+ “FILTER(?location=”Noida”)."

}

4

O1Q3

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX p:

<http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

"SELECT ?Job ?title ?skill ?location where" {

{

"?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

“FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

“FILTER(?location=”Delhi”)."

}

3

Fig. 8.16 SPARQL Queries

The illustrations as explained above in Fig. 8.14 , Fig. 8.15 and Fig. 8.16 shows the step

by step process of converting keyword based queries into SPARQL queries. These queries

are then fired over respective ontologies independently. The generated results are then

merged by result merger and finally get available to the user.

 IMPLEMENTATION OF THE PROPOSED WORK

To analyze the proposed work, various experiments have been conducted. The proposed

approach has been implemented in Java Eclipse. For the implementation of the proposed

system, keyword based query is taken from user interface which retrieves results from ‘n’

number of ontologies and displays the results at the same platform. The snapshot shown in

155

Fig 8.17 illustrates the results related to the user query “Java” as keyword and “Noida” as

location.

Fig. 8.17 Jobology Result Output

This approach is advantageous in comparison to existing Job boards in terms of

• Semantically enriched information

• Availability of Job posts belonging to different data sources at the same platform.

 INTEGRATING JOBOLOGY SEARCH SYSTEM WITH STUDENT

DOMAIN

Placement is a crucial interface between the stages of completion of academic program of

the students and their entry into the suitable employment. The main Job responsibility of

placement department in any institute is to arrange campus recruitment. The main

156

challenge through which placement cell goes across is to arrange recruitment or providing

Job information with respect to every student qualification and skillset.

This module works to meet the employment needs of current college student and recent

graduates. The motive behind this module is to provide beginner’s level Job opportunity to

a student from a reservoir of Jobposts maintained by online Job boards without sifting

through volumes of posts that require more experience, at one place. For this, student

ontology is developed that has been explained in detail in chapter 4 section. The student

ontology is integrated with JOBOLOGY by mapping concepts such as qualification,

skillset etc. this cross-domain integration leads to many benefits which are discussed as

follows:

1) From the placement cell perspective,

• They will be able to provide more Job opportunities to their students.

• They will be able to provide Job opportunity according to individual student

skillset, qualification and other preferences such as location etc.

2) From the student perspective,

• Student will be able to get Job opportunity from the various reservoirs of Jobposts

maintained by their respective Jobboards at one place.

• He/she will be able to get the list of Jobpost according to their preferences. For

instance, if a student prefers only Delhi/NCR region Jobs then Jobology will

provide only those Jobposts which satisfy their preferences.

 PERFORMANCE EVALUATION OF THE PROPOSED SYSTEM

To evaluate the Proposed Jobology Search System, the architecture has been implemented

in JDK 1.8 Eclipse framework.

The system has been evaluated in two phases:

Phase 1: Considering individual Jobboards

In this phase, existing Jobboards and their respective proposed ontologies are compared

individually. For instance, a set of queries is given to a user and is asked to apply those

queries on the naukri.com and give his feedback. Then, same set of query is applied on the

157

proposed naukri ontology developed by the proposed system. The results are analyzed and

with respect to that performance metric is calculated.

Phase 2: Considering the integrated system

In this phase, the performance of the overall system is calculated and compared with

Jobboards and proposed individual ontologies. For this phase, users have been provided

with 3 query sets and they were asked to apply those queries on the entire platform. Based

on user feedback, a comparative analysis is done.

8.8.1 Evaluation for individual Jobboards

For analysis, a set of 18 queries belonging to three query sets, each of 6 queries was taken

as a sample. For each query set, a group of 20 different users were selected for participation.

Users were asked to apply these queries on three Jobboards i.e. www.naukri.com,

www.timesjob.com and www.shine.com (existing systems) and proposed ontologies i.e.

Naukri ontology, Timesjob ontology and Shine ontology respectively. Top 50 posts were

considered as retrieved post and out of those, top 10 posts were used for making decision.

The performance of Jobology Search System has been measured on the basis of Precision

metric, P which is defined as the fraction of retrieved Jobposts that are relevant to the

query. Mathematically, the precision is calculated as:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝𝑜𝑠𝑡𝑠}⋂{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑜𝑠𝑡𝑠}|

{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑜𝑠𝑡𝑠}
 (8.1)

For example, for a text search on a set of documents, precision is the number of correct

results divided by the number of all returned results.

At first, a set of 6 queries were prepared for query set 1 and it was handed over to 20 users.

The first user fired each given query on Naukri.com (existing system) and Naukri ontology

(proposed system). On each query, the feedback of the user was taken in terms of “relevant”

or “irrelevant” with respect to top 10 Jobbposts. In the same way, same user performed the

same procedure on remaining two Jobboards and their respective proposed ontologies (i.e.

www.timejob.com, timesjob ontology and www.shine.com and shine ontology). In this

manner, the same set of queries was given to the second user following the same process

http://www.naukri.com/
http://www.timesjob.com/
https://en.wikipedia.org/wiki/Relevance_(information_retrieval)
http://www.timejob.com/
http://www.shine.com/

158

and so on. The same procedure was carried for the set of queries belonging to other query

sets by choosing different twenty users.

A detailed discussion on the performance analysis of results given by Jobology for each

set of queries is given in the following sections.

a) QUERY SET-1

The set consisted of 6 queries is shown in Table 8.10.

Table 8.10 Query Set 1

S.No Query

1 Java,Delhi

2 PHP,Bangalore

3 Python,Chennai

4 CSS,Delhi

5 .net,Indore

6 AngularJS, Ahemdabad

The queries were analyzed using the performance metric, Precision (P), which is

calculated using (8.1) as mentioned above by each of the twenty users and the

response obtained thereof is given in Table 8.11 in terms of precision result.

The comparative analysis of Precision P and P’ for the queries belonging to query set

1 with respect to Jobboards and their proposed ontologies is shown in Table 8.11.

Table 8.11 Comparative Analysis Between Existing and Proposed Systems

QS1 Naukri.com Timesjob.com Shine.com

P P’ P P’ P P’

q1 0.60 0.85 0.54 0.81 0.41 0.82

q2 0.60 0.77 0.54 0.82 0.46 0.69

q3 0.65 0.79 0.51 0.67 0.39 0.71

q4 0.50 0.79 0.49 0.72 0.42 0.77

q5 0.52 0.70 0.43 0.84 0.41 0.69

q6 0.55 0.75 0.58 0.86 0.46 0.75

Average 0.57 0.78 0.51 0.79 0.43 0.74

Comparing Naukri.com with proposed Naukri Ontology, it can be observed that the

precision P of query q1 on the basis of user data came out to be 0.60 whereas precision

P’ has been found to be 0.85. Fig. 8.18 shows the comparative analysis of queries

with respect to Jobboards and proposed ontologies.

159

Fig. 8.18 Precision Analysis of Queries for Query Set1

Fig. 8.19 shows the average comparative analysis of queries of query set QS1 with

respect to Jobboards and proposed ontologies.

Fig. 8.19 Average Precision of Queries for Query Set1

The same process was performed for queries of Query Set 2 which is explained in the

next subsection.

b) QUERY SET-2

The set consisting of 6 queries is shown in Table 8.12 .

Table 8.12 Query Set 2

S.No Query

1 Oracle,Delhi

2 SAP,Gurugram

3 ADO,Dehradun

4 Core Java,Ahmednagar

5 Java,Struts, Bhopal

6 Java,Hibernate,Bhubeneshwar

0

0.2

0.4

0.6

0.8

1

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

naukri.com timesjob.com shine.com

p

p'

0

0.2

0.4

0.6

0.8

1

Naukri.com Timesjob.com Shine.com

p

p'

160

In the same way, for this set of queries, response by each of the twenty users of

different group was taken which is given shown in Table 8.13 in terms of Precision

and its average.

The comparative analysis of precision for the queries belonging to query set 2 with

respect to selected jobboards i.e. naukri.com, Timesjob.com and Shine.com and their

corresponding proposed ontologies i.e. naukri ontology, timesjob ontology and shine

ontology is shown in Table 8.13.

Table 8.13 Comparative Analysis Between Existing and Proposed Systems

QS2 Naukri.com Timesjob.com Shine.com

P P’ P P’ P P’

q1 0.54 0.80 0.49 0.78 0.49 0.78

q2 0.53 0.76 0.51 0.75 0.51 0.82

q3 0.56 0.73 0.60 0.74 0.56 0.79

q4 0.62 0.84 0.67 0.74 0.46 0.71

q5 0.55 0.68 0.68 0.74 0.48 0.80

q6 0.45 0.80 0.60 0.78 0.47 0.78

Average 0.54 0.77 0.59 0.75 0.49 0.78

Comparing Naukri.com with Naukri Ontology, it can be observed that upon applying

q1 on naukri.com, precision came out to be 0.54 whereas precision of Naukri ontology

for q1 has been found to be 0.80. Fig. 8.20 shows the comparative analysis of queries

with respect to Jobboards and proposed ontologies.

Fig. 8.20 Precision Analysis of Queries for Query Set2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

naukri.com timesjob.com shine.com

p

p'

161

Fig. 8.21 shows the average comparative analysis of queries of query set QS2 with

respect to Jobboards and proposed ontologies.

Fig. 8.21 Average Precision of Queries for Query Set2

c) QUERY SET 3

The set consisting of 6 queries is shown in Table 8.14

Table 8.14 Query Set 3

S.No Query

1 Advanced Java, Mumbai

2 .net, Pune

3 HTML,Javascript,Delhi

4 NodeJS,Javs,Ahemdabad

5 Abndroid, Bangalore

6 Java,Spring, Kolkata

Similarly, for this set of queries of QS3, response by each of the twenty users of

different group was taken which is given shown in Table 8.15 in terms of Precision

and its average.

The comparative analysis of precision for the queries belonging to query set 3 with

respect to selected jobboards i.e. naukri.com, Timesjob.com and Shine.com and their

corresponding proposed ontologies i.e. naukri ontology, timesjob ontology and shine

ontology is shown in Table 8.15.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

www.naukri.com www.timesjob.com www.shine.com

p

p'

162

Table 8.15 Comparative Analysis Between Existing and Proposed Systems

QS3 Naukri.com Timesjob.com Shine.com

P P’ P P’ P P’

q1 0.60 0.85 0.61 0.78 0.44 0.77

q2 0.62 0.77 0.62 0.80 0.47 0.84

q3 0.65 0.80 0.67 0.82 0.52 0.78

q4 0.56 0.79 0.49 0.84 0.55 0.82

q5 0.63 0.83 0.55 0.77 0.62 0.84

q6 0.62 0.82 0.48 0.73 0.54 0.77

Comparing Naukri.com with Naukri Ontology, it can be observed that the precision

of Naukri.com (Existing system) for query q1 on the basis of user data, it came out to

be 0.6 whereas precision of Naukri ontology has been found to be 0.85. Fig. 8.22

shows the comparative analysis of queries with respect to Jobboards and proposed

ontologies.

Fig. 8.23 shows the average comparative analysis of queries of query set QS3 with

respect to Jobboards and proposed ontologies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

naukri.com timesjob.com shine.com

p

p'

Fig. 8.22 Precision Analysis of Queries for Query Set 3

163

Fig. 8.23 Average Precision of Queries for Query Set3

It can be observed from the graphs that the plotted values of precision are higher for

proposed system as compared to existing Joboards.

8.8.2 Evaluation at System Level

In this phase, comparison analysis between Jobboards, proposed ontologies and integrated

system was performed. For analysis, same set of query sets were given to the 20 users. Top

50 posts were considered as retrieved post and out of those, top 10 posts were used for

making decision. The analysis of precision P, P’ and P’’ for the queries belonging to query

set QS1 is shown in Table 8.16, where p depicts the average precision with respect to query

q1 from all the jobboard, p’ depicts the average precision with respect to q1 from all the

individual proposed ontologies and P’’ depicts the average precision from the proposed

integrated system i.e. Jobology search system.

Table 8.16 Average Precision with Respect to Queries of Query Set 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

www.naukri.com www.timesjob.com www.shine.com

p

p'

QS1 P P' P''

Q1 0.52 0.83 0.79

Q2 0.54 0.77 0.81

Q3 0.52 0.73 0.78

Q4 0.47 0.76 0.84

Q5 0.46 0.75 0.82

Q6 0.53 0.79 0.82

Average 0.51 0.77 0.81

164

The graph shown in Fig. 8.24 shows the query accuracy for each query of query set QS1.

Fig. 8.24 Plotted Values of Precision of Query Set 1

In the same way, analysis was performed for Query Set QS2 which is shown in Table 8.17.

Table 8.17 Average Precision with Respect to Queries of Query Set 2

 QS2 P P' P''

Q1 0.51 0.79 0.81

Q2 0.52 0.78 0.77

Q3 0.57 0.75 0.93

Q4 0.58 0.76 0.82

Q5 0.57 0.74 0.82

Q6 0.51 0.79 0.74

Average 0.54 0.76 0.81

The graph shown in Fig. 8.25 shows the query accuracy for each query of query set QS2.

Fig. 8.25 Plotted Values of Precision of Query Set 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1 q2 q3 q4 q5 q6

p

p'

p''

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1 q2 q3 q4 q5 q6

p

p'

p''

165

Similarly, the analysis of precision P, P’ and P’’ for the queries belonging to query set QS3

is shown in Table 8.18.

Table 8.18 Average Precision with Respect to Queries of Query Set 3

QS3 P P' P''

Q1 0.51 0.79 0.81

Q2 0.52 0.78 0.77

Q3 0.57 0.75 0.93

Q4 0.58 0.76 0.82

Q5 0.57 0.74 0.82

Q6 0.51 0.79 0.74

Average 0.54 0.76 0.81

The graph shown in Fig. 8.26 shows the query accuracy for each query of query set QS3.

Fig. 8.26 Plotted values of Precision of Query Set 3

The average precision graph at system level is shown in Fig. 8.27

Fig. 8.27 Plotted Values of Average Precision of Query Sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1 q2 q3 q4 q5 q6

p

p'

p''

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

QS1 QS2 QS3

P

P'

P''

166

It can be observed from Fig. 8.27 that the proposed system gives more relevant results as

it exhibits high precision in comparison with jobboards and individual jobboard’s

ontologies. For QS3, the plotted values are comparatively low.

 SUMMARY

In this chapter, a novel method for query processing is proposed which supports querying

on aligned ontologies by

a) Transforming keyword based query into SPARQL query

b) Generating separate SPARQL queries with respect to each ontology

c) Retrieving relevant results from the ontology annotated data sources.

d) Merging the results retrieved from multiple data sources and presenting to the user in

such a way that Job posts containing maximum keywords given by user in query are

presented at the top.

e) With this, the benefits of integration of JOBOLOGY with student domain are also

discussed.

The next chapter is devoted to conclusion and future work.

167

Chapter IX

9 CONCLUSION AND FUTURE WORK

 CONCLUSION

Semantic Web [13, 14, 15, 16, 17] has a set of technologies that not only provides the data

but also the meaning associated with those data, thus making computers to understand the

meaning of that data. It describes the relationship that exists between data. This allows the

development of new applications such as search engines that can answer more complex

answers. But, it does not mean that semi-structured data [24] or unstructured data that is

available on the current web has lost its importance. However, looking at the benefits of

semantic web technologies [15], there is a need to develop a system which can transform

semi-structured/ unstructured data from current web into structured format and make

compatible with semantic web tools.

With this regard, Jobology Search System has been developed which presents search

results with respect to user query based on the concepts represented in them by ontologies.

Ontologies have been developed with respect to Jobboards and Student domain. The

architecture of OntoJobextractor has been developed which extracts semi-structured data

from Jobboards and enriches extracted data semantically by annotating using ontologies.

Architecture for ontology alignment has been proposed to index the concepts, object

properties and data properties of ontologies. A framework “ONTOJOB” query processor

has been proposed which processes user’s keyword based query by converting it into

SPARQL format query. It creates SPARQL query with respect to ontologies, merges the

retrieved results and presents the results at one place. The proposed system is also

integrated with student domain to provide the recruitment services to college students.

Following are the milestones that are achieved in this thesis:

1) Development of Ontology

Ontologies were developed using protégé development framework by following the

complete steps of ontology development lifecycle. Two main categories of ontologies

168

were developed: one with respect to selected Jobboards and other in the domain of

student.

2) Framework for Data Extraction system

A framework for extracting semi-structured data from Jobboards has been proposed

to enrich them semantically by annotating them using ontology and represent them in

structured format.

3) Framework for Ontology Alignment System

A framework for ontology alignment has been proposed that aligns ontologies by

maintaining Global Concept Index, Global Object data property Index and Global

Data Property Index. These indexing play a vital role in building SPARQL query.

4) Framework for Query Processing System

A framework for query processing mechanism i.e. ONTOJOB query processor has

been proposed to build SPARQL query from keyword based query.

5) Framework for Search System

A framework Jobology has been proposed to present the results from various

Jobboards at one place using ontology.

6) Cross Domain Integration

A mechanism has been proposed that integrates Jobology with student domain to

provide the recruitment services to college students.

Domain specific and cross domain integration approach has been followed to develop the

system. Ontology based data representation, alignment and query processing has been done

for developing the system. The system has been implemented in Java using Eclipse

framework for project development. OWLAPI was used for building the ontologies in Java

framework. For storing indexes and various datasets, MYSQL server was used.

 To ensure the practical implications, the developed system, Jobology supports the

following features:

169

1) Scalability

The feature of addition of more concepts in ontologies to enhance the vocabulary of

Jobboards supports the feature of scalability. More Jobboards can be added without

affecting the existing system.

2) Relevancy

The results are more relevant to fulfill the user requirement.

3) Robustness

Ontologies are so designed that ontology revision will not change the foundedness of

the resources that commit to an earlier version of the ontology.

4) Improved Evaluation

It has been observed that the performance of the proposed system is fairly high as

compared to existing systems due to addition of semantics using ontology.

The next section discusses the future scope of the proposed work.

 FUTURE SCOPE

In this thesis, a search engine “Jobology” has been designed and implemented that includes

data extraction, alignment and query processing on ontology annotated data. Some of the

possible extensions that can be done in the future in this area are as follows:

1) Automatic Development of Ontologies

To add any Jobboard in the Jobology system, first its ontology is created. This

ontology has been created manually after analyzing the structure of the Jobboard. The

research work can be extended to generate the ontology automatically.

2) Extensibility

The proposed system can be applied to other domains such as travel domain, hotel

domain with little modification with respect to the domains i.e. generalization of the

system can be carried out.

170

3) Working with unstructured data

The proposed system is focusing on converting semi-structured data available on the

current web into structured data. The data coverage of proposed system can be

expanded by taking unstructured text data into consideration and converting it into

structured data using various available tools such as GATE [168] tool.

4) Data coverage

The proposed system is availing data from Jobboard sites. Many companies and other

organizations also publish jobs at their own websites. Therefore, to expand the

coverage area, company’s website job post webpages should be extracted to provide

more job post to the users.

171

REFERENCES

[1] Berners-Lee, Tim, and Mark Fischetti. Weaving the Web: The original design and

ultimate destiny of the World Wide Web by its inventor. DIANE Publishing

Company, 2001.

[2] Leiner, Barry M., Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard

Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff. "A

brief history of the Internet." ACM SIGCOMM Computer Communication

Review 39, Vol. 5, 2009: 22-31.

[3] Dorogovtsev, Sergei N., and José FF Mendes. Evolution of networks: From

biological nets to the Internet and WWW. OUP Oxford, 2013.

[4] Fuchs, Christian, Wolfgang Hofkirchner, Matthias Schafranek, Celina Raffl,

Marisol Sandoval, and Robert Bichler. "Theoretical foundations of the web:

cognition, communication, and co-operation. Towards an understanding of Web 1.0,

2.0, 3.0." Future Internet 2, Vol. 1, 2010: 41-59.

[5] Cormode, Graham, and Balachander Krishnamurthy. "Key differences between

Web 1.0 and Web 2.0." First Monday 13, Vol. 6, 2008.

[6] Kosala, Raymond, and Hendrik Blockeel. "Web mining research: A survey." ACM

Sigkdd Explorations Newsletter 2, Vol. 1, 2000: 1-15.

[7] Tan, Pang-Ning. Introduction to data mining. Pearson Education India, 2007.

[8] Cooley, Robert, Bamshad Mobasher, and Jaideep Srivastava. "Web mining:

Information and pattern discovery on the world wide web." In Tools with Artificial

Intelligence, 1997. Proceedings., Ninth IEEE International Conference on, 1997:

558-567.

[9] Levene, Mark. An introduction to search engines and web navigation. John Wiley

& Sons, 2011.

[10] Brin, Sergey, and Lawrence Page. "The anatomy of a large-scale hypertextual web

search engine." Computer networks and ISDN systems 30, Vol. 1-7, 1998: 107-117.

[11] Boulton, David, and Martyn Hammersley. "Analysis of unstructured data." Data

collection and analysis,1996:282-297.

172

[12] Metzler, Donald, Susan Dumais, and Christopher Meek. "Similarity measures for

short segments of text." In European conference on information retrieval, Springer,

Berlin, Heidelberg, 2007: 16-27.

[13] Berners-Lee, Tim. "Semantic web road map." 1998.

[14] Berners-Lee, Tim, James Hendler, and Ora Lassila. "The semantic web." Scientific

american, Vol. 5, 2001: 34-43.

[15] Wang, Xiaoshu, Robert Gorlitsky, and Jonas S. Almeida. "From XML to RDF: how

semantic web technologies will change the design of'omic'standards." Nature

biotechnology, Vol. 9, 2005: 1099.

[16] Decker, Stefan, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,

Jeen Broekstra, Michael Erdmann, and Ian Horrocks. "The semantic web: The roles

of XML and RDF." IEEE Internet computing 4, Vol. 5 ,2000: 63-73.

[17] Quilitz, Bastian, and Ulf Leser. "Querying distributed RDF data sources with

SPARQL." In European Semantic Web Conference: 524-538. Springer, Berlin,

Heidelberg, 2008.

[18] Hartig, Olaf, Christian Bizer, and Johann-Christoph Freytag. "Executing SPARQL

queries over the web of linked data." In International Semantic Web Conference:

293-309. Springer, Berlin, Heidelberg, 2009.

[19] McGuinness, Deborah L., and Frank Van Harmelen. "OWL web ontology language

overview." W3C recommendation 10, Vol. 10 ,2004: 2004.

[20] Knublauch, Holger, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. "The

Protégé OWL plugin: An open development environment for semantic web

applications." In International Semantic Web Conference: 229-243. Springer,

Berlin, Heidelberg, 2004.

[21] Van Harmelen, Frank, Vladimir Lifschitz, and Bruce Porter, eds. Handbook of

knowledge representation. Vol. 1. Elsevier, 2008.

[22] Chung, Christina Yip, and Neelakantan Sundaresan. "Majority schema in semi-

structured data." U.S. Patent 6,604,099, issued August 5, 2003.

[23] Davies, John, Dieter Fensel, and Frank Van Harmelen, eds. Towards the semantic

web: ontology-driven knowledge management. John Wiley & Sons, 2003.

173

[24] Fonseca, Frederico T., Max J. Egenhofer, Peggy Agouris, and Gilberto Câmara.

"Using ontologies for integrated geographic information systems." Transactions in

GIS 6, Vol. 3 ,2002: 231-257.

[25] Salus, Peter H., and G. Vinton. Casting the Net: From ARPANET to Internet and

Beyond... Addison-Wesley Longman Publishing Co., Inc., 1995.

[26] Forouzan, Behrouz A., and Sophia Chung Fegan. TCP/IP protocol suite. McGraw-

Hill Higher Education, 2002.

[27] Abdelnur, Alejandro, Abhay Gupta, and Brent Callaghan. "Resources sharing on

the internet via the HTTP." U.S. Patent 6,212,640, issued April 3, 2001.

[28] Powell, Thomas A. HTML: the complete reference. McGraw-Hill Professional,

2002.

[29] Judson, David H. "Web browser with dynamic display of information objects

during linking." U.S. Patent 5,572,643, issued November 5, 1996.

[30] McBryan, Oliver A. "GENVL and WWWW: Tools for taming the web."

In Proceedings of the first international world wide web conference, vol. 341. 1994.

[31] Alexander, Bryzan. "Web 2.0." A New Wave of Innovation for Teachning and

learning ,2006: 32-44.

[32] Liaw, Shu-Sheng, and Hsiu-Mei Huang. "An investigation of user attitudes toward

search engines as an information retrieval tool." Computers in human behavior 19,

Vol. 6 ,2003: 751-765.

[33] Curtis, John Andrew, and Gordon Frank Scherer. "Search engine using indexing

method for storing and retrieving data." U.S. Patent 6,278,992, issued August 21,

2001.

[34] Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.

[35] Kobayashi, Mei, and Koichi Takeda. "Information retrieval on the web." ACM

Computing Surveys , (CSUR 32), Vol. 2 ,2000: 144-173.

[36] Baeza-Yates, Ricardo, and Berthier de Araújo Neto Ribeiro. Modern information

retrieval. New York: ACM Press; Harlow, England: Addison-Wesley,, 2011.

174

[37] Mitev, Nathalie N., Gillian M. Venner, and Stephen Walker. Designing an online

public access catalogue: Okapi, a catalogue on a local area network. The British

Library, 1985.

[38] Glover, Eric J., Steve Lawrence, William P. Birmingham, and C. Lee Giles.

"Architecture of a metasearch engine that supports user information needs."

In Proceedings of the eighth international conference on Information and

knowledge management: 210-216. ACM, 1999.

[39] Jain, Ranjna & Duhan, Neelam & Sharma, Ashok. ,2015. Comparative Study on

Semantic Search Engines. International Journal of Computer Applications. 131. 4-

11. 10.5120/ijca2015907370.

[40] Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J. Miller. "Introduction to WordNet: An on-line lexical

database." International journal of lexicography 3, Vol. 4 ,1990: 235-244.

[41] Gerber, Aurona, Alta Van der Merwe, and Andries Barnard. "A functional semantic

web architecture." In European Semantic Web Conference: 273-287. Springer,

Berlin, Heidelberg, 2008.

[42] Berners-Lee, Tim. "Semantic Web: Why RDF is more than XML." ,1998.

[43] Brickley, Dan. "RDF vocabulary description language 1.0: RDF

schema." http://www. w3. org/TR/rdf-schema/ ,2004.

[44] Gruber, Thomas R. "Toward principles for the design of ontologies used for

knowledge sharing?." International journal of human-computer studies 43, Vol. 5-

6 ,1995: 907-928.

[45] McIlraith, Sheila A., Tran Cao Son, and Honglei Zeng. "Semantic web

services." IEEE intelligent systems 16, Vol. 2 ,2001: 46-53.

[46] Horrocks, Ian. "DAML+OIL, A Description Logic for the Semantic Web." IEEE

Data Eng. Bull. 25, Vol. 1 ,2002: 4-9.

[47] Gómez-Pérez, Asunción, and Oscar Corcho. "Ontology languages for the semantic

web." IEEE Intelligent systems 17, Vol. 1 ,2002: 54-60.

[48] Fensel, Dieter, Frank Van Harmelen, Ian Horrocks, Deborah L. McGuinness, and

Peter F. Patel-Schneider. "OIL: An ontology infrastructure for the semantic

web." IEEE intelligent systems16, Vol. 2 ,2001: 38-45.

175

[49] Gerber, Aurona J., Andries Barnard, and Alta J. Van der Merwe. "Towards a

semantic web layered architecture." ,2007.

[50] Guarino, Nicola, Daniel Oberle, and Steffen Staab. "What is an ontology?."

In Handbook on ontologies: 1-17. Springer, Berlin, Heidelberg, 2009.

[51] Gruber, Tom. "What is an Ontology." WWW Site http://www-ksl. stanford.

edu/kst/whatis-an-ontology. html ,1993.

[52] Fensel, Dieter. "Ontologies." In Ontologies: 11-18. Springer, Berlin, Heidelberg,

2001.

[53] Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited, 2016.

[54] Swartout, Bill, Ramesh Patil, Kevin Knight, and Tom Russ. "Toward distributed

use of large-scale ontologies." In Proc. of the Tenth Workshop on Knowledge

Acquisition for Knowledge-Based Systems: 138-148. 1996.

[55] Noy, Natalya F., and Deborah L. McGuinness. "Ontology development 101: A

guide to creating your first ontology." ,2001.

[56] Fonseca, Frederico T., Max J. Egenhofer, Peggy Agouris, and Gilberto Câmara.

"Using ontologies for integrated geographic information systems." Transactions in

GIS 6, Vol. 3 ,2002: 231-257.

[57] Starlab 2003. Systems Technology and Applications Research Laboratory home

page. Faculty of Sciences, Department of Computer Science, Vrije Universiteit

Brussel.

[58] Farquhar, Adam, Richard Fikes, and James Rice. "The ontolingua server: A tool

for collaborative ontology construction." International journal of human-computer

studies46, Vol. 6 ,1997: 707-727.

[59] Fensel, Dieter, Ora Lassila, Frank Van Harmelen, Ian Horrocks, James Hendler,

and Deborah L. McGuinness. "The semantic web and its languages." IEEE

Intelligent Systems and their Applications 15 ,2000: 67-73.

[60] Eardley, Alan, ed. Innovative Knowledge Management: Concepts for

Organizational Creativity and Collaborative Design: Concepts for Organizational

Creativity and Collaborative Design. IGI Global, 2010.

176

[61] Guarino, Nicola. "Some organizing principles for a unified top-level ontology."

In AAAI Spring Symposium on Ontological Engineering: 57-63. AAAI Press Menlo

Park, 1997.

[62] Gómez-Pérez, Asunción, Mariano Fernández, and A. de Vicente. "Towards a

method to conceptualize domain ontologies." ,1996.

[63] Shaw, Marianne, Landon T. Detwiler, James F. Brinkley, and Dan Suciu.

"Generating application ontologies from reference ontologies." In AMIA Annual

Symposium Proceedings, vol. 2008, p. 672. American Medical Informatics

Association, 2008.

[64] Genesereth, Michael R., and Richard E. Fikes. "Knowledge interchange format-

version 3.0: reference manual." ,1992.

[65] Abburu, Sunitha. "A survey on ontology reasoners and comparison." International

Journal of Computer Applications57, Vol. 17 ,2012.

[66] MacGregor, Robert, and Raymond Bates. The Loom Knowledge Representation

Language. Vol. ISI/RS-87-188. UNIVERSITY OF SOUTHERN CALIFORNIA

MARINA DEL REY INFORMATION SCIENCES INST, 1987.

[67] Motta, Enrico. "An overview of the OCML modelling language." In the 8th

Workshop on Methods and Languages. 1998.

[68] Kifer, Michael, and Georg Lausen. "F-logic: a higher-order language for reasoning

about objects, inheritance, and scheme." In ACM SIGMOD Record, vol. 18, Vol. 2:

134-146. ACM, 1989.

[69] Decker, Stefan, Michael Erdmann, Dieter Fensel, and Rudi Studer. "Ontobroker:

Ontology based access to distributed and semi-structured information."

In Database Semantics: 351-369. Springer, Boston, MA, 1999.

[70] Heflin, Jeff, James Hendler, and Sean Luke. SHOE: A knowledge representation

language for internet applications. 1999.

[71] Firesmith, Donald, Brian Henderson-Sellers, and Ian Graham. OPEN modeling

language ,OML reference manual. (CUP Archive), 1998.

[72] Corcho, Oscar, and Asunción Gómez-Pérez. "A roadmap to ontology specification

languages." In International Conference on Knowledge Engineering and

Knowledge Management: 80-96. Springer, Berlin, Heidelberg, 2000.

177

[73] Allemang, Dean, and James Hendler. Semantic web for the working ontologist:

effective modeling in RDFS and OWL. Elsevier, 2011.

[74] Adida, Ben, Mark Birbeck, Shane McCarron, and Steven Pemberton. "RDFa in

XHTML: Syntax and processing." Recommendation, W3C 7 ,2008.

[75] Musciano, Chuck, and Bill Kennedy. HTML & XHTML: The Definitive Guide: The

Definitive Guide. " O'Reilly Media, Inc.", 2002.

[76] Weibel, Stuart, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core metadata

for resource discovery. Vol. RFC 2413. 1998.

[77] Fensel, Dieter, Frank van Harmelen, and Ian Horrocks. "OIL: A standard proposal

for the Semantic Web." On-To-Knowledge deliverable D-0, Vrije Universiteit

Amsterdam,1999.

[78] Ankolekar, Anupriya, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David Martin,

Drew McDermott, Sheila A. McIlraith et al. "DAML-S: Web service description

for the semantic web." In International Semantic Web Conference: 348-363.

Springer, Berlin, Heidelberg, 2002.

[79] Bechhofer, Sean, Ian Horrocks, Carole Goble, and Robert Stevens. "OilEd: a

reason-able ontology editor for the semantic web." In Annual Conference on

Artificial Intelligence: 396-408. Springer, Berlin, Heidelberg, 2001.

[80] Sure, York, Michael Erdmann, Jürgen Angele, Steffen Staab, Rudi Studer, and Dirk

Wenke. "OntoEdit: Collaborative ontology development for the semantic web."

In International Semantic Web Conference: 221-235. Springer, Berlin, Heidelberg,

2002.

[81] Noy, Natalya Fridman, Ray W. Fergerson, and Mark A. Musen. "The knowledge

model of Protege-2000: Combining interoperability and flexibility."

In International Conference on Knowledge Engineering and Knowledge

Management: 17-32. Springer, Berlin, Heidelberg, 2000.

[82] Arpírez, Julio C., Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-

Pérez. "WebODE: a scalable workbench for ontological engineering."

In Proceedings of the 1st international conference on Knowledge capture: 6-13.

ACM, 2001.

178

[83] Bechhofer, Sean, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. "OWL web

ontology language reference." W3C recommendation 10, Vol. 02 ,2004.

[84] Abburu, Sunitha. "A survey on ontology reasoners and comparison." International

Journal of Computer Applications57, Vol. 17 ,2012.

[85] Haase, Peter, Frank Van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt, and

York Sure. "A framework for handling inconsistency in changing ontologies."

In International semantic web conference: 353-367. Springer, Berlin, Heidelberg,

2005.

[86] Ming, DENG Zhihong TANG Shiwei ZHANG, and YANG Dongqing CHEN Jie.

"Overview of Ontology [J]." Acta Scicentiarum Naturalum Universitis Pekinesis 5

,2002: 027.

[87] Tsarkov, Dmitry, and Ian Horrocks. "FaCT++ description logic reasoner: System

description." In International Joint Conference on Automated Reasoning: 292-297.

Springer, Berlin, Heidelberg, 2006.

[88] Shearer, Rob, Boris Motik, and Ian Horrocks. "HermiT: A Highly-Efficient OWL

Reasoner." In OWLED, vol. 432, p. 91. 2008.

[89] del Mar Roldan-Garcia, Maria, and Jose F. Aldana-Montes. "DBOWL: Towards a

Scalable and Persistent OWL reasoner." In Internet and Web Applications and

Services, 2008. ICIW'08. Third International Conference on: 174-179. IEEE, 2008.

[90] I. PalmisaVol. JFact repository, 2015.

[91] Calvanese, Diego, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov,

Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. "Ontop:

Answering SPARQL queries over relational databases." Semantic Web 8, Vol. 3

,2017: 471-487.

[92] Sirin, Evren, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. "Pellet: A practical owl-dl reasoner." Web Semantics: science, services and

agents on the World Wide Web 5, Vol. 2 ,2007: 51-53.

[93] Parsia, Bijan, and Evren Sirin. "Pellet: An owl dl reasoner." In Third international

semantic web conference-poster, vol. 18, p. 2. Publishing, 2004.

179

[94] Haarslev, Volker, and Ralf Möller. "RACER system description." In International

Joint Conference on Automated Reasoning: 701-705. Springer, Berlin, Heidelberg,

2001.

[95] Haarslev, Volker, and Ralf Möller. "Description of the RACER System and its

Applications." Description Logics 49 ,2001.

[96] Chaudhri, Vinay K., Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.

Rice. "OKBC: A programmatic foundation for knowledge base interoperability."

In AAAI/IAAI: 600-607. 1998.

[97] Giarratano, C. "CLIPS: C language integrated production system." CLIPS users

guide-version 6 ,1993.

[98] Domingue, John, Enrico Motta, and O. Corcho Garcia. "Knowledge modelling in

webonto and ocml: A user guide." ,1999.

[99] Kalyanpur, Aditya, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James

Hendler. "Swoop: A web ontology editing browser." Web Semantics: Science,

Services and Agents on the World Wide Web 4, Vol. 2 ,2006: 144-153.

[100] COMPOSER, TOPBRAID. "TopBraid Composer 2007 features and getting started

guide version 1.0, created by TopQuadrant." US. US ,2007.

[101] Vogel, Lars. "Eclipse IDE tutorial." ,2014.

[102] McBride, Brian. "Jena: Implementing the rdf model and syntax specification."

In Proceedings of the Second International Conference on Semantic Web-Volume

40: 23-28. CEUR-WS. org, 2001.

[103] Golbreich, Christine. "Combining rule and ontology reasoners for the semantic

web." In International Workshop on Rules and Rule Markup Languages for the

Semantic Web: 6-22. Springer, Berlin, Heidelberg, 2004.

[104] Horrocks, Ian, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin

Grosof, and Mike Dean. "SWRL: A semantic web rule language combining OWL

and RuleML." W3C Member submission 21 ,2004: 79.

[105] O’connor, Martin, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike Dean,

William Grosso, and Mark Musen. "Supporting rule system interoperability on the

semantic web with SWRL." In International Semantic Web Conference: 974-986.

Springer, Berlin, Heidelberg, 2005.

180

[106] Boley, Harold, Said Tabet, and Gerd Wagner. "Design rationale of RuleML: A

markup language for semantic web rules." In Proceedings of the First International

Conference on Semantic Web Working: 381-401. CEUR-WS. org, 2001.

[107] Bailey, James, François Bry, Tim Furche, and Sebastian Schaffert. "Web and

semantic web query languages: A survey." In Proceedings of the First international

conference on Reasoning Web: 35-133. Springer-Verlag, 2005.

[108] Miller, Libby, Andy Seaborne, and Alberto Reggiori. "Three implementations of

SquishQL, a simple RDF query language." In International Semantic Web

Conference: 423-435. Springer, Berlin, Heidelberg, 2002.

[109] Karvounarakis, Gregory, Sofia Alexaki, Vassilis Christophides, Dimitris

Plexousakis, and Michel Scholl. "RQL: a declarative query language for RDF."

In Proceedings of the 11th international conference on World Wide Web: 592-603.

ACM, 2002.

[110] Broekstra, Jeen, and Arjohn Kampman. "SeRQL: a second generation RDF query

language." In Proc. SWAD-Europe Workshop on Semantic Web Storage and

Retrieval: 13-14, 2003.

[111] Quilitz, Bastian, and Ulf Leser. "Querying distributed RDF data sources with

SPARQL." In European Semantic Web Conference: 524-538. Springer, Berlin,

Heidelberg, 2008.

[112] Harris, Steve, Andy Seaborne, and Eric Prud’hommeaux. "SPARQL 1.1 query

language." W3C recommendation 21, Vol. 10 ,2013.

[113] Al-Mukhtar, Mumtaz M. Ali, and Ahmed T. Abbass Al-Assafy. "The

Implementation of FOAF Ontology for an Academic Social

Network." International Journal of Computer Science Engineering & Technology,

Vol. 4 ,2014.

[114] Sirin, Evren, and Bijan Parsia. "SPARQL-DL: SPARQL Query for OWL-DL."

In OWLED, Vol. 258. 2007.

[115] O'Connor, Martin J., and Amar K. Das. "SQWRL: A Query Language for OWL."

In OWLED, Vol. 529. 2009.

[116] O’Connor, Martin J., and Amar K. Das. "A method for representing and querying

temporal information in OWL." In International Joint Conference on Biomedical

181

Engineering Systems and Technologies: 97-110. Springer, Berlin, Heidelberg,

2010.

[117] McBride, Brian. "Jena: A semantic web toolkit." IEEE Internet computing 6, Vol.

6 ,2002: 55-59.

[118] Carroll, Jeremy J., Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,

and Kevin Wilkinson. "Jena: implementing the semantic web recommendations."

In Proceedings of the 13th international World Wide Web conference on Alternate

track papers & posters: 74-83. ACM, 2004.

[119] Knublauch, Holger, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. "The

Protégé OWL plugin: An open development environment for semantic web

applications." In International Semantic Web Conference: 229-243. Springer,

Berlin, Heidelberg, 2004.

[120] Gennari, John H., Mark A. Musen, Ray W. Fergerson, William E. Grosso, Monica

Crubézy, Henrik Eriksson, Natalya F. Noy, and Samson W. Tu. "The evolution of

Protégé: an environment for knowledge-based systems

development." International Journal of Human-computer studies 58, Vol. 1 ,2003:

89-123.

[121] Horridge, Matthew, and Sean Bechhofer. "The owl api: A java api for owl

ontologies." Semantic Web 2, Vol. 1 ,2011: 11-21.

[122] Ding, Li, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan

Reddivari, Vishal Doshi, and Joel Sachs. "Swoogle: a search and metadata engine

for the semantic web." In Proceedings of the thirteenth ACM international

conference on Information and knowledge management: 652-659. ACM, 2004.

[123] Finin, Tim, Li Ding, Rong Pan, Anupam Joshi, Pranam Kolari, Akshay Java, and

Yun Peng. "Swoogle: Searching for knowledge on the Semantic Web." AAAI 05 ,

intelligent systems demo ,2005.

[124] Cheng, Gong, Weiyi Ge, and Yuzhong Qu. "Falcons: searching and browsing

entities on the semantic web." In Proceedings of the 17th international conference

on World Wide Web: 1101-1102. ACM, 2008.

182

[125] Cheng, Gong, and Yuzhong Qu. "Searching linked objects with falcons: Approach,

implementation and evaluation." International Journal on Semantic Web and

Information Systems , (IJSWIS), Vol. 3 ,2009: 49-70.

[126] Team, Hakia. "hakia Semantic Search Technology making sense of the worlds

information." White paper Jan ,2010.

[127] Käfer, Tobias, Jürgen Umbrich, Aidan Hogan, and Axel Polleres. "Towards a

dynamic linked data observatory." LDOW at WWW ,2012.

[128] Hogan, Aidan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres, and

Stefan Decker. "Searching and browsing linked data with swse, The semantic web

search engine." Web semantics: science, services and agents on the world-wide

web 9, Vol. 4 ,2011: 365-401.

[129] Krieger, M. "Search Engine" Duck Duck Go" Experiences Traffic Surge in Wake

of NSA Scandal." Liberty Blitzkrieg,2013.

[130] Mukhopadhyay, Debajyoti, Manoj Sharma, Gajanan Joshi, Trupti Pagare, and

Adarsha Palwe. "Experience of Developing a Meta-Semantic Search Engine."

International Conference on Cloud & Ubiquitous Computing & Emerging

Technologies: 167-171 ,2013.

[131] Wang, Hai-Feng, Kai-Fu Lee, and Qiang Yang. "Search engine with natural

language-based robust parsing for user query and relevance feedback learning."

U.S. Patent 6,766,320, issued July 20, 2004.

[132] d'Aquin, Mathieu, and Enrico Motta. "Watson, more than a semantic web search

engine." Semantic Web 2, Vol. 1 ,2011: 55-63.

[133] R. Jain, N. Duhan and A. K. Sharma, "Developing human family tree using SWRL

rules," 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), New Delhi, 2016: 3374-3379.

[134] Haase, Peter, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael Erdmann,

Mathieu d’Aquin, and Enrico Motta. "The neon ontology engineering

toolkit." WWW ,2008.

[135] Menzies, Tim. "Cost benefits of ontologies." intelligence 10, Vol. 3 ,1999: 26-32.

https://ieeexplore.ieee.org/xpl/conhome/6701453/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6701453/proceeding

183

[136] Milton, Simon K., Chris D. Keen, and Sherah Kurnia. "Understanding the benefits

of ontology use for australian industry: a conceptual study." In 21st Australasian

Conference on Information Systems: 1-3. 2010.

[137] Cruz, Isabel F., and Huiyong Xiao. "The role of ontologies in data

integration." Engineering intelligent systems for electrical engineering and

communications 13, Vol. 4 ,2005: 245.

[138] Visser, Pepijn RS, Dean M. Jones, Trevor JM Bench-Capon, and M. J. R. Shave.

"An analysis of ontology mismatches; heterogeneity versus interoperability."

In AAAI 1997 Spring Symposium on Ontological Engineering, Stanford CA., USA:

164-72. 1997.

[139] Wache, Holger, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard

Schuster, Holger Neumann, and Sebastian Hübner. "Ontology-based integration of

information-a survey of existing approaches." In IJCAI-01 workshop: ontologies

and information sharing, vol. 2001: 108-117. 2001.

[140] Ranjna Jain, Neelam Duhan, A.K.Sharma, “Comparative Study on Ontology

Management Approaches in Semantic Web”, International Journal of Computer

Sciences and Engineering, Vol.6, Issue.1:132-140, 2018.

[141] Pesquita, Catia, Cosmin Stroe, Isabel F. Cruz, and Francisco M. Couto. "BLOOMS

on AgreementMaker: Results for OAEI 2010." Ontology Matching ,2010: 134.

[142] Jean-Mary, Yves R., E. Patrick Shironoshita, and Mansur R. Kabuka. "Asmov:

Results for oaei 2010." Ontology Matching126 ,2010: 2010.

[143] Jean-Mary, Yves, and Mansur Kabuka. "Asmov: Ontology alignment with

semantic validation." In Joint SWDB-ODBIS Workshop: 15-20. 2007.

[144] Gracia, Jorge, Jordi Bernad, and Eduardo Mena. "Ontology matching with CIDER:

evaluation report for OAEI 2011." Ontology Matching ,2011: 126.

[145] Li, Juanzi, Jie Tang, Yi Li, and Qiong Luo. "RiMOM: A dynamic multistrategy

ontology alignment framework." IEEE Transactions on Knowledge and data

Engineering 21, Vol. 8 ,2009: 1218-1232.

[146] Massmann, Sabine, Salvatore Raunich, David Aumüller, Patrick Arnold, and

Erhard Rahm. "Evolution of the COMA match system." In Proceedings of the 6th

184

International Conference on Ontology Matching-Volume 814: 49-60. CEUR-WS.

org, 2011.

[147] Ngo, DuyHoa, and Zohra Bellahsene. "YAM++: a multi-strategy based approach

for ontology matching task." In International Conference on Knowledge

Engineering and Knowledge Management: 421-425. Springer, Berlin, Heidelberg,

2012.

[148] Essayeh, Aroua, and Mourad Abed. "Towards ontology matching based system

through terminological, structural and semantic level." Procedia computer

science 60 ,2015: 403-412.

[149] Cheatham, Michelle, and Pascal Hitzler. "String similarity metrics for ontology

alignment." In International Semantic Web Conference: 294-309. Springer, Berlin,

Heidelberg, 2013.

[150] Zheng, Jin Guang, Linyun Fu, Xiaogang Ma, and Peter Fox. "SEM+: tool for

discovering concept mapping in Earth science related domain." Earth Science

Informatics 8, Vol. 1 ,2015: 95-102.

[151] Hassen, Walid. "Medley results for OAEI 2012." In Proceedings of the 7th

International Conference on Ontology Matching-Volume 946: 168-172. CEUR-

WS. org, 2012.

[152] Shao, Chao, Lin-Mei Hu, Juan-Zi Li, Zhi-Chun Wang, Tonglee Chung, and Jun-

Bo Xia. "RiMOM-IM: a novel iterative framework for instance matching." Journal

of computer science and technology 31, Vol. 1 ,2016: 185-197.

[153] McGuinness, Deborah L., Richard Fikes, James Rice, and Steve Wilder. "The

chimaera ontology environment." AAAI/IAAI 2000 ,2000: 1123-1124.

[154] Raunich, Salvatore, and Erhard Rahm. "Target-driven merging of taxonomies with

Atom." Information Systems 42 ,2014: 1-14.

[155] Lambrix, Patrick, and He Tan. "SAMBO—a system for aligning and merging

biomedical ontologies." Web Semantics: Science, Services and Agents on the World

Wide Web 4, Vol. 3 ,2006: 196-206.

[156] Kotis, Konstantinos, George A. Vouros, and Konstantinos Stergiou. "Towards

automatic merging of domain ontologies: The HCONE-merge approach." Web

185

semantics: Science, services and agents on the world wide web 4, Vol. 1 ,2006: 60-

79.

[157] Noy, Natalya F., and Mark A. Musen. "The PROMPT suite: interactive tools for

ontology merging and mapping." International Journal of Human-Computer

Studies 59, Vol. 6, 2003, pp: 983-1024.

[158] Nora Maiz, Muhammad Fahad ,Omar Boussaid, Fadlia Bentayeb, “Automatic

Ontology Merging by Hierarchical Clustering and Inference Mechanisms” ,

proceeding of IKNOW, 2010:81-93

[159] Lacasta, J., J. Nogueras-Isso, P. Zarazaga-Soria, and R. Muro-MedraVol.

"Generating an urban domain ontology through the merging of cross-domain

lexical ontologies." Conceptual Models for Urban Practitioners, 2008: 69-84.

[160] De Mello, Marília T., Mara Abel, and Francisco García-sánchez. "Using semantic

web services to integrate data and processes from different web portals.", 2007.

[161] Pant, Gautam, Padmini Srinivasan, and Filippo Menczer. "Crawling the web."

In Web Dynamics: 153-177. Springer, Berlin, Heidelberg, 2004.

[162] Islam, Noman, Muhammad Shahab Siddiqui, and Zubair A. Shaikh. "TODE: A dot

net based tool for ontology development and editing." In Computer Engineering

and Technology (ICCET), 2010 2nd International Conference on, vol. 6: V6-229.

IEEE, 2010.

[163] Weiten, Moritz. "Ontostudio as a ontology engineering environment." In Semantic

knowledge management: 51-60. Springer, Berlin, Heidelberg, 2009.

[164] Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. "Tractable reasoning and efficient query answering in

description logics: The DL-Lite family." Journal of Automated reasoning 39, Vol.

3, 2007: 385-429.

[165] Haase, Peter, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael Erdmann,

Mathieu d’Aquin, and Enrico Motta. "The neon ontology engineering

toolkit." WWW , 2008.

[166] Miller, George A. "WordNet: a lexical database for English." Communications of

the ACM 38, Vol. 11, 1995: 39-41.

186

[167] Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J. Miller. "Introduction to WordNet: An on-line lexical

database." International journal of lexicography 3, Vol. 4, 1990: 235-244.

[168] Popov, Borislav, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, Angel

Kirilov, and Miroslav Goranov. "Towards semantic web information extraction."

In Human Language Technologies Workshop at the 2nd International Semantic

Web Conference (ISWC2003), vol. 20. 2003.

[169] Jain, Ranjna, Neelam Duhan, A. K. Sharma. “Design of Building Automatic Global

Concept Indexer for Ontology Alignment”. International Journal of Engineering

and Technology (IJET), Vol 9, No 3, 2017: 1532-1541.

[170] Jain, Ranjna, Neelam Duhan, A. K. Sharma. “A Novel Method for Building

Indexer for Aligning Ontologies”. International Journal of Information Retrieval

and Research, IGI Global, Vol 8, Issue 4, 2017:67-86.

187

APPENDIX-1

The following is the list of sample URLs generated as an output from Query URL

Builder Process.

1. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-10-qm-2

2. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-10-qm-1

3. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-10-qm-3

4. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-2-qm-2

5. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-2-qm-1

6. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-9-qm-3

7. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-9-qm-1

8. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-6-qm-1

9. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-9-qm-2

10. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-6-qm-2

11. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-6-qm-3

12. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-2-qm-3

13. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-10-qm-1

14. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-4-qm-3

15. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-4-qm-2

16. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-6-qm-1

17. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-10-qm-2

18. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-10-qm-3

19. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-4-qm-1

20. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-6-qm-2

21. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-6-qm-3

22. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-3-qm-3

23. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-3-qm-2

24. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-3-qm-1

25. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-4-qm-3

26. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-1-qm-3

27. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-1-qm-2

28. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-1-qm-1

188

29. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-7-qm-1

30. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-6-qm-1

31. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-7-qm-2

32. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-6-qm-2

33. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-7-qm-3

34. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-8-qm-1

35. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-4-qm-2

36. - > https://www.naukri.com/HTML-jobs-in-Noida-ex-4-qm-1

37. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-8-qm-3

38. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-8-qm-2

39. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-6-qm-3

40. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-6-qm-1

41. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-6-qm-2

42. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-3-qm-2

43. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-6-qm-3

44. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-3-qm-3

45. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-3-qm-1

46. - > https://www.naukri.com/PHP-jobs-in-Delhi-ex-9-qm-3

47. - > https://www.naukri.com/PHP-jobs-in-Delhi-ex-9-qm-2

48. - > https://www.naukri.com/PHP-jobs-in-Delhi-ex-9-qm-1

49. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-8-qm-3

50. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-2-qm-1

51. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-8-qm-2

52. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-10-qm-3

53. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-8-qm-1

54. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-10-qm-2

55. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-2-qm-3

56. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-10-qm-1

57. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-2-qm-2

58. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-2-qm-1

59. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-8-qm-2

60. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-8-qm-3

61. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-2-qm-2

189

62. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-8-qm-1

63. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-2-qm-3

64. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-4-qm-1

65. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-4-qm-3

66. - > https://www.naukri.com/JAVA-jobs-in-Noida-ex-4-qm-2

67. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-8-qm-1

68. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-8-qm-2

69. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-6-qm-2

70. - > https://www.naukri.com/HTML-jobs-in-Mumbai-ex-8-qm-3

71. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-6-qm-3

72. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-4-qm-2

73. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-4-qm-3

74. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-4-qm-1

75. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-3-qm-2

76. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-3-qm-1

77. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-6-qm-1

78. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-3-qm-3

79. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-7-qm-3

80. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-7-qm-2

81. - > https://www.naukri.com/PHP-jobs-in-Mumbai-ex-7-qm-1

82. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-3-qm-3

83. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-2-qm-1

84. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-2-qm-2

85. - > https://www.naukri.com/PHP-jobs-in-Noida-ex-2-qm-3

86. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-3-qm-2

87. - > https://www.naukri.com/HTML-jobs-in-Delhi-ex-3-qm-1

88. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-8-qm-3

89. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-8-qm-2

90. - > https://www.naukri.com/JAVA-jobs-in-Mumbai-ex-8-qm-1

91. - > https://www.naukri.com/JAVA-jobs-in-Delhi-ex-7-qm-1

190

191

APPENDIX-2

The sample of information extracted from www.naukri.com, by applying the proposed

OntoJobExtractor framework is shown as below:

Web Source : www.naukri.com

POST NO : 1

Title : Core Java Developer, Java Programmer

Org : Risebird

Skills : Hibernate, Spring Mvc, JSF, Wicket, Java EE, GWT, JEE, Spring Framework...

Location : Bengaluru, Delhi NCR, Hyderabad

Experience : 1-6 yrs

Salary : Not disclosed

Datetime : 1 day ago

Description : We are looking for a 2-6 yrs Java Developer with experience in building high-

performing, scalable, ...

Link : https://www.naukri.com/job-listings-Core-Java-Developer-Java-Programmer-

Risebird-Bengaluru-Delhi-NCR-Hyderabad-1-to-6-years-

260118000883?src=jobsearchDesk&sid=15172923637258&xp=1&px=1

Web Source : www.naukri.com

POST NO : 2

Title : Core Java Developer - Associate / Sr. Associate Roles @ Sapient

Org : Sapient Consulting Pvt. Ltd

Skills : core java, spring, hibernate, webservices, multithreading, javascript, java...

Location : Delhi NCR

Experience : 5-10 yrs

Salary : Not disclosed

Datetime : 5 days ago

Description : -Providing technical expertise for every phase of the project lifecyclefrom

concept development to ...

Link : https://www.naukri.com/job-listings-Core-Java-Developer-Associate-Sr-Associate-

Roles-Sapient-Sapient-Consulting-Pvt-Ltd-Delhi-NCR-5-to-10-years-

151217005123?src=jobsearchDesk&sid=15172923637258&xp=2&px=1

Web Source : www.naukri.com

POST NO : 3

Title : Core Java Developer - Multithreading

Org : Premium

Skills : Maven, Ant, Core Java, Jenkins, Eclipse, Design Patterns, Multithreading...

Location : Delhi NCR, Gurgaon

Experience : 4-9 yrs

Salary : Not disclosed

Datetime : 1 day ago

Description : Must have Skills: Exp : 5+ Yrs - Experience: 4 to 8 years - Core Java ...

192

Link : https://www.naukri.com/job-listings-Core-Java-Developer-Multithreading-Delhi-

NCR-Gurgaon-4-to-9-years-

290118901408?src=jobsearchDesk&sid=15172923637258&xp=3&px=1

Web Source : www.naukri.com

POST NO : 4

Title : Senior Associate - Core Java

Org : Sapient Consulting Pvt. Ltd

Skills : hibernate, spring, core java, design patterns, java, j2ee, multithreading...

Location : Noida, Gurgaon, Bengaluru

Experience : 5-9 yrs

Salary : Not disclosed

Datetime : 12 days ago

Description : NA

Link : https://www.naukri.com/job-listings-Senior-Associate-Core-Java-Sapient-

Consulting-Pvt-Ltd-Noida-Gurgaon-Bengaluru-5-to-9-years-

180118006818?src=jobsearchDesk&sid=15172923637258&xp=4&px=1

Web Source : www.naukri.com

POST NO : 5

Title : Senior Core Java Developer

Org : NIIT Ltd.

Skills : Javascript, JQuery, Angularjs, Html5, CSS, JDBC, Swing, JUnit, GIT...

Location : Gurgaon

Experience : 1-3 yrs

Salary : Not disclosed

Datetime : 1 day ago

Description : Job Title : Senior Software Engineer (Core Java) Required

Technical Skills: ...

Link : https://www.naukri.com/job-listings-Senior-Core-Java-Developer-NIIT-Ltd-

Gurgaon-1-to-3-years-

090118003727?src=jobsearchDesk&sid=15172923637258&xp=5&px=1

Web Source : www.naukri.com

POST NO : 6

Title : Sr. Software Engineer/ Technical Lead- Core Java, Multithreading

Org : SafeNet Infotech. Pvt. Ltd.

Skills : JSP Servlets, Core Java, Maven, Multithreading, MySQL, Algorithms, Software...

Location : Noida

Experience : 4-9 yrs

Salary : Not disclosed

Datetime : 15 days ago

Description : As a Senior Software Engineer/ Technical Lead in Gemalto,

you will design ...

193

Link : https://www.naukri.com/job-listings-Sr-Software-Engineer-Technical-Lead-Core-

Java-Multithreading-SafeNet-Infotech-Pvt-Ltd-Noida-4-to-9-years-

020417001007?src=jobsearchDesk&sid=15172923637258&xp=6&px=1

194

195

APPENDIX-3

The following is the list of jobs in structured format.

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#"

 xml:base="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <owl:Ontology

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl"/>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#haslocation -->

 <owl:ObjectProperty

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#haslocation"

>

 <rdfs:domain

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <rdfs:range

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#location"

/>

 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hasskill -->

 <owl:ObjectProperty

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hasskill">

 <rdfs:domain

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <rdfs:range

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#skill"/>

 </owl:ObjectProperty>

196

 <!-- //Data properties/// -

->

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hascompany -->

 <owl:DatatypeProperty

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hascompany

">

 <rdfs:domain

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hastitle -->

 <owl:DatatypeProperty

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#hastitle">

 <rdfs:domain

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <!-- //Classes/// -->

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job -->

 <owl:Class

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#location -->

 <owl:Class

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#location"/>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#skill -->

 <owl:Class

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#skill"/>

 <!-- //Individuals/// -->

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#ggn -->

 <owl:NamedIndividual

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#ggn">

197

 <rdf:type

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#location"

/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#java -->

 <owl:NamedIndividual

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#java">

 <rdf:type

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#skill"/>

 </owl:NamedIndividual>

<!-- http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job111 -->

 <owl:NamedIndividual

rdf:about="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job111">

 <rdf:type

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#job"/>

 <hascompany

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">TCS</hascompany>

 <hastitle rdf:datatype="http://www.w3.org/2001/XMLSchema#string">project

mananger</hastitle>

 <haslocation

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#ggn"/>

 <hasskill

rdf:resource="http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#php"/>

 </owl:NamedIndividual>

198

199

BRIEF PROFILE OF THE RESEARCH SCHOLOR

Name:

Ms. Ranjna Jain

Designation: Assistant Professor,

Department of Information

Technology, BSAITM,

Faridabad

Qualification: Ph.D. (2011- to current)

M.Tech (2010), First Class with Distinction

B.E (2005), First Class with Distinction

Research Interests: Semantic Web, Information retrieval, ontology, Web Mining.

Work Experiences: • Assistant Professor, Department of Information

Technology, BSAITM, Faridabad (2015-to current)

• Assistant professor, Department of Computer

Engineering, Rawal Institute of Engineering and

Technology. (2011-2012).

• Sr. Lecturer, Department of Computer Science and

Engineering, BSAITM, Faridabad (2008-2010)

• Lecturer, Department of Computer Science and

Engineering, BSAITM, Faridabad (2005-2008)

200

201

LIST OF PUBLICATIONS

List of Published Papers

S.No. Title of Paper Name of Journal/

Conference where

published

Volume

& Issue

Year Pages

1

Developing

Human Family

Tree using

SWRL Rules

IEEE Conference

ID: 37465 2016

3rd International

Conference on

“Computing for

Sustainable Global

Development”

March,

2016

pp. 3374-3379

2 Comparative

Study on

Semantic Search

Engines

International

Journal of

Computer

Applications

Vol. 131,

Issue 14

Dec.,

2015

pp. 4-11

3 Design of

Building

Automatic

Global Concept

Indexer for

Ontology

Alignment

(Paper indexed in

Scopus)

International

Journal of

Engineering and

Technology (IJET)

Vol. 9,

Issue 3

May,

2017

pp. 1532-1541

4 A Novel Method

for Building

Indexer for

Aligning

Ontologies

(Paper indexed in

ACM library)

International

Journal of

Information

Retrieval Research

(IJIRR)

Vol. 8,

Issue 4

Oct.,

2018

pp. 67-86

5 Comparative

Study on

Ontology

Management

Approaches in

Semantic Web

International

Journal of

Computer Sciences

and Engineering

Vol.6,

Issue.1,

Jan.,

2018

pp.132-140

202

List of Communicated Papers

S. No. Title of the paper Name of Journal Present

Status

Year

1 Ontojobextractor:

Relevant Information

Extraction from Job

Boards

International Journal

of Web Engineering

and

Technology(IJWET)

Journal Indexed in

Scopus

Communicated 2018

2
Ontojob Query

Processor: An

Ontology Driven

Query Processing

Method

Journal of Computer

Science Indexed in

Scopus

Communicated 2018

3
Ontology Based

Cross Domain

Interoperability

Search System

International Journal

of Computer

Application in

Technology(IJCAT)

Journal Indexed in

Scopus

Communicated 2018

