Dec 2010

B.Sc. (Animation) I SEMESTER

Mathematics-I (BSC(A)-18-102)

Time: 3 Hours

Instructions:

Max. Marks:75

It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. 1. 2.

- Answer any four questions from Part -B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.
- Vectors are denoted by bold letters in question 4. 4.

PART -A

- Q1 (a) Write the transformation matrices for creating the projection in X, Y and Z planes. (1.5)
 - (b) Identify the following operations as commutative or non commutative: Matrix (1.5) addition, matrix subtraction, matrix multiplication.
 - (c) What is purpose of directrix in ellipse? (1.5)
 - (d) Find the equation of a circle with centre as (1,12) and passing through the point (1.5)(4.5)
 - (e) 1 ind the ratio in which the line joining A(5,1,6) and B(3,4,1) is divided by yz plane (1.5)
 - (f) Find the equation of the line joining (1, 3) and (10, 20). (1.5)
 - (g) Find the intercepts of the plane 2x-2y+6z-60=0 on coordinate axes. (1.5)
 - (h) Define following types of vectors: coplanar vectors, negative of vector, unit vector. (1.5)
 - Write the matrix for the following transformation (i)(1.5)
 - i. Rotation in 3D
 - Reflection in 2D both across X and Y axis ii.
 - iii. Shearing in 2D
 - Define following of matrices: Unit Matrix, Lower triangular matrix, null matrix. (i) (1.5)

PART-B

- 02 (a) Write the Bresenhams line drawing algorithm.
 - (5)(b) Find the equation of a circle with centre as (0.0) and the straight line 3x+y-10=0 as (5)tangent.
 - Multiply the following matrices: (c)

$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$	5	
2 0 1	0	-1
	-2	3

- 03 (a) Define three types of Cartesian, spherical and cylindrical coordinate systems. How (7)a point p(x,y,z) in Cartesian coordinate system can be mapped (converted) in other two coordinate systems.
 - (b) For the ellipse defined by the equation $4x^2 + 16y^2 24x 32y 12 = 0$ find centre, length (8)of major and minor axes, eccentricity, length of latus rectum.
- Q4 (a) 1 et ABCD be a parallelogram with AC and BD as diagonals. Compute AC-BD in

(4)

(5)

terms of AB.

(b) Let ABCDEF be a regular hexagon with AB=a and BC=b then find CE. (4)

	(c)	Describe how isometric projection can be created in Y-plane.	(7)
Q5	(a)	Find the equation of the straight line perpendicular to $3x+4y-10=0$ and passing through the point (6, 6).	(8)
	(b)	Find the coordinates of a point dividing the line joining (10.20) and (30.50) in the ratio 2:3.	(7)
Q6	(a)	Let $P(x,y,z)$ be a point in 3D coordinate system. For this point find	(5)
		 a) Find the feet of its perpendicular drawn on XY,YZ and ZX plane. b) Find its distance from XY,YZ and ZX plane c) Find its reflection across the planes z=3. 	
	(b)	Define direction cosines l,m,n . Show that $l^2 + m^2 + n^2 = 1$	(3)
	(c)	Consider a rectangle with vertices as A(-1,-1), B(-1,5), C(5,5), D(5,-5). Rotate it by 90^0 about origin.	(7)
Q7	(a)	 Write short notes on the following; (i) Isometric Projection (ii) Perspective Projection (iii) Dithering 	(3) (3) (4)
	(b)	A cube in 3D is represented by points $(2,2,2)$, $(2,-1,2)$, $(5,-1,2)$, $(5,2,2)$, $(2,2,5)$, $(2,-1,5)$, $(5,-1,5)$ and $(5,2,5)$. Translate this cube by 2units on X-axis and scale it three times around origin.	(5)
