334102

Dec., 2018

B.Sc. (Animation) Ist Semester
 MATHEMATICS-I
 (BSC(A)-18-102)

Time : 3 Hours]
[Max. Marks : 75

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.
(iv) Vectors are denoted by bold letters in question 4.

PART-A

1. (a) Define following of matrices: Unit Matrix, Lower triangular matrix, null matrix.
(b) Identify the following operations as commutative or non-commutative: Matrix addition, matrix subtraction, matrix multiplication.
(c) What is purpose of directrix in ellipse?
(d) Find the equation of a circle with centre as $(2,2)$ and passing through the point $(4,5)$.
334102/60/111/384
(e) Find the equation of the line joining $(2,5)$ and $(10,20)$.
(f) Find the ratio in which the line joining $\mathrm{A}(5,1,6)$ and $\mathrm{B}(3,4,1)$ is divided by yz plane.
(g) Find the intercepts of the plane $5 x-3 y+6 z-60=0$ on coordinate axes.
(h) Define following types of vectors: coplanar vectors, negative of vector, unit vector.
(i) Write the matrix for the following transformation
(i) Rotation in 2D.
(ii) Reflection in 2D both across X and Y axis.
(iii) Scaling in 2D.
(j) Write the transformation matrices for creating the projection in X, Y and Z planes.

PART-B

2. (a) Write the DDA line drawing algorithm.
(b) Find the equation of a circle with centre as $(0,0)$ and the straight line $3 x+y-10=0$ as tangent.
(c) Multiply the following matrices :

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \tag{5}\\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
0 & -1 \\
-2 & 3
\end{array}\right]
$$

3. (a) Define three types of Cartesian, spherical and cylindrical coordinate systems. How a point $p(x, y, z)$ in Cartesian coordinate system can be mapped (converted) in other two coordinate systems.
(b) For the ellipse defined by the equation $4 x^{2}+16 y^{2}-$ $24 x-32 y-12=0$ find centre, length of major and minor axes, eccentricity, length of latus rectum.
4. (a) Let ABCD be a parallelogram with AC and BD as diagonals. Compute $\mathbf{A C}-\mathbf{B D}$ in terms of $\mathbf{A B}$.
(b) Let ABCDEF be a regular hexagon with $\mathrm{AB}=\mathbf{a}$ and $\mathbf{B C}=\mathbf{b}$ then find $\mathbf{C E}$.

(c) Describe how isometric projection can be created in Z-plane.
5. (a) Find the equation of the straight line perpendicular to $3 x+4 y-10=0$ and passing through the point $(5,6)$.
(b) Find the coordinates of a point dividing the line joining $(10,20)$ and $(30,50)$ in the ratio $2: 3$.
6. (a) Let $\mathrm{P}(x, y, z)$ be a point in 3D coordinate system. For this point
(i) Find the feet of its perpendicular drawn on $X Y$, YZ and ZX plane.
(ii) Find its distance from XY, YZ and ZX plane
(iii) Find its reflection across the planes $z=3$. (5)
(b) Define direction cosines l, m, n. Show that $l^{2}+m^{2}+n^{2}=1$
(c) Consider a rectangle with vertices as $\mathrm{A}(-1,-1)$, $\mathrm{B}(-1,5), \mathrm{C}(5,5), \mathrm{D}(5,-5)$. Rotate it by 600 about origin.
7. (a) Write short notes on the following :
(i) Isometric Projection.
(ii) Perspective Projection.
(iii) Anti-aliasing.
(b) A cube in 3 D is represented by points $(2,2,2)$, $(2,-1,2),(5,-1,2),(5,2,2),(2,2,5) .(2,-1,5),(5,-1,5)$ and $(5,2,5)$. Translate this cube by 3 units on X-axis and scale it two times around origin.
