335401

May 2019
B.Sc. (Hons.) Physics Semester-IV

MATHEMATICAL PHYSICS-III
(BPH-401)

Time: 3 Hours]
[Max. Marks : 75

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find the modulus and principle argument of the

$$
\begin{equation*}
\text { complex number } \sqrt{\left(\frac{1+i}{1-i}\right)} \text {. } \tag{1.5}
\end{equation*}
$$

(b) Separate $\log (x+i y)$ into real and imaginary parts.
(c) State and prove Cauchy's Integral Theorem for the functions of complex variables.
(d) Find the residue of $f(z)=\frac{1}{\left(z^{2}+1\right)^{3}}$ at $z=i$. (1.5)
(e) Find the poles of the function $f(z)=\frac{e^{z-a}}{(z-a)^{2}} \cdot(1.5)$
(f) If $\mathrm{F}\{f(x)\}=\mathrm{F}(s)$ then show that

$$
\begin{equation*}
\mathrm{F}\{f(a x)\}=\frac{1}{a} \mathrm{~F}\left(\frac{s}{a}\right) \tag{1.5}
\end{equation*}
$$

(g) If $\mathrm{F}\{f(x)\}=\mathrm{F}(s)$ then show that

$$
\begin{equation*}
\mathrm{F}\left\{x^{n} f(x)\right\}=(-i)^{n} \frac{d^{n}}{d s^{n}} \mathrm{~F}(s) \tag{1.5}
\end{equation*}
$$

(h) Evaluate the F.T. of Dirac-delta function.
(i) If $\mathrm{L}\{f(t)\}=\mathrm{L}(s)$ then show that

$$
\mathrm{L}\left\{f^{\prime}(t)\right\}=s \mathrm{~L}(s)-f(0)
$$

(j) Find the Laplace transform of $f(t)=\frac{\sin 2 t}{t}$. (1.5)

PART-B

2. (a) Define a harmonic function. Show that the function $u(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$ is harmonic. Also find the analytic function $f(z)=u(x, y)+i v(x, y)$.
(b) If $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$ are the roots of $x^{5}-1=0$; find them and show that $(1-\alpha)\left(1-\alpha^{2}\right)\left(1-\alpha^{3}\right)\left(1-\alpha^{4}\right)=5$.
3. (a) Evaluate $\int_{\mathrm{C}} \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z$; using Cauchy's integral Formula where c is the circle $|z|=3$.
(b) Evaluate the following real integral using method of complex variables:

$$
\begin{equation*}
\int_{-0}^{2 \pi} \frac{\sin ^{2} \theta}{5-4 \cos \theta} d \theta \tag{8}
\end{equation*}
$$

4. (a) State and prove Taylor's theorem of complex variables.
(b) Expand $f(z)=\frac{7 z-2}{z^{3}-z^{2}-2 z}$ in a Laurent series in the region $|z+1|>3$.
5. (a) If $\mathrm{F}\{f(x)\}=\mathrm{F}(s)$ then show that $\mathrm{F}\left\{f^{n}(x)\right\}=(-i s)^{n} \mathrm{~F}(s)$ where $f^{n}(x)$ is the nth derivative of the function $f(x)$.
(b) State and Prove convolution theorem on Fourier Transform.
6. (a) Obtain Fourier Cosine transform of

$$
\mathrm{F}(x)= \begin{cases}x, & 0<x<1 \tag{8}\\ 2-x, & 1<x<2 \\ 0, & x>2\end{cases}
$$

(b) Solve the following equation by Laplace Transform

$$
\begin{align*}
& \frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}=0 ; y=0, d y / d x=1 \text { at } t=0 \\
& \text { and } y=1 \text { at } t=\pi / 8 . \tag{7}
\end{align*}
$$

7. (a) Evaluate the Laplace transform of

$$
\mathrm{F}(t)= \begin{cases}1, & 0 \leq t<1 \tag{8}\\ t, & 1 \leq t<2 \\ t^{2}, & 2 \leq t<\infty\end{cases}
$$

(b) Evaluate the integral $\int_{0}^{\infty} t^{3} e^{-t} \sin t d t$ using Laplace
transformation.

