\qquad

Mar. 2022

B.Tech. (EIOT) - III SEMESTER

Signals and Systems (ECC-01)

Time : 90 Minutes]
[Max. Marks : 25

Instructions :

1. It is compulsory to answer all the questions (1 mark each) of Part-A in short.
2. Answer any three questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Distinguish between continuous time and discrete time signals.
(b) State $x(n)=a^{|n|}$; where $|a|<1$ is energy or power signal.
(c) Illustrate whether the following signal is periodic or aperiodic :

$$
\begin{equation*}
\mathrm{x}[\mathrm{n}]=2 \sin 2 \pi \mathrm{t}+4 \cos 8 \pi \mathrm{t} \tag{1}
\end{equation*}
$$

(d) What is the necessary and sufficient condition for the causality of an LTI system?
(e) State the Dirichlet's conditions of Fourier Series. (1)
(f) Find the Laplace transform of $\delta(\mathrm{t})$.
(g) State the time shifting property for CTFT.
(h) Find the Z-transform of $\delta(\mathrm{n}+3)$.
(i) Describe the relation between DTFT and z-transform.
(j) For the signal $f(t)=3 \sin 8 \pi t+6 \sin 12 \pi t+\sin 14 \pi t$, determine the minimum sampling frequency (in Hz) satisfying the Nyquist criterion.

PART-B

2. (a) Sketch the signal $x[n]=u[n]-u[n-5]$.
(b) State whether $y(t)=x^{2}(t)$ is linear or non-linear, time variant or invariant, invertible or non-invertible.
3. (a) Consider $\mathrm{h}[\mathrm{n}]=\{1,3,2,-1,1\}$ with origin at 3, and $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-3]$, determine the output $\mathrm{y}[\mathrm{n}]$ of the LTI system?
(b) Evaluate the Fourier transform of $x(t)=e^{-3| |} u(t)$.
4. A system is described using the transfer function $H(z)=\left(z^{-1}+(1 / 2) z^{-2}\right) /\left(1-(3 / 5) z^{-1}+(2 / 25) z^{-2}\right)$. Determine the impulse response and the zero-state step response of the system.
5. (a) Determine the circular convolution of $x[n]$ with $x[n]$ using DFT where $\mathrm{x}[\mathrm{n}]=[1,2,1,0]$.
(b) Determine the initial value $\mathrm{x}(0+$) for the Laplace transform $X(s)=4 /\left(s^{2}+3 s-5\right)$.
6. (a) State few properties of ROC.
(b) State and prove sampling theorem.
