
DESIGN OF A SECURITY SYSTEM FOR WEB

ATTACKS

THESIS

Submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

 YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

BHARTI NAGPAL

Registration No. YMCAUST/PhD03/2012

Under the Supervision of

 Dr. NARESH CHAUHAN Dr. NANHAY SINGH

 PROFESSOR(YMCAUST) ASSOCIATE PROFESSOR(AIACT&R)

Department of Computer Engineering

 Faculty of Engineering and Technology

YMCA University of Science & Technology

Sector-6, Mathura Road, Faridabad, Haryana, India

 FEBRUARY, 2018

https://www.google.co.in/url?q=http://ymcaie.ac.in/mba/index.php?option=com_content&view=article&id=53&Itemid=76&sa=U&ei=S5BYU-2JDcizrAfd-4CIBQ&ved=0CB8Q9QEwAA&usg=AFQjCNHoSs4s8QWVNPbZDkjApjeQpfmgCw

ii

Dedicated

to

My daughter Lavanaya

iii

DECLARATION

I hereby declare that this thesis entitled “DESIGN OF A SECURITY SYSTEM FOR WEB

ATTACKS” being submitted in fulfillment of requirement for the award of Degree of Doctor of

Philosophy in the DEPARTMENT OF COMPUTER ENGINEERING under Faculty of

ENGINEERING & TECHNOLOGY of YMCA University of Science and Technology,

Faridabad, during the academic year March 2013 to February 2018, is a bonafide record of my

original work carried out under the guidance and supervision of DR. NARESH CHAUHAN,

PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING, YMCA UNIVERSITY

OF SCIENCE & TECHNOLOGY, FARIDABAD and DR. NANHAY SINGH,

ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING,

AMBEDKAR INSTITUTE OF ADVANCED COMMUNICATION TECHNOLOGY &

RESEARCH, DELHI and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been submitted

for the award of any degree either in this university or in any other university.

(BHARTI NAGPAL)

 Registration No: YMCAUST/Ph03/2012

iv

CERTIFICATE

This is to certify that this thesis entitled “DESIGN OF A SECURITY SYSTEM FOR WEB

ATTACKS” by BHARTI NAGPAL submitted in fulfillment of the requirements for the award

of Degree of Doctor of Philosophy in DEPARTMENT OF COMPUTER ENGINEERING

under Faculty of ENGINEERING & TECHNOLOGY of YMCA University of Science &

Technology Faridabad, during the academic year March 2013 to February 2018 is a bonafide

record of work carried out under our guidance and supervision.

We further declare that to the best of our knowledge, the thesis does not contain any part of any

work which has been submitted for the award of any degree either in this university or in any

other university.

 DR. NARESH CHAUHAN DR. NANHAY SINGH

 PROFESSOR ASSOCIATE PROFESSOR

 Department of Computer Engineering Department of Computer Engineering

 Faculty of Engineering and Technology Ambedkar Institute of Advanced

YMCA University of Science & Technology, Communication Technology &

 Faridabad Research, Delhi

 Dated:

The Ph.D viva-voce examination of Research Scholar Bharti Nagpal(YMCAUST/Ph03/2012)

has been held on………………..

(Signature of Supervisors) (Signature of Chairman) (Signature of External Examiner)

v

ACKNOWLEDGEMENT

I am thankful to God for all of His Blessings

I would like to express my sincere gratitude to my thesis supervisors, Dr. Naresh Chauhan,

Professor, Department of Computer Engineering, YMCA University of Science & Technology,

Faridabad and Dr. Nanhay Singh, Associate Professor, Department of Computer Engineering,

Ambedkar Institute of Advanced Communication Technology & Research, for their continuous

guidance, valuable advice, constructive criticism and helpful suggestions. I am very grateful to

them for their continual encouragement and motivation. I greatly value their timely and valuable

advices. Their suggestions increased my cognitive awareness and helped considerably in the

fruition of my objective.

I am indebted to Dr. Komal Kumar Bhatia, Professor and Chairman, Department of Computer

Engineering, YMCAUST for his insightful comments and administrative help at various

occasions. I am indebted to Dr. C. K. Nagpal, Professor and Dr. Atul Mishra, Associate

Professor , Department of Computer Engineering, YMCAUST for their valuable suggestions. I

would also like to thank my DRC members, Dr. Neelam Duhan, Dr. Komal Kumar Bhatia ,

Dr. Manjeet Singh and Dr. Ashutosh Dixit for stimulating questions and invaluable feedback. I

expand my thanks to all the faculty members of Computer Engineering Department of

YMCAUST for their support and cooperation.

I would like to thank my parents, my sister and my brother for their guidance, love and

encouragement. My sincere thanks to my husband for providing the constant encouragement and

unconditional moral support to enable me to come up to this level in my life.My special thanks to

my daughter for the encouragement , the priceless love and support.

 Thanks to all of you!

 (BHARTI NAGPAL)

vi

ABSTRACT

Information is an important resource and achieving a proper security level can be viewed as

basic keeping in mind the end goal to keep up a focused edge. The advancement of the web has

established a framework for the improvement and use of new classification of system of

information technology working on the web. The use of internet has been tremendously grown

for accomplishing important task, such as online shopping,e-banking,e-reservation, e-governance

etc.

Nowadays, the web has turned out to be extremely fundamental needs of the general public and

in like manner there is an expanding interest to comprehend the exercises, offices, and objectives

of web clients.WWW has developed quickly into a flexible stage for a wide range of

computation, dynamically picking up support for information passage, client side scripting, and

application-particular system dialogues.

With the quickly developing technology, the simplicity of accessing through web applications

has changed the conventional perspective of an organization completely. Hacking of webpages

of web applications keep on gaining notoriety as hackers are exposing vulnerabilities over all

geographies and crosswise over different sorts of web technologies. Hackers are always

exploring different avenues regarding an extensive variety of assaulting strategies to trade off

sites and hack delicate information, for example, MasterCard number, social security number

and other individual data.

Security has turned into a noteworthy aspect to the internet world as internet age is rising day by

day. Security of the web application is important of the fact that now every activity like sharing,

communication, sharing the assets, e-administering, online managing a bank account, online

business, social communication, payment of different utilities bills etc. done on the internet.

Web application gives different security challenges to business and security professionals in that

they expose the integrity of their data to the public. The increased accessibility to the

corporation’s system through websites has an impact on ever increasing need for the security of

computer.

vii

Web based attacks are the topmost among all the risks associated with integrity, confidentiality

and availability. Web based attacks such as SQL injection i.e. SQLI, Cross-site scripting i.e. XSS

etc. focuses on a web based application layer 7 of the OSI reference model. Application

vulnerabilities could give the way to malicious end clients to break a framework's protection

mechanism normally to exploit or access private data or framework resources.

The number of assaults are increasing day by day. Many endeavors have been made to discover

solution for the issue. The best arrangement is to create the program in a safe way. Many

archives have been distributed in regard to secure advancement of web based applications

although very little has managed. Web engineers are not yet security mindful, and the issues

keep on appearing. Accordingly, security administrators are continuously searching for different

measures that can be taken against this issue. Developers are not yet security aware, and the

issues continue to appear. Thus security experts are constantly looking for some other

countermeasures which can be considered against the problem.

The possibility of failure of security in web application is high in today's web world. This thesis

largely focuses on the challenges found in the security of web attacks. To overcome these

challenges, the work presented in this thesis concentrates on designing and developing a security

system. The proposed security system is a hybrid system which is a combination of web based

attacks. This hybrid security system prevents the most commonly found serious and dangerous

web attacks which are Cross Site Script i.e. XSS, SQL Injection i.e. SQLI and Cross-Site

Request Forgery i.e. CSRF. The security system is developed in PHP. This proposed hybrid

security system prevents the most commonly found serious and dangerous web attacks

mentioned above in a more efficient way by reducing the drawbacks of the existing techniques

given by many researchers which are being observed and thereby to improve performance. To

analyze the efficacy of the methodology which has been proposed, the results are calculated on

different set of PHP applications. All proposed techniques in this thesis have been validated and

the results which are obtained shows the efficiency of the proposed security system.

viii

TABLE OF CONTENTS

 Dedication ii

Candidate’s Declaration iii

Certificate iv

Acknowledgement v

Abstract vi

Table of Contents viii

List of Tables xii

List of Figures xiii

List of Abbreviations xvi

CHAPTER I: INTRODUCTION 1-8

 1.1 Introduction to Information Security 1

 1.2 Web Applications and its Security 2

 1.3 Motivation and Research Objective 4

 1.4 Challenges related to Security of Web Attacks 6

 1.5 Organization of Thesis 8

CHAPTER II: WEB ATTACKS AND VULNERABILITIES 9-22

 2.1 Introduction 9

 2.2 Vulnerability 9

 2.3 Top Ten Vulnerabilities 9

 2.3.1 Cross Site Script 12

 2.3.1.1 Non Persistent XSS 13

 2.3.1.2 Persistent XSS 13

 2.3.2 SQL Injection 16

 2.3.2.1 Tautology based SQL Injection 17

 2.3.2.2 Union Query based SQL Injection 18

 2.3.2.3 Stored Procedure based SQL Injection 18

 2.3.2.4 Blind Injection based SQL Injection 19

 2.3.2.5 Piggy Backed Query based SQL Injection 19

 2.3.3 Cross Site Request Forgery 20

ix

 2.4 Conclusion 22

CHAPTER III: LITERATURE SURVEY 23-52

 3.1 Open Web Application Security Project 23

 3.2 Web Application Security Consortium 23

 3.3 XSS Attack 24

 3.3.1 Related Work for XSS Attack 25

 3.4 SQL Injection Attack 36

 3.4.1 Related Work for SQL Injection Attack 37

 3.5 CSRF Attack 46

 3.5.1 Related Work for CSRF Attack 46

 3.6 Conclusion 51

CHAPTER IV: A HYBRID SECURITY SYSTEM FOR PREVENTION OF

 XSS,SQLI,CSRF WEB ATTACK: PROPOSED APPROACH

53-78

 4.1 Introduction 53

 4.2 Abstract View of Proposed Hybrid Security System 54

 4.3 Overall Architecture of Proposed Hybrid Security System 54

 4.4 Phases of Hybrid Security System 56

 4.5 Prevention of XSS Attack using Hybrid Security System 58

 4.5.1 Scanning and Hotspot Identification Phase 58

 4.5.2 Instrumentation Phase 58

 4.5.3 Tag Attribute Model Phase 59

 4.5.4 Validation and Error Report Phase 60

 4.6 Prevention of SQL Injection Attack using Hybrid Security System 62

 4.6.1 Scanning and Hotspot Identification Phase 62

 4.6.2 Instrumentation Phase 62

 4.6.3 SQL Query Model Phase 62

 4.6.4 Validation and Error Report Phase 65

 4.7 Prevention of CSRF Attack using Hybrid Security System 67

 4.7.1 Scanning and Hotspot Identification Phase 67

 4.7.2 Instrumentation Phase 67

x

 4.7.3 Token Session Model Phase 67

 4.7.4 Validation and Error Report Phase 68

 4.8 Algorithms 69

 4.8.1 Scanning and Hotspot Identification Algorithm 70

 4.8.2 Instrumentation Algorithm 71

 4.8.3 Model Generation Algorithm 72

 4.8.4 XSS Attack Prevention Algorithm 74

 4.8.5 SQL Injection Attack Prevention Algorithm 75

 4.8.6 CSRF Attack Prevention Algorithm 76

 4.8.7 Validation and Error Reporting Algorithm 76

 4.9 Conclusion 77

CHAPTER V: IMPLEMENTATION AND EXPERIMENTAL ANALYSIS 79-124

 5.1 Introduction 79

 5.2 Implementation of Proposed Hybrid Security System 79

 5.2.1 SQL Injection Vulnerability 79

 5.2.1.1 Exploiting SQL Injection Vulnerability 80

 5.2.1.2 Preventing SQL Injection Vulnerability 83

 5.2.2 XSS Vulnerability 96

 5.2.2.1 Exploiting XSS Vulnerability 96

 5.2.2.2 Preventing XSS Vulnerability 100

 5.2.3 CSRF Vulnerability 113

 5.2.3.1 Exploiting CSRF Vulnerability 113

 5.2.3.2 Preventing CSRF Vulnerability 115

 5.3 Experimental and Comparative Analysis 120

 5.3.1 Test Input Generation 121

 5.3.2 Web Application Testing and Results 121

 5.3.3 Comparative Analysis 122

 5.4 Conclusion 124

CHAPTER VI: CONCLUSIONS AND FUTURE SCOPE 125-128

 6.1 Conclusion 125

xi

 6.2 Benefits of Proposed Design 126

 6.3 Future Scope 127

 REFERENCES 129

 PROFILE OF RESEARCH SCHOLAR 141

 LIST OF PUBLICATIONS OUT OF THESIS 142

xii

LIST OF TABLES

Table 2.1 Top10 web application vulnerabilities by OWASP 9

Table 2.2 Script tag based XSS attack 13

Table 2.3 Image tag based XSS attack 14

Table 2.4 Iframe tag based XSS attack 14

Table 2.5 Object tag based XSS attack 15

Table 2.6 Frame tag based XSS attack 15

Table 2.7 Div tag based XSS attack 15

Table 2.8 Tautology based SQLI attack 17

Table 2.9 Union Query based SQLI attack 18

Table 2.10 Stored Procedure based SQLI attack 19

Table 3.1 Literature survey of XSS attack 30

Table 3.2 Literature survey of SQL Injection attack 41

Table 3.3 Literature survey of CSRF attack 48

Table 4.1 Tag-Attribute model for static mode 59

Table 5.1 Experimental analysis for SQLIA 121

Table 5.2 Experimental analysis for Cross site script attack 122

Table 5.3 Experimental results for Cross site request forgery attack 122

Table 5.4 Comparative analysis of different techniques/approaches 123

xiii

LIST OF FIGURES

Figure 1.1 Web Application Architecture 3

Figure 2.1 View of XSS 12

Figure 2.2 Data flow using malicious SQL query 16

Figure 2.3 Series of action between Browser and Trusted-site 21

Figure 2.4 Series of action during CSRF attack 22

Figure 4.1 Architecture of Proposed Hybrid Security System 55

Figure 4.2 Prevention of XSS attack 61

Figure 4.3 SQL- query model during static mode 63

Figure 4.4 Tautology based SQL-query model during dynamic mode 62

Figure 4.5 Union query based SQL-query model during dynamic mode 64

Figure 4.6 Stored Procedure based SQL-query model during dynamic

mode

64

Figure 4.7 Blind Injection based SQL-query model during dynamic mode 65

Figure 4.8 Piggy-backed query based SQL-query model during dynamic

mode

65

Figure 4.9 Prevention of SQL Injection attack 66

Figure 4.10 Prevention of CSRF attack 69

Figure 4.11 Algorithm of Scanning and Hotspot identification for SQLI,

CSRF and XSS

70

Figure 4.12 Algorithm of Instrumentation for SQL Injection, XSS and

CSRF attack

71

Figure 4.13 Algorithm of Model Generation for SQL Injection, XSS and

CSRF attack

72

Figure 4.14 Algorithm for Prevention of XSS attack 74

Figure 4.15 Algorithm for Prevention of SQL Injection attack 75

Figure 4.16 Algorithm for Prevention of CSRF attack 76

Figure 4.17 Algorithm for Validation and Error Report 76

Figure 5.1 Snapshot 1 of User Login Input Page 80

Figure 5.2 Snapshot 2 of User Login Page with Legitimate Input 81

xiv

Figure 5.3 Snapshot 3 of Output showing successful login 82

Figure 5.4 Snapshot 4 of User Login Page with Special Character Input 82

Figure 5.5 Snapshot 5 of Output showing successful login with special

character

83

Figure 5.6 Snapshot 6 of SQL form to enter web application path 84

Figure 5.7 Snapshot 7 of Output generated after completion of step2 84

Figure 5.8 Snapshot 8 of Output generated after completion of step3 85

Figure 5.9 Snapshot 9 of Output generated after completion of step4 85

Figure 5.10 Snapshot 10 of Output generated after completion of step5 86

Figure 5.11 Snapshot 11 of User Login Page with legitimate input 87

Figure 5.12 Snapshot 12 of Output showing successful login 88

Figure 5.13 Snapshot 13 of User Login Page with Tautology based non-

legitimate input

89

Figure 5.14 Snapshot 14 of Output showing sql injection attempted 89

Figure 5.15 Snapshot 15 of User Login Page with union query based non-

legitimate input

90

Figure 5.16 Snapshot 16 of Output showing sql injection attempted 91

Figure 5.17 Snapshot 17 of User Login Page with blind injection based non-

legitimate input

92

Figure 5.18 Snapshot 18 of Output showing sql injection attempted 92

Figure 5.19 Snapshot 19 of User Login Page with stored procedure based

non- legitimate input

93

Figure 5.20 Snapshot 20 of Output showing sql injection attempted 94

Figure 5.21 Snapshot 21 of User Login Page with Piggy-backed query

based non- legitimate input

95

Figure 5.22 Snapshot 22 of Output showing sql injection attempted 96

Figure 5.23 Snapshot 23 of User Login Page with legitimate input 97

Figure 5.24 Snapshot 24 of Output showing successful login 98

Figure 5.25 Snapshot 25 of User Login Page with malicious input 99

Figure 5.26 Snapshot 26 of Output showing vulnerability to XSS attack 100

xv

Figure 5.27 Snapshot 27 of XSS form to enter web application path 101

Figure 5.28 Snapshot 28 of Output generated after completion of step2 101

Figure 5.29 Snapshot 29 of Output generated after completion of step3 102

Figure 5.30 Snapshot 30 of Output generated after completion of step4 102

Figure 5.31 Snapshot 31 of User Login Page with legitimate input 103

Figure 5.32 Snapshot 32 of Output showing successful login 104

Figure 5.33 Snapshot 33 of User Login Page with malicious script tag input 105

Figure 5.34 Snapshot 34 of Output showing xss attack attempted 105

Figure 5.35 Snapshot 35 of User Login Page with malicious source tag input 106

Figure 5.36 Snapshot 36 of Output showing xss attack attempted 107

Figure 5.37 Snapshot 37 of User Login Page with malicious body tag input 107

Figure 5.38 Snapshot 38 of Output showing xss attack attempted 108

Figure 5.39 Snapshot 39 of User Login Page with malicious image tag input 109

Figure 5.40 Snapshot 40 of Output showing xss attack attempted 109

Figure 5.41 Snapshot 41 of User Login Page with malicious iframe tag input 110

Figure 5.42 Snapshot 42 of Output showing xss attack attempted 111

Figure 5.43 Snapshot 43 of User Login Page with malicious div tag input 111

Figure 5.44 Snapshot 44 of Output showing xss attack attempted 112

Figure 5.45 Snapshot 45 of User Login Page with malicious embed tag

input

112

Figure 5.46 Snapshot 46 of Output showing xss attack attempted 113

Figure 5.47 Snapshot 47 of User Login Page with legitimate input 114

Figure 5.48 Snapshot 48 of Output showing successful login 115

Figure 5.49 Snapshot 49 of CSRF form to enter web application path 115

Figure 5.50 Snapshot 50 of Output generated after completion of step2 116

Figure 5.51 Snapshot 51 of Output generated after completion of step3 117

Figure 5.52 Snapshot 52 of Output generated after completion of step4 117

Figure 5.53 Snapshot 53 of User Login Page with legitimate input 118

Figure 5.54 Snapshot 54 of Output showing successful login 119

Figure 5.55 Snapshot 55 of User Login Page with malicious input 119

Figure 5.56 Snapshot 56 of Output showing csrf attack attempted 120

xvi

LIST OF ABBREVIATIONS

WWW World Wide Web

GUI Graphical User Interface

HTML Hyper Text Markup Language

CGI Common Gateway Interface

ASP Active Server Pages

PHP Hypertext Preprocessor(earlier called, Personal Home Page)

OWASP Open Web Application Security Project

DOS Denial Of Service

OSI Open Systems Interconnection

SQL Structured Query Language

SQLI Structured Query Language Injection

SQLIA Structured Query Language Injection Attack

XSS Cross Site Script

CSRF Cross Site Request Forgery

UI User Interface

URL Uniform Resource Locator

HTTP Hyper Text Transfer Protocol

WASC Web Application Security Consortium

CFG Control Flow Graph

W3C World Wide Web Consortium

FSA Finite State Automata

XML Extensible Markup Language

XSD XML Schema Definition

API Application Program Interface

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

IDS Intrusion Detection System

JDBC Java Database Connectivity

IP Internet Protocol

xvii

1

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION TO INFORMATION SECURITY

Information is an important resource and achieving a proper security level can be viewed as

basic keeping in mind the end goal to keep up a focused edge. The advancement of the web has

established a framework for the improvement and use of new classifications of systems of

information technology working on the web[1]. The use of internet has been tremendously

grown for accomplishing important task, such as online shopping, e-banking, e-reservation, e-

governance etc.

With the advancement of WWW the organizations are starting to get more refined about how

they utilize their website. Nowadays, the web has turned out to be extremely fundamental need

of the general public, offices and objectives of web clients. WWW has developed quickly into a

flexible stage for a wide range of computation, dynamically picking up support for information

passage, client side scripting, and application-particular system dialogues.

Vulnerabilities has surfaced the different systems, with the expansion in web-human interaction.

With the quickly developing technology, the simplicity of accessing through web applications

has changed the conventional perspective of an organization completely. Hacking of webpages

of web application keep on gaining notoriety as hackers are exposing vulnerabilities over all

geographies and crosswise over different sorts of web technologies. Hackers are always

exploring different avenues regarding an extensive variety of assaulting strategies to trade off

sites and hack delicate information, for example, MasterCard number, social security number

and other individual data. In this way, there is a prime need to secure the website against hackers

and attackers.

Security has turned into a noteworthy aspect to the Internet world as internet age is rising day by

day. Security of the web application is important of the fact that now every one of the activities

like sharing, communication, sharing the assets, e-administering, online managing a back

2

account, online business, social communication, payment of different utilities bills etc. done on

the internet.

With this rapidly changing technology, there are new risks potentially more damaging risks that

will undoubtedly occur, and organizations have to continue to fight with those risks. As our daily

lives are more becoming depending on the internet, it is necessary to understand broader views

of the cyber threat. This rise of the cyber threat issues are hurting new economy. Despite all

newly adopted web technology for e-services, cyber criminals are constantly developing and

trying out various inbuilt advanced hacking tools to perform more dangerous and undetectable

attacks.[1]

1.2 WEB APPLICATIONS AND ITS SECURITY

A web based application is accessible through the internet. In the past, it has been observed a

number of creative and lethal attacks. Web attacking is gaining popularity because attackers are

exploiting vulnerabilities throughout. According to a survey, the total numbers of vulnerabilities

are throughout stabilized but web application[2] related vulnerabilities are continued to hover

around 75% of total vulnerabilities. Web application carries sensitive data and they are

accessible 24x7. This may give greater opportunity to the hacker to execute malicious activity.

Although financial gain is the primary motivating factor for the web hacking, it is also

experienced attacks to steal intellectual property, student’s record and defacing the websites. Due

to tremendous increase in the web application vulnerabilities and their vast impact on the

business, many security organizations evaluate the security of their existing web applications.

Web based applications are executed on a web browser. They work on Three-tier

architecture[3][4] which is mentioned below in Figure1.1.

3

Figure1.1 Web application architecture

1) Presentation Tier:

It gets client's information and demonstrate output of prepared information to client. It is

considered as GUI. The presentation tier is associated with user by Flash, HTML, JavaScript etc.

2) CGI Tier:

It is called Server Script which is placed between database tier and presentation tier. Data which

is given by client is handled and stored inside the database. Data which is stored is then returned

back to this tier which is then further returned back to presentation layer as output. Data

preparing inside the application is processed at CGI layer. The data is modified using different

scripting languages for example ASP.Net , PHP etc.

3) Database Tier:

This tier stores the entire data and deals with majority of prepared user data. Every sensitive data

of web based application is put away and saved inside the database. This tier is incharge of

granting access to legitimate clients and denial of fake clients from database.

The input validation problem is created when the data flows through tiers for the server. The

input should be checked or modified before processing. The web application’s security is

compromised when there is a failure while checking the input.

4

Web application gives different security challenges to business and security professionals in that

they expose the integrity of their data to the public. According to OWASP[5], increased

accessibility to the corporation’s system through websites has also had an impact on ever

increasing need for the security of computer.

1.3 MOTIVATION AND RESEARCH OBJECTIVE

Implementation of software bugs is behind most security vulnerabilities detailed today. 20% of

the vulnerabilities are named DOS assaults, 30% are because of outline mistakes, and nearly

everything else is because of usage blunders and these indications are done by the study of

vulnerabilities. Among errors from implementation, 84% are because of summed up injection

vulnerabilities that permit an attacker to alter the estimations of security-sensitive factors

utilizing crafted inputs to programs that are vulnerable. Web application attacks are the topmost

among all the risks associated with integrity, confidentiality and availability[6]. The reason for a

web application attack is altogether unique in relation to different attacks. They concentrate on

application and capacities on layer 7 of OSI reference model. The vulnerabilities provide the way

to malicious users to break a framework's security mechanism commonly to exploit or access

private data or framework resources.

Hacking permits hacker to pick up access over the database and subsequently, a hacker might

have the capacity to change information. The vast majority of the day by day activities rely on

database driven web applications as a result of expanding task, such as banking etc. For

performing different tasks, for example, paying of bills etc. information should be confidential.

Web applications are often vulnerable to perform attacks, which further give hackers to easy

access to the database.

In light of the expanded number of assaults exploiting, many endeavors have been made to

discover solution for the issue. The best arrangement is to create the programs in a safe way.

Many archives have been distributed in regards to secure advancement of web based applications

with taking center on database, although very little has managed. Web engineers are not yet

security mindful, and the issues keep on appearing. Accordingly, security administrator

continues searching for different measures that can be taken against this issue. Developers are

5

not yet security aware, and the issues continue to appear. Thus security experts constantly

looking for some other countermeasures which can be considered against the problem.

Although there exist many prevention techniques in the literature, there are certain points where

the existing methods can be optimized or there is requirement of new technique. A critical study

of literature available in the area of web attacks has been performed and some shortcomings

were identified which motivated to pursue this research work.

 Incomplete implementations

 False alarms

 Run time overhead

 Complex framework

The objective of the research work is to design a security system for web attacks. This security

system is a hybrid system which prevents the most commonly found serious and dangerous web

attacks which are Cross Site Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site Request

Forgery i.e. CSRF. The security system is developed in PHP. This hybrid security system uses

combined analysis i.e. combination of static analysis and dynamic analysis both. This hybrid

security system prevents the most commonly found serious and dangerous web attacks

mentioned above in a more efficient way by reducing the drawbacks of the existing techniques

given by many researchers which are being observed and thereby to improve performance. To

achieve this objective, the work on the following goals has been performed in this thesis:

 To design a Security system for the most commonly found serious and dangerous web

attacks on web applications.

 To design a framework for Security system

 To propose prevention techniques for the most commonly found serious and dangerous

web attacks such are Cross Site Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site

Request Forgery i.e. CSRF on web applications.

 To perform validation and to generate results and error report.

 To perform evaluation of Security system with a set of web applications of different

complexities.

6

 To perform experimental and comparative analysis of Security system.

1.4 CHALLENGES RELATED TO SECURITY OF WEB ATTACKS

Based on the motivation and objectives defined in the previous section, this section discusses the

challenges and their solutions while considering security of web attacks.

Static and Dynamic code analyzing: Static analysis[7,8] involves no dynamic execution of the

software under test and can distinguish conceivable deformities in an early stage, before running

the program. Static analysis is done subsequent to coding. However, there are certain drawbacks

of static code analysis-

 If it is done manually it is time consuming.

 False positives and false negatives are created by automated tools.

 There are professionally untrained users for doing static code analysis.

 In the runtime condition, it does not find any vulnerabilities.

In contrast to Static code analyzing, where code is not executed, Dynamic code analyzing[7,9] is

based on the system execution, often using tools. Dynamic code analyzing recognizes

vulnerabilities in a runtime environment. However, there are certain drawbacks of dynamic code

analysis-

 A false sense of security provided by automated tools that everything is being

addressed.

 Cannot guarantee the full test extent of the source code.

 Automated instruments make false positives and false negatives are created by

automated tools.

 It is harder to follow the weakness back to the right area in the code, taking more

time to settle the problem.

 Solution: A hybrid security system has been proposed which uses combined analysis i.e static

code analysis and dynamic code analysis both so as to overcome the limitations of dynamic code

analysis as mentioned above.

7

Complex Framework: Complex framework for web application describes the complexity of the

framework in terms of space and time requirements. While designing a software or while writing

a piece of code, its efficiency is determined by the complexity of web framework. Complex

framework gives a unit to measure the efficiency of the framework. This issue is being observed

in the existing techniques given by the researchers during the study of literature available.

Solution: This issue has been resolved by proposing a modular approach which uses different

modules for performing different tasks in a simplified manner. The framework proposed is

simple, efficient, easy to understand and implemented in an efficient manner. The framework

proposed is designed in such a way that different types of web based attacks can be combated

more efficiently and the identity and credentials of the user are prevented from being exposed to

the unauthorized intruder.

Incomplete Implementation: It has been observed during the study of literature available that

most of the existing techniques proposed by the researchers are not covering all the types of a

specific web attack i.e partial implementation is done in most of the cases.

Solution: This issue has been resolved by considering all the types of a specific attack in order

to ensure complete implementation.

Run time overhead: Run time overhead refers to the processing time delay due to the malicious

activity. It occurs when that there is an unusual delay. [10] Processing time is the time calculated

from the start of the application to the minute it ends. It is an important challenge related to

security of web attacks.

Solution: This issue has been reduced by proposing a hybrid system which uses modular

approach for performing different tasks in a simplified manner. The framework proposed is

simple and implemented in an efficient manner so as to reduce runtime overhead.

False alarm: False alarms happen when a query has been erroneously delegated malevolent.

[11]False alarm is classified into false positive and false negative. False positive means detection

of attack even if it does not exist. False negative means non-detection of attack even if it exists.

8

It has been observed during the study of literature available that most of the existing techniques

proposed by the researchers are showing false alarms.

Solution: This issue has been resolved by proposing a hybrid system which is designed very

efficiently so as to eliminate false alarms by checking with maximum possible data set.

1.5 ORGANIZATION OF THESIS

This thesis has been organized in the following chapters:

Chapter 2 discusses about the web attacks and vulnerabilities. It begins by presenting an

introduction of web attacks. This chapter later on discusses the various types of vulnerabilities

present in the web applications.

Chapter 3 provides an insight into the literature review which motivated this research work. The

detailed literature survey is discussed here. This chapter provides the backdrops of existing work

and further explores the possibility of improvement.

Chapter 4 furnishes a security system which is presented in the light of drawbacks of the

existing work. The proposed security system is a hybrid system which works in four phases. It

begins by discussing the overall architecture of security system. It further discusses the

prevention of most commonly found serious and dangerous web attacks which are Cross Site

Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF using hybrid

system.

Chapter 5 provides the implementation of security system. Later on experimental analysis and

comparative analysis for different web attacks is performed. To analyze the efficiency of

proposed method, results are evaluated on different web based applications.

Chapter 6 concludes outcome of the work proposed in this thesis. It also endeavors to explore

the possibilities of future research work based on the proposed design.

9

CHAPTER II

WEB ATTACKS AND VULNERABILITIES

2.1 INTRODUCTION

Web based attacks are the topmost among all the risks associated with integrity, confidentiality

and availability [6]. Web based attacks such as SQL injection i.e. SQLI, Cross-site scripting i.e.

XSS etc. focuses on a web based application layer 7 of the OSI reference model. Application

vulnerabilities could give the way to malicious end clients to break a framework's protection

mechanism normally to exploit or access private data or framework resources.

2.2 VULNERABILITY

A web based vulnerability is a shortcoming within the application, which could be an outline

defect or a implementation bug which permits a hacker to harm the stakeholders of web based

application. Stakeholders incorporate the application proprietor, application clients, and different

entities that depend on the application.

2.3 TOP TEN VULNERABILITIES

OWASP[5] classifies top level web application based vulnerabilities. The top ten web

application based vulnerabilities listed by OWASP is shown below in Table2.1.

Table2.1. Top 10 Web Application Vulnerabilities by OWASP

Vulnerability

Rank

Vulnerability

Name

Description

1 SQL Injection Attack

(SQLIA)

SQLIA[5] happens when entrusted information

is sent as a part of query or an sql command.

The hacker’s unfriendly information forces the

10

interpreter to run malicious commands or

getting unapproved information.[78][79]

2

Cross Site

Scripting(XSS)

XSS[5] defects happen when a web based

application takes entrusted information and

forwards it to a web browser without proper

validation. This attack permits hacker to run

scripts in target's program which could capture

user’s session, destroy websites, divert the

legitimate user to malicious websites etc.[77]

3

Cross Site Request

Forgery(CSRF)

A CSRF[5] web vulnerability forces a signed

on target's program which sends HTTP request

which is forged. It includes victim’s session

cookie and consequently verification of

information to a vulnerable webpage. This

permits the hacker to compel the target.[75,80]

4

Broken

Authentication and

Session

Management

Application function of web application are

identified with validation [5,12] are regularly

executed incorrectly, permitting hackers to

compromise login credentials and other user’s

identities.

5

Insecure Direct

Object References

It occurs when a programmer opens a link to an

inward execution question, for example, a

record, index etc. Due to the lack of

protection, hackers can control these links to

get to malicious data.[13]

6 Security

Misconfiguration

A secure and protected configuration [5] is

characterized for web based applications. The

Misconfiguration can be avoided by presenting

a repeatable procedure for software updates,

patches, and hardened environment rules.[14]

7 Sensitive Data Applications that don't utilize the cryptographic

11

Exposure protection conspire for sensitive data [5], for

example, healthcare information, credit card,

personal data, and verification details fall under

this class. By actualizing the strong standard

encryption or hashing calculation one can

guarantee the security of information.[15]

8 Missing Function

Level Access Control

Most of the web based applications confirm

function level access permissions [5] before

showing their usefulness visible in UI. An

access control check is required when each

module is accessed. If user requests are not

checked, the hackers will have the capacity to

access.[16]

9

Using components

with known

vulnerabilities

Modules like libraries , source code etc are

often executed with full rights[5].If a

vulnerable part is misused, such a hack can

cause serious information loss or server

takeover.[17]

10 Unvalidated Redirects

and Forwards

Web based applications are generally redirect

users to different pages to access entrusted

information. Due to inappropriate validation,

hackers can divert target to malicious websites

so as to access unauthorized pages.[18]

The most commonly found serious and dangerous web based vulnerabilities as listed in OWASP

are SQL injection i.e. SQLI, Cross Site Script i.e. XSS and Cross Site Request Forgery i.e.

CSRF. These are described in the subsequent sections-

12

2.3.1 Cross-Site Script(XSS)

It is a kind of injection in which hacker injects his own script code into a vulnerable website

page. At the point when a victim visits this infected page in the web application just by browsing

the web site, his browser downloads the hacker code and automatically executes it by accessing

any file[19]. A hacker can send a malicious script to a non-suspecting client utilizing XSS. The

end client browser does not have the possibility that the script ought not be trusted, and thus run

the script. The malicious JavaScript seems to be a legitimate component of the web application

as per victim's program. The hacker would be able to access data i.e. cookies, session id etc

after the running of malicious script. [20,21]

A Typical View of XSS is shown below in Figure2.1.

AAA

 Malicious script

 When visiting web page

 Injected script

 Doing something wrong

 Figure2.1. View of XSS

Attacker Victim Web page World wide web

13

Different types of XSS attacks are mentioned below.

2.3.1.1 Non-Persistent (or Reflected) XSS

This type of exploit targets web vulnerabilities which occurs when the data which is put together

by the user is quickly handled by server to produce results . An exploit is successful if the script

is forwarded to the web server which is further incorporated into the web page. Victims are

targeted individually and no script is injected at the trusted site’s server. This attack is delivered

to victim through email or from some other website. The bait could be a URL pointing towards a

trusted site, clicking which executes the malicious script. The injected attack is not stored within

the web application itself and only users who opened a malicious link are victimized, hence,

called non persistent XSS.

2.3.1.2 Persistent (or Stored) XSS

It occurs when the malicious script is submitted to a webpage of a website where it is stored for

some time. The example of a hacker’s most loved target includes web chatting sites etc. The

unsuspicious client do not interact with extra website (e.g. a hacker website sent by email or any

other social email clients), just simply to see the page containing the code. Malicious script is

injected by the attacker at the trusted site’s server. It could be present in the database, message

forum or comment field. This type of attack does not require targeting victim individually and

continue to attack victims when they request data associated with malicious script, hence, called

persistent XSS.

The Tables mentioned below shows the different types of Tag based XSS attack possibilities.

Table2.2. Script tag based XSS attack

S.No. Script tag based XSS attack

1. < script > alert ('Cross Site Script i.e. Xss') </script>

2. < script > alert("Cross Site Script i.e. Xss") </script>

3. < script >alert("Cross Site Script i.e. Xss");</script>

4. < script > alert (document.cookie()) ; </script>

5. < script > alert(/Cross Site Script i.e. Xss") ; </script>

6. < script > alert(/Cross Site Script i.e. Xss/) ; </script>

14

7. < /script > <script> alert(/Cross Site Script i.e. Xss/) ;

< /script >

8. < script > < /script > <script> alert(Cross Site Script i.e. Xss);

< /script >

9. < script >"> </script> alert(/Cross Site Script i.e. Xss/) ;

< /script >

Table2.3. Image tag based XSS attack

S.No. Image tag based XSS attack

1. < img src = ' javascript: alert(' Cross Site Script i.e. Xss') ; ' >

< /img >

2. < img src =’ javascript:alert("Cross Site Script i.e. Xss") ; ’>

< /img >

3. < img src =’ javascript:alert(“/ Cross Site Script i.e. Xss ") ; ’

> < /img >

4. < img src =’ javascript:alert(/Cross Site Script i.e. Xss /) ; ’ >

< /img >

5. < img src =" javascript:alert(' Cross Site Script i.e. Xss') ; " >

Table2.4. Iframe tag based XSS attack

S.No. Iframe tag based XSS attack

1. < iframe src =” javascript:alert(‘Cross Site Script i.e. Xss’)” >

< /iframe >

2. < iframe src=” javascript:alert(“Cross Site Script i.e. Xss”) ” >

< /iframe >

3. < iframe src=” javascript:alert(“/Cross Site Script i.e. Xss”)”

> < /iframe >

4. < iframe src=” javascript:alert(/Cross Site Script i.e. Xss/)” >

< /iframe >

5. < iframe src=” javascript:alert(/Cross Site Script i.e. Xss/)”>

< /iframe >

15

Table2.5. Object tag based XSS attack

S.No. Object tag based XSS attack

1. < object data=” javascript:alert(‘Cross Site Script i.e. Xss’)” >

< /object >

2. < object data=” javascript:alert(“Cross Site Script i.e. Xss”)” >

< /object >

3. < object data=” javascript:alert(“/Cross Site Script i.e. Xss”)”>

< /object >

4. < object data=” javascript:alert(/Cross Site Script i.e. Xss/)” >

< /object >

5. < object data=” javascript:alert(/Cross Site Script i.e. Xss/)” >

< /object >

Table2.6. Frame tag based XSS attack

S.No. Frame tag based XSS attack

1. <frame onmouseclick=”javascript:alert(‘Xss’)”></frame>

2. <frame onmouseover=”javascript:alert(‘Xss’)”></frame>

3. <frame onmouseout=”javascript:alert(‘Xss’)”></frame>

4. <frame onmouseclick=”javascript:alert(“Xss”)”></frame>

5. <frame onmouseover=”javascript:alert(“Xss”)”></frame>

6. <frame onmouseout=”javascript:alert(“Xss”)”></frame>

7. <frame onmouseclick=”javascript:alert(/Xss”)”></frame>

8. <frame onmouseover=”javascript:alert(/Xss”)”></frame>

9. <frame onmouseout=”javascript:alert(/Xss”)”></frame>

10. <frame onmouseclick=”javascript:alert(/Xss/)”></frame>

11. <frame onmouseover=”javascript:alert(/Xss/)”></frame>

12. <frame onmouseout=”javascript:alert(/Xss/)”></frame>

Table2.7. Div tag based XSS attack

S.No. Div tag based XSS attack

1. < div style=” javascript:alert(‘Cross Site Script i.e. Xss’)” >

</div>

2. < div style=” javascript:alert(“Cross Site Script i.e. Xss”)” >

</div>

3. < div style=” javascript:alert(/Cross Site Script i.e. Xss”)” >

< /div >

4. < div style=” javascript:alert(/Cross Site Script i.e. Xss/)” >

< /div >

16

5. < div style=" background-image: url(javascript:alert(' Cross

Site Script i.e. XSS'))" >

2.3.2 SQL Injection

SQLI is a standout amongst the most widely recognized major threat to database driven

application security. [5,22] SQL injection is a method where malicious SQL queries are induced

as an input so as to exploit the weakness present within database. The attacker tries to inject

malicious data. The unauthorized access takes place after the execution of malicious input. It

permits a hacker to pick up control over the database of an application and therefore, a hacker

will be able to change the data. [23,24,25]

In database driven web applications, SQL queries join client provided information or content. If

inclusion of client provided information is done in a risky way, then the web application ends up

simply vulnerable to SQLIA. The SQLI vulnerabilities happen between CGI layer and

Presentation layer. The information flow between every level utilizing malicious input

information is shown in Figure2.2.

Figure2.2. Data flow using malicious SQL query

Attacker
Presentation Tier

(Login Page)

SQL query will

be generated by

login application

which is based

on user text

SQL

query

Server(Database)

Username= ‘xyz’ or ‘1’=’1’

Password= ‘****’ or ‘2’=’2’

 Select * from user

 where username=’xyz‘

 or ‘1’=’1’# and

 password=’****’

SQL Query is executed.

Server compromised!!

17

Different types of SQL Injection attacks are mentioned below.

2.3.2.1 Tautology based SQL injection

In this type of attack, the conditional statements are written in such a manner so that the query is

always true. The attacker’s aim is to extract the data from the database and to bypass the

authentication.

For example-

SELECT * FROM EMPLOYEE WHERE USERNAME=’alice’ OR ‘1’=’1’# AND

PASSWORD= ’******’;

Following Table2.8 shows different Tautology based attack possibilities.

Table2.8.Tautology based SQLI attack

S.No. Tautology based SQLI attack

1. ’name’ OR ‘1’=’1’#

2. ’name’ OR ‘1’=’1’--

3. ’name’ OR ‘1’=’1’++

4. ’name’ OR ‘1’!=’0’--

5. ’name’ OR ‘1’!=’0’#

6. ’name’ OR ‘1’!=’0’++

7. ’ OR‘ ’=’--

8. ’ OR‘ ’=’++

9. ’ OR‘ ’=’#

10. ’name’ OR ‘1’=’1’ AND ‘0’=’0’#

11. ’name’ OR ‘1’=’1’ AND ‘0’=’0’--

12. ’name’ OR ‘1’=’1’ AND ‘0’=’0’++

13. ‘name’ OR ‘1’--

14. ‘name’ OR ‘1’#

15. ‘name’ OR ‘1’++

18

2.3.2.2 Union query based SQL injection

In this type of SQLI, the operator ‘union’ is used to link malicious query with legitimate SQL

query. The attacker’s aim is to extract the data from the database and to bypass the

authentication .

For example-

SELECT * FROM EMPLOYEE WHERE USERNAME=’alice’ UNION SELECT * FROM

EMPLOYEE AND PASSWORD= ’******’;

Following Table2.9 shows different Union query based attack possibilities.

Table2.9.Union Query based SQLI attack

S.No. Union query based SQLI attack

1. ‘name’ UNION select * from Users

2. ‘name’ UNION update Users set password=’abc’

3. ‘name’ UNION drop table Users

4. ‘name’ UNION delete * from Users where username=’alice’

5. ‘name’ UNION drop database system

6. ‘name’ UNION insert into Users values username=‘abc’ and password = ‘xyz’

7. ‘name’ UNION select count(*) from Users where username=‘abc’and password=’xy’

8. ‘name’ UNION select count(*) from Users where username = ‘abc’ and password

LIKE ‘%w%’

9. ‘name’ UNION select count(*) from Users

2.3.2.3 Stored Procedure based SQL injection

In this type of attack, the malicious actions are performed using built-in procedures. The

attacker’s aim is to privilege escalation and to execute remote commands.

For example-

SELECT * FROM EMPLOYEE WHERE USERNAME=’ name ’ ; SHUTDOWN AND

PASSWORD=’*******’;

19

Following Table2.10 shows different Stored Procedure based attack possibilities.

 Table2.10. Stored Procedure based SQLI attack

S.No Stored Procedure based SQLI attack

1. ‘name’ ; sp_monitor

2. ‘name’ ; sp_executesql drop table Users

3. ‘name’ ; sp_server_info

4. ‘name’ ; sp_tables

5. ‘name’ ; SHUTDOWN

6. ‘name’ ; sp_helptext

7. ‘name’ ; drop table Users

2.3.2.4 Blind Injection based SQL injection

In this type of attack, the hacker injects query to discover the vulnerabilities. Logical conclusions

are made depending on true or false questions. DB schema is estimated by collecting responses

of either true or false questions. The attacker’s aim is to extract data, to discover schema and to

identify injectable patterns .

For example-

SELECT * FROM EMPLOYEE WHERE USERNAME=’name’ AND 1=0 AND

PASSWORD= ’*******’;

2.3.2.5 Piggy-backed query based SQL injection

In this type of SQLI , the hacker appends malicious query with legitimate query. At the time of

execution of first query, second query simultaneously gets executed. The attacker’s aim is to

extract and modify data, Denial of service (DoS) .

For example-

20

SELECT * FROM EMPLOYEE WHERE USERNAME = ‘alice’ ; DROP TABLE USER AND

PASSWORD=’****’ ;

2.3.3 Cross-Site Request Forgery (CSRF)

This attack occurs when a non trusted website causes a client's web browser to permit a

malicious activity on a trusted website. This is due to the forged HTTP request as it exploits the

current client’s session in the web browser. [5,26]A CSRF web attack requires inclusion of three

things. A target client, a trustable web site, and a non trustable web site. The target client is

currently holding an active session with a trustable site and in the meanwhile, the client visits a

malicious or non trusted website. The non trustable or malicious web site injects a HTTP request

for the trustable web site into the target client’s session which compromises its integrity. These

vulnerabilities permit a hacker to exchange money out from client’s account, to collect client’s

email id, disregard client privacy etc. [27,28]

CSRF attack can be explained as follows-

Assume a client is signed in one of the trusted websites. In this manner, the web browser is

utilized by the client session with the trustable website. The CSRF attack violates the connection

between the client's browser and trustable website. At the point when client clicks this

connection (while the authentication session is active), it traps the web browser to forward the

request to client. As the web browser performs trusted activities, the request thus executed. It can

be shown below using Figure2.3 and Figure2.4.

21

Figure2.3.Series of action between browser and trusted-site

22

Figure2.4. Series of action during CSRF attack

2.4 CONCLUSION

There is a continuous growth of web attacks. Among the above mentioned top ten web based

vulnerabilities as listed by OWASP[5]. SQL injection i.e. SQLI, Cross Site Script i.e. XSS,

Cross Site Request Forgery i.e. CSRF are some of the most commonly found serious and

dangerous exploits for web based applications. Hacking permits hacker to pick up access over

the database and subsequently, a hacker might have the capacity to change information. Web

applications are often vulnerable to perform attacks, which further give hackers to easy access to

the database. In the light of the above, a detailed literature survey is discussed in the next

chapter.

23

CHAPTER III

LITERATURE SURVEY

3.1 OPEN WEB APPLICATION SECURITY PROJECT (OWASP)

OWASP[5] looks to instruct designers, business owners, developers and architects about threats

related to the most widely recognized web application based security flaws. OWASP supports

open source as well as business related security items. It is an organization which lists topmost

popular web application based security blemishes and gives suggestions for managing these

vulnerabilities.

OWASP documents, tools etc. are classified into three main categories. Firstly, they are used to

discover execution faults and security related policies. Secondly, they can be utilized to make

preparations for execution faults and security related policies. Lastly, they can be used to include

security related actions into application lifecycle administration i.e. ALM.

The OWASP lists current top ten web application based security flaws that are dangerous,

alongside effective strategies for managing those flaws. OWASP is an organization that gives

unbiased and reasonable, practical data about computer system and Internet applications.

Members of the project incorporate different types of security experts from around the world

who share their knowledge into vulnerabilities, attacks, threats and countermeasures.

3.2 WEB APPLICATION SECURITY CONSORTIUM(WASC)

Web Application Security Consortium i.e. WASC[29] is a collection of experts and specialists

from industry that produces open source finest practices security guidelines for www. WASC is

501c3 non benefit comprising of collection of experts and specialists from industry that produces

open source finest practices security standards for www. It was established in 2004 by Jeremiah

Grossman (CTO, WhiteHat Security, Inc.) and Robert Auger (CGI Security).

24

As a dynamic community, WASC supports and encourages the exchange of thoughts and

composes distinctive types of modern day projects. WASC reliably and occasionally releases

security rules and many helpful documentation. Educational organizations, government

organisations, application designers, security experts etc. use the items released by WASC to

help and beat challenges displayed by web application related security.

3.3 XSS ATTACK

It is a kind of injection in which hacker injects his own script code into a vulnerable website

page. At the point when a victim visits this infected page in the web application just by browsing

the web site, his browser downloads the hacker code and automatically executes it with

accessing any file[19]. A hacker can send a malicious script to a non-suspecting client utilizing

XSS. The end client browser does not have the possibility that the script ought not be trusted,

and thus run the script. The malicious JavaScript appears as a legitimate component of web

application by the victim's program. Hacker would be able to access data i.e. cookies, session id

etc after the running of malicious script. [20,21]

XSS attacks are mainly of two kinds as explained below.

 Stored/ Persistent XSS

It arises whenever the malevolent script is inputted to webpage of a website where it is stored for

some time. The examples of a hacker’s most loved target include web chatting sites etc. The

unsuspicious client do not interact with extra website (e.g. a hacker website sent by email or any

other social emails clients), just simply to see the page containing the code. Malicious script is

injected by the attacker at the trusted site’s server. It could be present in the database, message

forum or comment field. This type of attack does not require targeting victims individually and

continue to attack victims when they request data associated with malicious script, hence, called

persistent XSS.

 Reflected/ Non-persistent XSS

25

This type of exploit targets web vulnerabilities which occur when the data which is put together

by the user is quickly handled by server to produce result. An exploit is successful if the script is

forwarded to the web server which is further incorporated into the web page. Victims are

targeted individually and no script is injected at the trusted site’s server. This attack is delivered

to victims through email or from some other website. The bait could be a URL pointing towards

a trusted site, clicking which executes the malicious script. The injected attack is not stored

within the web application itself and only users who opened a malicious link are victimized,

hence, called non persistent XSS.

3.3.1 Related Work for XSS Attack

 Gupta et. al.[30] presented a complete exploration of Cross site script attack. Its

detection as well as prevention. Analysis of modern web application reveals some

serious vulnerabilities. The proper handling of the input given by the user is of

utmost importance, therefore vulnerabilities associated with these modern web

application needs to be addressed. It concludes that there is a prime requirement

to construct a safe framework by taking into account the existing methodologies.

 Gupta et. al.[31] explored XSS attack. XSS vulnerabilities were tested on

Tomcat Apache Server and Web Goat with malicious script and cross site script

attack mitigation was verified using encrypted forms of the script which is

injected. It can be prevented by applying secure validation of input and proper

sanitization of input given by user. In the end, requirement of automated process

which will differentiate a malicious with a legitimate javascript, an efficient web

crawler is used for web scanning and methodologies for whitelisting and

blacklisting of code were laid down for the desired framework for the prevention

of attack.

 Saleh et.al.[32] proposed a method for detection of web based vulnerabilities. It

uses an algorithm named Boyer- Moore for string matching. It is seen that present

scanners in market are limited by high false negatives. These limitations was

taken care off in this method having less runtime overhead and great accuracy.

26

Though this method is not capable of detecting web application specific

vulnerabilities but it can easily detect such vulnerabilities at web page level. It

uses URL to detect such vulnerabilities. However, this method is not able to

detect SQLI attacks and hence development of hybrid string matching algorithm

is suggested for future work.

 Gupta et. al.[33] proposed a server side framework called XSS-SAFE. It is used

to detect and to prevent cross-site scripting attack. It is due to the injection of

JavaScript sanitization routines in the source code. This prototype framework was

implemented in Java and evaluated on JSP programs. All known and unknown

cross-site script attacks were successfully detected and mitigated. False negative

rates were at 0% but false positive rate is 10-15%.This is because of the

difference in the rules applied in case of different scripts. Hence false positive

rates are needed to be minimized and framework modified to handle workflow

violation attack as future work.

 Salas et.al.[34] used WSInject as a tool to analyze web services. It is a fault

injection tool which unlike other security testing tools have different scenarios for

multiple attacks. They compared their results with one of the vulnerability scanner

named soapUI. They analyzed that soapUI is less efficient as compared to

WSInject. XSS attack was performed by using WSInject tool. Afterwards they

generated various attack scenarios. Finally they performed attacks with this tool.

The analysis was verified by using WSInject. A number of vulnerabilities were

reduced by the security tool proposed.

 Fabien et. al.[35] presented a methodology in which test inputs are created by

combining model inference as well as evolutionary fuzzing methodology. By

using this, the web injection vulnerabilities can be detected. Knowledge of

application behaviour is obtained by model inference. GA i.e. Genetic Algorithm

is used to generate input. The inputs are generated automatically having good

fitness values towards causing an instance for the vulnerability which is given. An

27

automated XSS search technique was proposed which uses model inference as

well as evolutionary fuzzing methodology for the creation of test cases.

 Yu sun et.al.[36] for defense against cross site scripting attacks proposed a model

checking method. Bugs present in the e-commerce website were found and

counter examples were shown by model checking. Proposed an automatic

modeling algorithm for the HTML code and presented the case of performance of

the algorithm.

 Lwin Khin et.al.[37] proposed different input sanitization strategies into various

types and proposed a set of static code attributes. They have utilized data mining

strategies to anticipate SQLI and XSS vulnerabilities. They have explained

classification schemes depending on CFG (Control Flow Graph) for web based

applications. They have implemented a tool called PhpMiner. It is utilized to

extract the information and proposed characteristics from PHP programs.

 Lwin Khin et.al.[38] proposed various XSS exploits techniques that are similar

to SQLI. The attacks are caused due to the improper sanitization of user input.

They have also proposed various types of XSS defensive techniques such as

detection of web vulnerabilities, prevention of attack at runtime etc.

 Avancini et. al.[39] proposed a search based methodology for security testing of

web based applications. They exploited static based analysis to detect XSS

vulnerabilities. They have used genetic algorithm based approach. Search based

test cases are utilized by developers to resolve security related issues. They have

implemented this methodology in a model and tested on PHP based applications.

 Rattipong et. al.[40] presented a methodology for protection of cookies from

XSS attack. This method changes cookies in a manner so that the cookies become

unworkable for the cross site script attacks. Dynamic Cookie Rewriting technique

is executed for web applications. Prior to the sending of cookie to browser, the

cookies are removed with randomized value. The randomized value is kept by the

28

browser by not keeping the unique value inputted by the browser. This procedure

is tested on HTTP connections.

 Adam et. al.[41] created an automatic system which exposes SQLI and XSS

vulnerabilities through generating input test cases. In this technique, test inputs

are created and changed to deliver concrete exploits and track corrupts through

execution. The technique addresses second order XSS attack, it makes genuine

attack vectors, no modification of application code is required. The proposed

methodology was executed for PHP applications by a tool named Ardilla, which

can make input for single script at once but it is not able to simulate sessions(i.e.

applications which involve multiple pages user-interaction). Ardilla cannot

produce attacks for sink.

 Mike et.al.[42] proposed an XSS defensive methodology, in spite of behaviour

anomalous browser it was intended to be effective in existing browser systems.

The proposed approach minimizes trust placed on system browser for interpreting

non trustable content. BLUEPRINT is a tool used to implement this approach and

it was integrated with a few popular web applications. It was a strong way to

prevent cross-site scripting attacks which was effective upon 96% of the system

browser.

 Wassermann et. al.[43] presented a static analysis which specifically addresses

weak or missing input validation for discovering cross-site scripting

vulnerabilities. This approach combines data obtained through corrupted

information flow with string analysis. Due to the numerous ways to invoke the

Java interpreter input validation is troublesome. This approach confronts a similar

obstacle that statistically check vulnerabilities. This is addressed by formalizing a

policy which is given by W3C. An approach to find cross site script web based

vulnerabilities because of non-checking of malicious information and

insufficiently checked entrusted data is proposed in this paper. The approach is

29

divided into two parts. One is adjusted string analysis used for the tracking of

entrusted substring values. Another is to check endowed scripts.

 Shanmugam et. al.[44] proposed an approach to detect behaviour based anomaly

which presents a security layer on top of the websites, due to which whenever

new threats appears the mechanisms are changed but the current websites stay

unmodified. Also, to reduce processing time application parameters are

acquainted, this approach gives security to websites by permitting tags to be

entered in the websites. To decrease processing time, it uses whitelist security

model due to which it is not prone to zero-day attacks.

 Qianjie Zhang et. al.[45] provided a prevention mechanism which prevents

Cross-site Scripting (XSS) attacks using the execution flow mechanism for

JavaScript running on client side. Firstly client side behavior of Ajax applications

under normal circumstances is modeled as finite-state-automata(FSA) and

deployed in proxy mode. Before running any JavaScript on client side it is

analyzed against this model and only on conformation with this model it is

allowed to run. It has been evaluated against various real life applications, and

results show protection against several XSS attacks with acceptable performance

overhead.

 Shanmugam et. al.[46] proposed a technique which presents a separate security

layer above existing web applications which gives flexibility to these application

not to be modified but yet to provide sufficient mechanism to prevent any new

security threat. This layer uses signature based misuse detection. For analysis of

this technique, vulnerable inputs from black hat hacker site were considered and

run on JBoss server.

 Shanmugam et. al.[47] provided a solution for prevention against Cross Site

Scripting (XSS) attack which is independent of any particular language

implementation and is based on service oriented architecture on which various

web applications architecture are based. XSS blocker is has independence from

30

any particular platform as well as language because development of interfaces

such as converter as well as validator is required to be designed. The task is

minimal. Another part of blocker like XML and XSD can also be easily consumed

using APIs. A very less effort is required in executing this technique on web

applications which are existed already. Evaluation of this approach with

JSP/servlet application on JBoss web application server is very efficient and

effective.

 Shiuh-Jeng Wang et. al.[48] provided a scheme that can be used to collect

digital evidences on web systems after occurrence of XSS attack which then can

be presented in court as evidence and help to recreate the crime-venue in crime

case. Stolen personal information is also investigated in this scheme. Also a

management strategy has also been provided to prevent XSS attack from network

intrusion. Here the new methods of cross site script intrusion which uses HTTP as

well as properties related to cross-platform is discussed .

The detailed literature survey of XSS attack can be shown below using Table3.1.

Table3.1. Literature Survey of XSS attack

S.No. Author Publisher/Year Description

1. Gupta et.

al.[30]

Springer /2015 Authors presented a complete

exploration of Cross site script

attack, its detection as well as

prevention. Analysis of modern

web application reveals some

serious vulnerabilities. The

proper handling of the input

given by the user is of utmost

importance, therefore

vulnerabilities associated with

the modern web application

needs to be addressed.

2. Gupta et.

al.[31]

Taylor & Francis /2015 Authors explored XSS attack.

XSS vulnerabilities were tested

on Tomcat Apache Server and

Web Goat with malicious script

and cross site script attack

mitigation was verified using

31

encrypted forms of the script

which is injected. It can be

prevented by applying secure

validation of input and proper

sanitization of input given by

user.

3. Saleh et.al.[32] Elsevier /2015 Authors proposed a method for

detection of web based

vulnerabilities. It uses an

algorithm named Boyer- Moore

for string matching. It is seen

that present scanners in market

are limited by high false

negatives. These limitations

were taken care off in this

method having less runtime

overhead and great accuracy. It

uses URL to detect such

vulnerabilities. However, this

method is not able to detect

SQLI attacks and hence

development of hybrid string

matching algorithm is suggested

for future work.

4. Gupta et.

al.[33]

Springer /2016 Authors proposed a server side

framework called XSS-SAFE. It

is used to detect and to prevent

cross-site scripting attack. It is

due to the injection of JavaScript

sanitization routines in the

source code. This prototype

framework was implemented in

Java and evaluated on JSP

programs. False negative rates

were at 0% but false positive rate

is 10-15%. Hence false positive

rates are needed to be minimized

and framework modified to

handle workflow violation attack

as future work.

5. Salas et.al.[34] Elsevier /2014 Authors used WSInject as a tool

to analyze web services. It is a

fault injection tool which unlike

other security testing tools have

different scenarios for multiple

attacks. They compared their

32

results with one of the

vulnerability scanner named

soapUI. They analyzed that

soapUI is less efficient as

compared to WSInject.

Afterwards they generated

various attack scenarios The

analysis was verified by using

WSInject. A number of

vulnerabilities were reduced by

the security tool proposed.

6. Fabien et.

al.[35]

IEEE Xplore/2012 Authors presented a

methodology in which test

inputs are created by combining

model inference as well as

evolutionary fuzzing

methodology. By using this, the

web injection vulnerabilities can

be detected. GA i.e. Genetic

Algorithm is used to generate

input. An automated XSS search

technique was proposed which

uses model inference as well as

evolutionary fuzzing

methodology for the creation of

test cases.

7. Yu sun

et.al.[36]

IEEE Xplore/2012 Authors for defense against

cross site scripting attacks

proposed a model checking

method. Bugs present in the e-

commerce website were found

and counter examples were

shown by model checking.

Proposed an automatic modeling

algorithm for the HTML code

and presented the case of

performance of the algorithm.

8. Lwin Khin

et.al. [37]

IEEE Xplore/2012 Authors proposed different input

sanitization strategies into

various types and proposed a set

of static code attributes. They

have utilized data mining

strategies to anticipate SQLI and

XSS vulnerabilities. They have

explained classification schemes

depending on CFG (Control

33

Flow Graph) for web based

applications. They have

implemented a tool called

PhpMiner. It is utilized to extract

the information and proposed

characteristics from PHP

programs.

9. Lwin Khin

et.al. [38]

IEEE Computer

Society/2012

Authors proposed various XSS

exploits techniques that are

similar to SQLI. The attacks are

caused due to the improper

sanitization of user input. They

have also proposed various types

of XSS defensive techniques

such as detection of web

vulnerabilities, prevention of

attack at runtime etc.

10. Avancini et. al.

[39]

IEEE Xplore/2011 Authors proposed a search based

methodology for security testing

of web based applications. They

exploited static based analysis to

detect XSS vulnerabilities. They

have used genetic algorithm

based approach. Search based

test cases are utilized by

developers to resolve security

related issues. They have

implemented this methodology

in a model and tested on PHP

based applications.

11. Rattipong et.

al. [40]

IEEE Xplore/2011 Authors presented a

methodology for protection of

cookies from XSS attack. This

method changes cookies in a

manner so that the cookies

become unworkable for the

cross-site script attacks. Prior to

the sending of cookie to

browser, the cookies are

removed with randomized value.

This procedure is tested on

HTTP connections.

12. Adam et.

al.[41]

IEEE Xplore/2009 Authors created an automatic

system which exposes SQLI and

XSS vulnerabilities through

generating input test cases. In

34

this technique, test inputs are

created and changed to deliver

concrete exploits and track

corrupts through execution. The

proposed methodology was

executed for PHP applications

by a tool named Ardilla, which

can make input for single script

at once but it is not able to

simulate sessions(i.e.

applications which involve

multiple pages user-interaction).

Ardilla cannot produce attacks

for sink.

13. Mike et.al.[42] IEEE Xplore/2009 Authors proposed an XSS

defensive methodology, in spite

of behaviour anomalous browser

it was intended to be effective in

existing browser systems. The

proposed approach minimizes

trust placed on system browser

for interpreting non trustable

content. BLUEPRINT is a tool

used to implement this approach

and it was integrated with a few

popular web applications. It was

a strong way to prevent cross-

site scripting attacks which was

effective upon 96% of the

system browser.

14. Wassermann

et. al. [43]

ACM/2008 Authors presented a static

analysis which specifically

addresses weak or missing input

validation for discovering cross-

site scripting vulnerabilities.

This approach combines data

obtained through corrupted

information flow with string

analysis. This approach

confronts a similar obstacle that

statistically check

vulnerabilities. This is addressed

by formalizing a policy which is

given by W3C. An approach to

find cross site script web based

vulnerabilities because of non-

35

checking of malicious

information and insufficiently

checked entrusted data is

proposed in this paper.

15. Shanmugam et.

al. [44]

IEEE Xplore/2007 Authors proposed an approach to

detect behavior based anomaly

which presents a security layer

on top of the websites, due to

which whenever new threats

appears the mechanisms are

changed but the current websites

stay unmodified. Also, to reduce

processing time application

parameters are acquainted, this

approach gives security to

websites by permitting tags to be

entered in the websites. To

decrease processing time, it uses

whitelist security model due to

which it is not prone to zero-day

attacks.

16. Qianjie Zhang

et. al.[45]

IEEE Xplore/2010 Authors provided a prevention

mechanism which prevents

Cross-site Scripting (XSS)

attacks using the execution flow

mechanism for JavaScript

running on client side. Firstly,

client side behavior of Ajax

applications under normal

circumstances is modeled as

finite-state-automata(FSA) and

deployed in proxy mode. Before

running any JavaScript on client

side it is analyzed against this

model and only on conformation

with this model it is allowed to

run.

17. Shanmugam et.

al. [46]

IEEE Xplore/2007 Authors proposed a technique

which presents a separate

security layer above existing

web applications which gives

flexibility to these application

not to be modified but yet to

provide sufficient mechanism to

prevent any new security threat.

18. Shanmugam et. IEEE Xplore/2007 Authors proposed a solution for

36

al. [47] prevention against Cross Site

Scripting (XSS) attack which is

independent of any particular

language implementation and is

based on service oriented

architecture on which various

web applications architecture are

based. XSS blocker has

independence from any

particular platform as well as

language because development

of interfaces such as converter as

well as validator is required to be

designed. The task is minimal.

19. Shiuh-Jeng

Wang et.

al.[48]

IEEE Computer

Society/2007

Authors proposed a scheme that

can be used to collect digital

evidences on web systems after

occurrence of XSS attack which

then can be presented in court as

evidence and help to recreate the

crime-venue in crime case.

Stolen personal information is

also investigated in this scheme.

3.4 SQL INJECTION ATTACK

SQLI is a standout amongst the most widely recognized major threat to database driven

applications security. [5,22] SQL injection is a method where malicious SQL queries are induced

as an input so as to exploit the weakness present within database. The attacker tries to inject

malicious data. The unauthorized access takes place after the execution of malicious input. It

permits a hacker to pick up control over the database of an application and therefore, a hacker

will be able to change the data. [23,24,25]

SQL injection attacks are often motivated by illegal activities like monitory gain, fraud, cyber

terrorism or even for malware distribution. As per the Whitehat security, around 16% of websites

are exposed to SQLIA. About 75 percent of web hacking attacks are launched on shopping carts,

login forms and dynamic contents.

37

3.4.1 Related Work for SQL Injection Attack

 Sharma et.al.[49] proposed an integrated method for the mitigation of SQLI and

reflected XSS vulnerability. This methodology is using a query based model

generator for different types of queries. Queries which are defying the model are

prone to attack.

 Gao Jiao et.al. [50] presented a mechanism for the prevention of SQLI. This is

done by inserting a middleware named SQLIMW which is placed in the

background. This paper enforced the concept of authentication by using hash

function and a private key along with traditional password. The idea of detection

lies in number of queries returned in result set after query execution. In case of,

registered user, query set will be not equal to 0 and since username is unique,

there will be only one record matching that username, if it exceeds 1, then

SQLIMW detects if it is a SQL injection attack or not.

 Ramya Dharam et. al.[51] proposed a post deployment monitoring methodology

for handling tautology based SQL injection for java based applications. The

purpose is to identify critical variables used for accepting inputs from external

environment and to identify all valid paths which could be traversed by these

critical variables. If the critical variable breaks the checkpoint and follows a path

which is invalid, then the monitor identifies the abnormal behaviour and

administrator is informed.

 Indrani Balasundaram et.al.[52] presented an authentication based scheme

which uses hybrid encryption i.e. combination of both Advance Encryption

Standard i.e AES as well as Rivest-Shamir-Adleman i.e. RSA. This is used to

mitigate SQLI attacks. This methodology uses two stage encryption on login

query. A secret key which is unique is issued to every user and server uses

combination of private as well as public key for Rivest-Shamir-Adleman i.e. RSA

encryption. Asymmetric key encryption via server’s public key is used to encrypt

38

the query. Symmetric key encryption via the secret key is used as encryption of

username as well as password.

 Kunal et. al. [53] proposed a model based approach i.e MHAPSIA. It is a

combination of two phases. During first phase, a model of legitimate queries are

constructed. During second phase, it monitors dynamically generated queries.

Queries which are defying the model are prone to SQL Injection attack and are

prevented from execution.

 Kai X. Zhang et.al. [54] presented a methodology named TransSQL. It is a

translation-validation solution to detect malicious SQL queries. The proposed

scheme duplicates the database into a LDAP database and queries generated by

web application is also converted into LDAP queries. These LDAP queries are

executed in LDAP database and result is compared with corresponding result

from SQL database. In case of mismatch, SQL injection is detected. Once the

SQLI is detected, the result is displayed as null result and returned back to

application.

 Allen Pomeroy et.al. [55] used network recording to reconstruct SQL Injection

attack effectively. In order to find vulnerabilities in web applications the authors

suggested this technique of network recording. This approach uses NIDS i.e.

network intrusion detection system for the network recording of malicious

applications.

 Bisht et. al. [56] presented an approach named CANDID. It is a tool which is

proposed by authors is used for the recording the structure of SQL query given by

genuine user. It is then compared by the query structure given by the hacker input.

 Michelle Ruse et.al. [57] proposed an approach to detect SQLI by using CREST

i.e. automatic test case generation. This framework is built upon the idea of

39

capturing different parts of the query. It identifies the situation where the

vulnerability of queries occurs. The results show that this method is effective.

 Xin Wang et.al.[58] presented a web crawling methodology which uses access

authorization data table (AADT).By recording authorization information through

cookies, session etc. these web crawlers accesses pages which is lying after login

forms. To improve the capability of web scanner, the web vulnerability detection

mechanism is done. Each and every hidden hyperlink and form present in pages is

crawled by crawlers to improve overall web page detection ability of web

scanner.

 Ezumalai et.al.[59] proposed SQLI detection technique which is signature

based. SQL queries in web application are divided into smaller units called tokens

which are sent for validation. Hirschberg's algorithm is used for the detection of

SQLIA to validate tokens. No runtime changes are required.

 M. Junjin et. al. [60] proposed an approach which provides a fully automated

system which detects SQL vulnerabilities and hence preventing SQL injection

attacks. It automatically generates SQL queries based on legitimate queries. Then

all runtime generated queries are checked for their compliance which on any

mismatch throws a predefined exception. It has limitation of not having any other

implementation except for JSP based web application. This system is named as

AMNeSIA.

 Stephen Thomas et.al. [61] presented an algorithm to prevent SQL

vulnerabilities. For this, the secured prepared statements are used in place of

prepared statements for SQL queries. In this approach, the static structure of sql

query is changed to logical structure. This approach uses a tool to implement

automated fix generation. Based on experimental result, this approach has been

able to replace 94% of SQLI vulnerabilities.

40

 Kiani et.al. [62] prepared an SCC model i.e. Same Character Comparison.

According to the given paper, author has studied the Foundation Capacities for

Development (FCDs) models and removes some limitation to detect attacks by

introducing a new model. According to this methodology, the query given in the

HTTP request is analyzed and a profile is created for every file. HTTP requests are

intercepted by the model. The model extracts the query from HTTP request. In the

testing phase, the thresholds are used to find out malicious requests.

 McClure et.al. [63] proposed a SQL DOM framework with supporting

‘sqldomgen’ which implements those classes which are robust to database for SQL

statement generation. It is efficient in solving compiler errors like data type

mismatch etc. The sqldomgen detects error in code that accesses database along

with focusing on identifying obstacles in database interaction via call level

interfaces.

 Valeur et.al. [64] used a learning based methodology for the detection of SQLI.

Here, an IDS is designed which is using machine learning approach. The model is

generated by learning SQL queries. Further, discrepancies are checked with the

model. There may occur false positive and negative.

 Gould et. al. [65] proposed a tool named JDBC checker for SQL/JDBC web

applications. This is a static analysis tool. To randomize SQL queries a proxy is

lying in between database server as well as web server .This technique uses random

values during runtime SQL and tests for the detection of SQLI attacks.

 Huang et. al. [66] estimated web security using fault injection, thus monitor sits

behaviour. They have designed a tool named Waves which is a web crawler which

is used to identify vulnerabilities. It identifies different patterns and methodologies

which is used to perform attack and thus generate attack codes. These attack codes

are used to identify SQLI. Then, it will generate reports as well with the help of

their listed codes which are vulnerable. The method uses machine learning

41

approach. It is better and effective than other methods which uses penetration

testing.

The detailed literature survey of SQL Injection attack can be shown below using Table3.2.

Table3.2. Literature Survey of SQL Injection attack

S. No. Authors Publisher/Year Description

1. Sharma et.al.[49] Springer/2012 Authors proposed an

integrated method for the

mitigation of SQLI and

reflected XSS vulnerability.

This methodology is using a

query based model generator

for different queries. Queries

which are defying the model

are prone to attack

2. Gao Jiao et.al.

[50]

IEEE Xplore/2012 Authors presented a

mechanism for the prevention

of SQLI. This is done by

inserting a middleware named

SQLIMW which is placed in

the background. This paper

enforced the concept of

authentication by using hash

function and a private key

along with traditional

password. The idea of

detection lies in number of

queries returned in result set

after query execution.

3. Ramya Dharam

et. al.[51]

IEEE Xplore/2012 Authors proposed a post

deployment monitoring

methodology for handling

tautology based SQL injection

for java based applications.

The purpose is to identify

critical variables used for

accepting inputs from external

environment and to identify

all valid paths which could be

traversed by these critical

variables.

4. Indrani

Balasundaram

European Journal of

Scientific

Authors presented an

authentication based scheme

42

et.al. [52] Research/2011 which uses hybrid encryption

i.e. combination of both

Advance Encryption Standard

i.e AES as well as Rivest-

Shamir-Adleman i.e. RSA.

This is used to mitigate SQLI

attacks.This methodology

uses two stage encryption on

login query. A secret key

which is unique is issued to

every user and server uses

combination of private as well

as public key for Rivest-

Shamir-Adleman i.e. RSA

encryption.

5. Kunal et. al. [53] Springer Conference/2011 Authors proposed a model

based approach i.e MHAPSIA

.It is a combination of two

phases. During first phase, a

model of legitimate queries

are constructed. During

second phase, it monitors

dynamically generated

queries.

6. Kai X. Zhang

et.al. [54]

IEEE Xplore/2011 Authors presented a

methodology named

TransSQL. It is a translation-

validation solution to detect

malicious SQL queries. The

proposed scheme duplicates

the database into a LDAP

database and queries

generated by web application

is also converted into LDAP

queries. These LDAP queries

are executed in LDAP

database and result is

compared with corresponding

result from SQL database.

7. Allen Pomeroy

et.al. [55]

IEEE Xplore/2011 Authors used network

recording to reconstruct SQL

Injection attack effectively. In

order to find vulnerabilities in

web application the authors

suggested this technique of

network recording. This

43

approach uses NIDS i.e.

network intrusion detection

system for the network

recording of malicious

applications.

8. Bisht et. al. [56] ACM Transactions/2010 Authors presented an

approach named CANDID. It

is a tool which is proposed by

authors is used for the

recording the structure of

SQL query given by genuine

user. It is then compared by

the query structure given by

the hacker input.

9. Michelle Ruse

et.al. [57]

Symposium/2010 Authors proposed an

approach to detect SQLI by

using CREST i.e. automatic

test case generation. This

framework is built upon the

idea of capturing different

parts of the query. It identifies

the situation where the

vulnerability of queries occur.

The results show that the

method is effective.

10. Xin Wang

et.al.[58]

IEEE Xplore/2010 Authors presented a web

crawling methodology which

uses access authorization data

table (AADT).By recording

authorization information

through cookies, session etc.

these web crawlers accesses

pages which is lying after

login form. To improve the

capability of web scanner, the

web vulnerability detection

mechanism is done.

11. Ezumalai

et.al.[59]

IEEE Xplore/2009 Authors proposed SQLI

detection technique which is

signature based. SQL queries

in web application are divided

into smaller units called

tokens which are sent for

validation. Hirschberg's

algorithm is used for the

detection of SQLIA to

44

validate tokens. No runtime

changes are required.

12. M. Junjin et. al.

[60]

Conference/2009 Authors proposed an

approach which provides a

fully automated system which

detects SQL vulnerabilities

and hence preventing SQL

injection attacks. It

automatically generates SQL

queries based on legitimate

queries. Then generated

queries are checked for their

compliance. Any mismatch

throws a predefined

exception.

13. Stephen Thomas

et.al. [61]

ACM/2009 Authors presented an

algorithm to prevent SQL

vulnerabilities. For this, the

secured prepared statements

are used in place of prepared

statements for SQL queries .

In this approach, the static

structure of SQL query is

changed to logical structure.

This approach uses a tool to

implement automated fix

generation.

14. Kiani et.al. [62] IEEE Xplore/2008 Authors prepared an SCC

model i.e. Same Character

Comparison. According to the

given paper, author has

studied the Foundation

Capacities for Development

(FCDs) models and removes

some limitation to detect

attacks by introducing a new

model. According to this

methodology, the query given

in the HTTP request is

analyzed and a profile is

created for every file. HTTP

requests are intercepted by the

model. The model extracts the

query from HTTP request.

15. McClure et.al.

[63]

ACM Conference/2005 Authors proposed a SQL

DOM framework with

45

supporting ‘sqldomgen’

which implements those

classes which are robust to

database for SQL statement

generation. It is efficient in

solving compiler errors like

data type mismatch etc. The

sqldomgen detects error in

code that accesses database

along with focusing on

identifying obstacles in

database interaction via call

level interfaces.

16. Valeur et.al. [64] ACM Conference/2005 Authors used learning based

methodology for the detection

of SQLI. Here, an IDS is

designed which is using

machine learning approach.

The model is generated by

learning SQL queries.

Further, discrepancies are

checked with the model.

There may occur false

positive and negative.

17. Gould et. al.

[65]

ACM Conference/2004 Authors proposed a tool

named JDBC checker for

SQL/JDBC web applications.

This is a static analysis tool.

To randomize SQL queries a

proxy is lying in between

database server as well as web

server .This technique uses

random values during runtime

SQL and tests for the

detection of SQLI attacks.

18. Huang et. al.

[66]

ACM Conference/2003 Authors estimated web

security using fault injection.

They have designed a tool

named Waves which is a web

crawler which is used to

identify vulnerabilities. It

identifies different patterns

and methodologies which is

used to perform attack and

thus generate attack codes.

These attack codes are used

46

to identify SQLI. Then, it will

generate reports.

3.5 CSRF ATTACK

CSRF attack arises when a non trusted website causes a client's web browser to permit a

malicious activity on a trusted website. This is due to the fake HTTP request as it exploits the

currently running client’s session of the web browser. A CSRF web attack requires inclusion of

three things. A target client, a trustable website, and a non trustable web site. The target client is

currently holding an active session with a trustable site and in the meanwhile, the client visits a

malicious or non trusted website. The non trustable or malicious web site injects a HTTP request

for the trustable web site into the target client’s session which compromises its integrity. These

vulnerabilities permit a hacker to exchange money out from client’s account, to collect client’s

email id, disregard client privacy etc.

3.5.1 Related Work for CSRF Attack

 Adam Barth et.al.[67] described new forms of CSRF attack as well as existing

CSRF defense techniques and their shortcomings. They contributed a threat

model of CSRF based on login activity and network connectivity. They also told

about the referrer header for the validation in the browser. In threat model, they

have described two types of threats i.e. IN scope threats and Out of scope threats.

In the end about the session vulnerabilities and its defenses for cookies and

scripting languages.

 Jovanovic et.al.[68] proposed a prototype and demonstrated on how to secure

the web based open source applications by not disturbing their behavior using

experimental results. Prototype is basically about a complete automatic

protection from CSRF attacks. It detects and prevents itself without knowing to

47

the users as well as to the web applications. Their experimental result shows that

the solution is useful in protecting vulnerable applications.

 Mohd. Shadab Siddiqui et.al.[69] gave an introduction about the CSRF attack

and how it is performed with three main things. The three main things are victim

user, trusted site and a malicious site. Also, they discussed about how the CSRF

attack is different from XSS with different types of vulnerabilities. It also shows

different ways to perform CSRF attack like get-post or using an image or script

source and limitations of CSRF attack. And in the end, they discussed about the

protection against CSRF attack.

 Pavol Zavarsky et.al.[70] described OWSAP CSRF guard which is Open Web

Application security project to protect against CSRF attacks. They explored how

CSRF guard blocks or unblock CSRF attempts through the use of different CSRF

models and what are the possible limitations with the CSRF guard after using it.

In the end, it shows the possible ways where CSRF guard security work as a

mitigation strategy for web applications.

 Wim Maes et.al.[71] proposed a client side policy of enforcement framework to

protect the users from CSRF transparently. For this, they monitored all outgoing

request by web within the browser and used a cross domain policy using their

framework. They also proposed a policy for an optimal server side to improve

the client side policy. They implemented prototype as a Firefox extension within

web 2.0 context.

 Tatiano Alexenko et.al.[72] presented how CSRF is a potential threat to the web

applications. They provided different ways how the web based applications are

exploited. They discussed the already existed countermeasures as well as

drawbacks with the proposed solution. The authors suggested the installation of

simple extension for notification of cross site request forgery vulnerability as

Referer Header is the most common method for defense of CSRF attack.

48

 Xialoi Lin et.al.[73] proposed a threat model and presented a tree based attack

analysis of CSRF attacks to help researchers to design defenses for CSRF

attacks because different process is used to execute on victim browser. They also

discussed major categories of cross site request forgery i.e. reflected and stored.

In the end, they mentioned different tree models for CSRF attacks with

mitigation over it.

 Hossain Shahriar et.al.[74] proposed a mechanism based on detection of cross

site request forgery i.e. CSRF vulnerability by checking the request on contents

of suspected links. They demonstrated the mechanism by intercepting the request

having values which associate this with the form which are noticeable in the

windows. If the exact match is found, it will modify the suspected request and

transmit this to remote website. It then tries to find the contents and its type. On

mismatch, it will normally show a display warning. They implemented a plugin

for Firefox browser and tested on different PHP applications.

The detailed literature survey of CSRF attack can be shown below using Table3.3.

Table3.3. Literature Survey of CSRF attack

S. No. Authors Publisher/Year Description

1. Adam Barth et.al.[67] ACM Conference/2008 Authors described new

forms of CSRF attack as

well as existing CSRF

defense techniques and

their shortcomings. They

contributed a threat model

of CSRF based on login

activity and network

connectivity. They also

told about the referrer

header for the validation

in the browser. In threat

model, they have

described two types of

threats i.e.IN scope threats

and Out of scope threats.

2. Jovanovic et.al.[68] IEEE Xplore/2006 Authors proposed a

prototype and

49

demonstrated on how to

secure the web based open

source applications by not

disturbing their behavior

using experimental

results. Prototype is

basically about a complete

automatic protection from

CSRF attacks. It detects

and prevents itself without

knowing to the users as

well as to the web

applications.

3. Mohd. Shadab

Siddiqui et.al.[69]

IEEE Xplore/2011 Authors gave an

introduction about the

CSRF attack and how it is

performed with three main

things. The three main

things are victim user,

trusted site and a

malicious site. Also, they

discussed about how the

CSRF attack is different

from XSS with different

types of vulnerabilities. It

also shows different ways

to perform CSRF attack

like get-post or using an

image or script source and

limitations of CSRF

attack.

4. Pavol Zavarsky

et.al.[70]

IEEE Xplore/2011 Authors described

OWSAP CSRF guard

which is Open Web

Application security

project to protect against

CSRF attacks. They

explored how CSRF guard

blocks or unblock CSRF

attempts through the use

of different CSRF models

and what are the possible

limitations with the CSRF

guard after using it.

5. Wim Maes et.al.[71] ACM Workshop/2009 Authors proposed a client

side policy of enforcement

50

framework to protect the

users from CSRF

transparently. For this,

they monitored all

outgoing request by web

within the browser and

used a cross domain

policy using their

framework. They also

proposed a policy for an

optimal server side to

improve the client side

policy.

6. Tatiano Alexenko

et.al.[72]

IEEE Xplore/2010 Authors presented how

CSRF is a potential threat

to the web applications.

They provided different

ways how the web based

applications are exploited.

They discussed the

already existed

countermeasures as well

as drawbacks with the

proposed solution.

7. Xialoi Lin et.al.[73] IEEE Xplore/2009 Authors proposed a threat

model and presented a

tree based attack analysis

of CSRF attacks to help

researchers to design

defenses for CSRF attacks

because different

processes are used to

execute victim browser.

They also discussed major

categories of cross site

request forgery i.e.

reflected and stored.

8. Hossain Shahriar

et.al.[74]

IEEE Symposium/2010 Authors proposed a

mechanism based on

detection of cross site

request forgery i.e. CSRF

vulnerability by checking

the request on contents of

suspected links. They

demonstrated the

mechanism by

51

intercepting the request

having values which

associate this with the

form which are noticeable

in the windows. If the

exact match is found, it

will modify the suspected

request and transmit this

to remote website.

3.6 CONCLUSION

A critical study of literature available in the area of web attacks has been performed and some

shortcomings were identified in the existing techniques. In order to overcome the drawbacks of

the existing techniques available in the literature, a hybrid security system for web attacks is

proposed. The proposed approach is discussed in the next chapter in detail.

52

53

CHAPTER IV

A HYBRID SECURITY SYSTEM FOR PREVENTION OF XSS,

SQL INJECTION AND CSRF WEB ATTACK: PROPOSED

APPROACH

4.1 INTRODUCTION

There is a continuous growth of web attacks on web based applications.SQL injection i.e. SQLI,

Cross Site Script i.e. XSS ,Cross Site Request Forgery i.e. CSRF are some of the most

commonly found serious and dangerous threats to the security of web based applications.

Hacking permits hacker to pick up access over the database and subsequently, a hacker might

have the capacity to change information. The vast majority of the day by day activities rely on

database driven web applications as a result of expanding task, such as banking etc. For

performing different tasks, for example, paying of bills etc. information should be confidential.

In light of the expanded number of assaults exploiting, many endeavors have been made to

discover solution for the issue. The best arrangement is to create the programs in a safe way.

Many archives have been distributed in regard to secure advancement of web based applications

although very little has managed. Web engineers are not yet security mindful, and the issues

keep on appearing. Accordingly, security administrators are continuously searching for different

measures that can be taken against this issue. Developers are not yet security aware, and the

issues continue to appear. Thus security experts are constantly looking for some other

countermeasures which can be considered against the problem.

Although there exist many detection and prevention techniques in the literature, there are certain

points where the existing methods can be optimized or there is a requirement of new technique.

In order to counter the increased number of attacks taking advantage of the confidential access of

information, a security system for the most commonly found serious and dangerous web based

attacks is proposed. It is a hybrid system which is developed in PHP. This hybrid security

system prevents the most commonly found serious and dangerous web based attacks which are

54

Cross Site Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF[75] in

a more efficient way by reducing the drawbacks of the existing techniques given by different

researchers and thereby to improve performance.

4.2 ABSTRACT VIEW OF PROPOSED HYBRID SECURITY SYSTEM

The Security System is a hybrid system[76] which is a combination of three attacks which are

Cross Site Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF. It is

developed in PHP to prevent the most commonly found serious and dangerous web based attacks

namely XSS, SQL Injection and CSRF. This hybrid security system uses combined analysis of

both static and dynamic. The proposed system works in different phases which leads to easy

design and implementation. The proposed algorithm is divided into two modes. One is static

mode and other is dynamic mode.

During Static mode, the following functions occurred:

• Scan PHP web application

• Identify the hotspot

• Run application under safe mode environment with valid test inputs

• Generate model for each identified hotspot.

During Dynamic mode, following functions occurred:

• Capture dynamic query

• Parse it ,Obtain the tokens and generate model

• Match with the static model

• Results and Error report

4.3 OVERALL ARCHITECTURE OF PROPOSED HYBRID SECURITY SYSTEM

The Hybrid Security System[76] is a combination of three attacks which are Cross Site Script i.e.

XSS, SQL Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF.The architecture of hybrid

security system is divided into four phases. It can be shown below using Figure4.1.

55

Web Application

Figure4.1 Architecture of Proposed Hybrid Security System

 HOTSPOT IDENTIFICATION

SQL Injection
 CSRF

 XSS

SQL Injection CSRF
 XSS

 SQL Injection

 XSS

 SQL Injection

 CSRF XSS

 Phase 1

 Phase 2

 Phase 3

Phase 3

 Phase 4

 Scanning and Hotspot Identification

 CSRF

 Model Generation

 Instrumentation

 Results Leading To Secure Web Application

 S

ta
ti
c
 M

o
d
e

D
y
n
a
m

ic
 M

o
d
e

Query model

Generator

Token-Session

model Generator

Tag-Attribute

model Generator
Parser Parser Parser

 Validation and Error Reporting

Query

model

comparison

Output &

Error
Report

Token-Session

model

comparison

Output &

Error

Report

Tag-Attribute

model

comparison

Output

& Error

Report

56

4.4 PHASES OF HYBRID SECURITY SYSTEM

The Security System is a hybrid system which is developed in PHP to prevent the most

commonly found serious and dangerous web attacks which are Cross Site Script i.e. XSS, SQL

Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF. It is divided into four phases. These

four phases are linked with each other. The hybrid system uses combined analysis of both static

and dynamic mode. The security system works in different phases which leads to easy design

and implementation. As per the proposed algorithm, it is divided into two modes. One is static

mode and other is dynamic mode. In static mode, the algorithm statically scans the source code

of web application and constructs a static model by considering legitimate input given by the

tester/developer while in the dynamic mode it performs verification of queries which are

generated during runtime with the model which was generated statically. Queries which violate

this model are prone to attack and thus prevented from being executed. The upcoming section

discusses different phases of security system.

 Scanning and Hotspot Identification phase -

This is the first phase of the security system. This phase scans the web application and

identifies hotspot for the most commonly used attacks in the application source code. Hotspot

specifies the location of the query to be executed within a web application. These are the places

which are used as attack. During this phase, scanning of all the files is done for XSS vulnerable

lines within the web application. It returns probable XSS vulnerable lines and termed as hotspot.

Likewise, all the files of web application are scanned for SQLI vulnerability. It returns the

probable SQLI vulnerable lines and termed as hotspot. At last, all the files of web application are

scanned for CSRF vulnerability. It returns the probable CSRF vulnerability and termed as

hotspot. The hotspot identification is to spot the number of locations which could be used as an

attack in a web application.

57

 Instrumentation phase -

This phase does the Instrumentation of web based application for SQLI, Cross Site Script

and CSRF vulnerability. During this phase, at each hotspot an additional code is instrumented

which contains a file having runtime checking function at the beginning of file.

 Model Generation phase -

This phase does model generation. Three different models have been proposed. First is

SQL-Query model which is for SQLI attack. Second is Tag-Attribute model which is for XSS

attack. Third is Token-Session model which is for CSRF attack.

The XSS Tag-Attribute model is specifically for XSS attack. In this model, the tokens are

generated using parsing of input given at each hotspot. The model is built using this tokenized

input. The static mode consists of set of all possible tags and attributes which are vulnerable. The

dynamic mode consists of the input at runtime. The model constructed during dynamic mode is

compared with the model constructed during static mode. The result of comparison shows the

identification of XSS attack or not.

The SQL-Query model is specifically for SQLIA. In this model, the tokens are generated

using parsing of query given at each hotspot. The model is built using this tokenized input. It is

stored as an array of tokens. The static mode consists of set of all possible legitimate queries.

The dynamic mode consists of the input at runtime. The model constructed during dynamic

mode is compared with the model constructed during static mode. The result of comparison

shows the identification of SQL Injection attack or not.

The Token-Session model is specifically for Cross Site Request Forgery i.e. CSRF. In

this model, tokens are generated using parsing of input given at each hotspot. The model is built

using this tokenized input. The static mode contains a token id. The dynamic mode consists of

the input at runtime. The model constructed during dynamic mode is compared with the model

constructed during static mode. The result of comparison shows the identification of CSRF

attack or not.

58

 Validation and Error Reporting phase -

 This phase does the verification alongwith the error reporting. Validation algorithm

performs verification of dynamically generated model in dynamic mode with the statically

generated model in static mode. Verification shows the presence or absence of attack. After

identification, the attack is prevented using prevention algorithm. Finally, the results and the

error report is displayed.

4.5 PREVENTION OF XSS ATTACK USING HYBRID SECURITY SYSTEM

XSS attack is prevented using hybrid security system. The hybrid system uses combined analysis

of both static and dynamic mode. This system works in four phases as mentioned below.

4.5.1 Scanning and Hotspot Identification phase

This phase does the scanning of the web application and identifies hotspot for XSS attack in the

application source code. During this phase, scanning of all the files is done for XSS vulnerable

lines within the web application. It returns probable XSS vulnerable lines and termed as hotspot.

Hotspots are the location where actual query gets executed. These are the places which are used

as an attack.HTML tags are the primary hotspots in web application e.g. div, heading etc.

Hotspot identification is to identify the number of locations which could be used as an attack in a

web application.

4.5.2 Instrumentation phase

This phase does the instrumentation of web application. During this phase, at each hotspot an

extra code is instrumented at the beginning which contains a file having runtime checking

function. The runtime checking function consists of two arguments i.e. one is the string having

the script and other is the hotspot id which is unique.

59

4.5.3 Tag-Attribute Model Phase

The XSS Tag-Attribute model[76] is specifically for XSS attack. In this model, the tokens are

generated using parsing of input given at each hotspot. The model is built using this tokenized

input. The static mode consists of set of all possible tags and attributes which are vulnerable. The

model generated for static mode is shown below in Table 4.1.

Table4.1.Tag-Attribute model for static mode

Tag Attribute Example
Script Src <script>alert(‘Cross site script i.e. xss’)</script>

Img Src <imgsrc=”javascript:alert(‘cross site script i.e. xss’)”>

IFrame Src <iframe src=”javascript:alert(‘cross site script i.e.xss’)”>

</iframe>
Object Data <object data=”javascript:alert(‘cross site script i.e.xss’)”>

</object>
Frame Onmouseclick <frame onmouseclick=”javascript:alert(‘cross site script

i.e.xss’)”> </frame>
Frame Onmouseover <frame onmouseover=”javascript:alert(‘cross site script

i.e.xss’)”> </frame>
Frame Onmouseout <frame onmouseout=”javascript:alert(‘xss’)”></frame>

Div Style <div style=”javascript:alert(‘cross site script i.e. xss’)”>

</div>

During Dynamic mode, the tag-attribute model represents the input entered on the login page by

the user during run time. For example:

User name - <script>alert(‘Cross Site Script’)</script>

Password - ****************

The extracted values for username and password are ” <script>alert(‘Cross site script i.e.

XSS’)</script>” and “***********” respectively. These values are stored during dynamic mode

as tag attribute model. The model constructed during dynamic mode is compared with the model

constructed during static mode. The result of comparison shows the identification of XSS attack

or not.

60

4.5.4 Validation and Error Report Phase

This phase does the verification alongwith the error reporting. Validation algorithm performs

verification of dynamically generated model in dynamic mode with the statically generated

model in static mode. Verification shows the presence or absence of attack. After identification,

the attack is prevented using prevention algorithm. The prevention algorithm checks for the

presence of ‘<’ or ‘>’ characters in the input which are an indication of XSS attack. If any of the

suspicious characters are found in the input, the algorithm checks the presence of any of the

blacklisted tags. Input is tested recursively for presence of blacklisted tags so that attack can be

filtered. Whenever presence of blacklisted tag is confirmed in the input, a flag is raised

indicating presence of XSS attack. Attack is further filtered for persistent or non-persistent XSS

attack by determining whether other users could see this input in their browsers. If input is to be

stored on server after which it could be seen by anyone then attack is raised as stored XSS attack

otherwise reflected XSS attack. Finally, the results and the error report is displayed.

Its working can be shown below using Figure 4.2.

61

 1.Database of malicious tags

 2. Attacker created malicious script

 with attribute(static mode)

 3. Sends malicious script with vulnerable tag

 4. Request the login page

 5. Response from Server

 6. Page with

 Malicious script

 7.Click on login button, the 8.Comparison of

 script is stored as tag-attribute model static

 (dynamic mode) and

 dynamic mode

 9.Attack is identified

 and thus prevented

 10.Result and Error report

 Figure4.2 Prevention of XSS attack

Attacker Client Malicious

ScriptCR

OSS

SITE

SCRI

PTIN

G

(XSS)

Server

CR

OS

S

SIT

E

SC

RI

PTI

NG

(XS

S)

62

4.6 PREVENTION OF SQL INJECTION ATTACK USING HYBRID SECURITY

SYSTEM

SQL Injection attack is prevented using hybrid security system. The hybrid system uses

combined analysis of both static and dynamic mode. This system works in four phases as

mentioned below.

4.6.1 Scanning and Hotspot Identification phase

This phase does the scanning of the web application and identifies hotspot for SQLI attack in the

application. During this phase, all the files of web application are scanned for SQLI

vulnerability. It returns the probable SQLI vulnerable lines and termed as hotspots. Hotspots are

the location where actual query gets executed. These are the places which are used as an

attack.SQL queries are the primary hotspots in web application. Hotspot identification is to

identify the number of locations which could be used as an attack in a web application.

4.6.2 Instrumentation phase

This phase does the instrumentation of web application. During this phase, at each hotspot an

extra code is instrumented at the beginning which contains a file having runtime checking

function. The runtime checking function consists of two arguments i.e. one is the string having

the script and other is the hotspot id which is unique.

4.6.3 SQL-Query Model Phase

The SQL-Query model is specifically for SQLIA. In this model, the tokens are generated using

parsing of query given at each hotspot. The model is built using this tokenized input. It is stored

as an array of tokens. The static mode consists of set of all possible legitimate queries. The

model generated for static mode stores SQL query in the form of array. For example, consider

the following SQL query during static mode-

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’ AND PASSWORD=’abcd’;

63

The above mentioned SQL query is stored in an array as SQL-query model during static mode. It

can be shown below using Figure 4.3.

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=> alice[8]=> AND[9]=> PASSWORD[10]=>=[11]=>abcd)

 Figure4.3. SQL-query model during static mode

Consider the following types of SQL Injection during run time-

i) Tautology based SQL injection-

Let us consider the following example-

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’ OR ‘1’=’1’# AND

PASSWORD=’abcd’;

The above mentioned SQL query is stored in an array as SQL-query model during dynamic

mode.It can be shown below using Figure 4.4.

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=>alice[8]=>OR[9]=>1[10]=>=[11]=>1[12]=>#[13]=>AND[14]=>PASSWORD[15]=>=

[16]=>abcd)

 Figure4.4. Tautology based SQL-query model during dynamic mode

ii) Union query based SQL injection-

Let us consider following example-

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’ UNION SELECT * FROM

ACCOUNT AND PASSWORD= ’abcd’;

64

The above mentioned SQL query is stored in an array as SQL-query model during dynamic

mode. It can be shown below using Figure 4.5.

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=>alice[8]=>UNION[9]=> SELECT[10]=>*[11]=>FROM[12]=> ACCOUNT[13]=>

AND[14]=> PASSWORD[15] =>=[16]=>abcd)

 Figure4.5. Union query based SQL-query model during dynamic mode

iii) Stored procedure based SQL injection-

Let us consider following example -

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’; SHUTDOWN AND

PASSWORD=’xyz’;

The above mentioned SQL query is stored in an array as SQL-query model during dynamic

mode. It can be shown below using Figure 4.6.

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=>alice[8]=>;[9]=>SHUTDOWN[10]=>AND[11]=>PASSWORD[12]=>=[13]=>xyz)

 Figure4.6. Stored Procedure based SQL-query model during dynamic mode

iv) Blind Injection based SQL injection-

Let us consider following example -

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’ AND 1=0 AND

PASSWORD=’xyz’

The above mentioned SQL query is stored in an array as SQL-query model during dynamic

mode. It can be shown below using Figure 4.7.

65

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=>alice[8]=>AND[9]=>1=0[10]=>AND[11]=>PASSWORD[12]=>=[13]=>xyz)

 Figure4.7. Blind Injection based SQL-query model during dynamic mode

v) Piggy-backed query based SQL injection-

Let us consider following example -

SELECT * FROM ACCOUNT WHERE USERNAME=’alice’; DROP TABLE ACCOUNT

AND PASSWORD=’abcd’

The above mentioned SQL query is stored in an array as SQL-query model during dynamic

mode. It can be shown below using Figure 4.8.

Array([0]=>SELECT[1]=>*[2]=>FROM[3]=>ACCOUNT[4]=>WHERE[5]=>USERNAME[6]

=>=[7]=>alice[8]=>;[9]=>DROP[10]=>TABLE[11]=>ACCOUNT[12]=>AND[13]=>PASSWO

RD[14] =>=[15]=>abcd)

 Figure4.8. Piggy-backed query based SQL-query model during dynamic mode

The dynamic mode consists of the input at runtime. The model constructed during dynamic

mode is compared with the model constructed during static mode. This is performed by

comparing the length of array calculated during the static mode and the length of array

calculated during dynamic mode The result of comparison shows the identification of SQLI

attack or not.

4.6.4 Validation and Error Report phase

This phase does the verification alongwith the error reporting. Validation algorithm performs

verification of dynamically generated model in dynamic mode with the statically generated

model in static mode. Verification shows the presence or absence of attack. After identification

,the attack is prevented using prevention algorithm. The prevention algorithm first extracts input

66

entered by the user in the form of username and password and stores it in a dummy table in the

encrypted mode. The username entered by the user and username that was stored in dummy table

will not match so it will give false result. The dummy table will only give true result whenever

the username and password are injected as SQL injection query. If the result produced by the

dummy table is false, then the username and password given by the user will be forwarded to the

actual database and it will show the required result to the user otherwise if the result produced by

the dummy table is true, then the username and password given by the user will not be forwarded

to the actual database. An error message is generated.

Its working can be shown below using Figure 4.9.

Figure4.9 Prevention of SQL Injection attack

Client/Attacker Server

CR

OS

S

SIT

E

SC

RI

PTI

NG

(XS

S)

2. Request for login form

3. Client gets response from server

4. Page with legitimate/malicious query

1. Database of legitimate query is prepared(Static

mode)

5 . Click on the login page, the input is stored

as SQL-query model(dynamic mode)

6 . Comparison of static and dynamic mode

 7 . Attack is identified and thus prevented

 8 . Result and Error report

67

4.7 PREVENTION OF CSRF ATTACK USING HYBRID SECURITY SYSTEM

CSRF attack is prevented using hybrid security system. The hybrid security system uses

combined analysis of both static and dynamic mode. This system works in four phases as

mentioned below.

4.7.1 Scanning and Hotspot Identification phase

This phase does the scanning of the web application and identifies hotspot for CSRF attack in the

application source code. During this phase, all the files of web application are scanned for CSRF

vulnerability. It returns the probable CSRF vulnerability and termed as hotspots. Hotspots are the

location where actual query gets executed. These are the places which are used as an attack.

Hotspot identification is to identify the number of locations which could be used as an attack in a

web application.

4.7.2 Instrumentation phase

This phase does the instrumentation of web application. During this phase, at each hotspot an

extra code is instrumented at the beginning which contains a file having runtime checking

function. The runtime checking function consists of two arguments i.e. one is the string having

the script and other is the hotspot id which is unique.

4.7.3 Token-Session Model Phase

The Token-Session model is specifically for CSRF. In this model, the tokens are generated using

parsing of input given at each hotspot. The model is built using this tokenized input. User is

authenticated with its username and password and allotted a token id from server. The static

mode contains a token id. Token id is generated by that particular web page and is unique to web

page and user. A static model is created in which each request contains token id which is unique

per user and per request. Every user has their unique token id generated by the server and that

token id is locked with the IP address provided by the server. The token id is generated once for

each session. During dynamic mode, when a forged request for an action is carried out, the

attacker may send the script tag to the victim/user to interact with the link and open the same

68

session which is opened by the victim/user and steal the personal information of it. But in this

situation the attacker has its own web browser which has its own token id to interact the same

session which is opened by the victim/user. The model constructed during dynamic mode is

compared with the model constructed during static mode. The result of comparison shows the

identification of CSRF attack or not.

4.7.4 Validation and Error Report phase

This phase does the verification alongwith the error reporting. Validation algorithm performs

verification of dynamically generated model in dynamic mode with the statically generated

model during static mode. Verification shows the presence or absence of attack. After

identification, the attack is prevented using prevention algorithm. The prevention algorithm first

requests server for a particular action from a trusted browser. On server side, a token id is

extracted from HTTP request. If token id is different, declare CSRF attack and abandon request.

Compare the generated token id and the existing token id. If both are not equal, it means given

token id is invalid. If given token id is valid then execute action of request, otherwise abandon

request. Accordingly, an error report is generated.

Its working can be shown below using Figure 4.10.

69

Figure4.10 Prevention of CSRF attack

4.8 ALGORITHMS

The proposed algorithm has been divided into four distinct parts. First part of it focuses on the

scanning of web application and identification of hotspots for Cross Site Script i.e. XSS

vulnerability, SQLI based vulnerable lines and CSRF based vulnerable lines. Second part of it

focuses on the instrumentation of web application. An extra code is attached at every hotspot. It

includes file containing dynamic checking function at the beginning of every PHP file. The third

part of it focuses on the model generation for XSS, SQL and CSRF respectively. Separate

models are generated for XSS, SQL and CSRF attack. Final part of it focuses on validation and

error reporting. Validation is done by comparing the models. Depending upon the comparison,

error report is generated which identifies the presence of attack.

70

4.8.1 Algorithm 1: Scanning and Hotspot Identification

The Scanning and Hotspot identification algorithm for SQL Injection, CSRF and XSS attack is

shown below in Figure 4.11.

Input : A web application consisting of several files

Output : Scanned files and Generated Hotspot

SQLList = A List which contains the Regular Expressions of the possible queries for SQL Injection

XSSList = A List which contains all the possibilties of finding XSS attack using Regular Expressions

CSRFList = A List which contains all the possibilities of finding CSRF attack using Regular Expressions

CountFiles() = Counts the number of files present in a given folder location

LineAvailable() = Returns true if the line is available to be read else return false

Matches() = Compares if the two Regular Expression contents being compared are equal

addHotspot() = Adds hotspot line in the SQLArray , XSSArray and CSRFArray

1: no_of_files = CountFiles(Location_of_web_Application) ; // read all web files from a location

2: while(i <= no_of_files)

 {

3: while(file[i].LineAvailable()) // iterate over the file till all the lines are visited

 {

4: currentLine=file[i].readLine();

5: for(RegEx SQLLine : SQLList)

 {

6: if(currentLine.Matches(SQLLine) // identifying Hotspot

7: SQLArray.addHotspot(currentLine); // identified Hotspot for SQL and stored in SQL Array

 }

8: for(RegEx XSSLine : XSSList)

 {

9: if(currentLine.Matches(XSSLine) // identifying Hotspot

10: XSSArray.addHotspot(currentLine); // identified Hotspot for XSS and stored in XSS Array

11: else continue;

 }

12: for(RegEx CSRFLine : CSRFList) // identifying Hotspot

 {

13: if(currentLine.Matches(CSRFLine) // identified Hotspot for CSRF and stored in CSRF Array

14: CSRFArray.addHotspot(currentLine);

15: else continue;

 }

 }

 }

 Figure4.11.Scanning and Hotspot identification for SQLI,CSRF and XSS

71

4.8.2 Algorithm 2: Instrumentation

The Instrumentation algorithm for SQL Injection, CSRF and XSS attack is shown below in

Figure 4.12.

Input : Input web pages alongwith Hotspot Identifiers found in the webpage

Output : A fresh file with altered changes on which further modeling is to be performed

SQLIHotspotList = A List of Hotspots identified in the scanning and identification of SQL Injection based

 vulnerable lines in the page

XSSHotspotList = A List of Hotspots identified in the scanning and identification of XSS based vulnerable lines in

 the page

CSRFHotspotList = A List of Hotspots identified in the scanning and identification of CSRF based vulnerable lines

 in the page

isAvailableNext()= Checks whether the next hotspot is available for the present input PHP file

1: void instrumentInputFile(ArrayList SQLIHotspotList,ArrayList XSSHotspotList,ArrayList CSRFHotspotList,

 File inputFile)

 {

2: while(SQLIHotspotList.isAvailableNext()) //for SQL Injection

 {

3: String currentLine = inputFile.searchFor(SQLIHotspotList.next());

4: currentLine.addInstrumentedLinesSQLI(); // append calls for filtering of tokens.

5: inputFile.saveModifiedFile();

 }

6: while(XSSHotspotList.isAvailableNext()) //for XSS

 {

7: String currentLine = inputFile.searchFor(XSSHotspotList.next();

8: currentLine.addInstrumentedLinesXSS(); // append calls for filtering of input to check tags and attributes.

9: inputFile.saveModifiedFile();

 }

10: while(CSRFHotspotList.isAvailableNext()) //for CSRF

 {

11: String currentLine = inputFile.searchFor(CSRFHotspotList.next());

12: currentLine.addInstrumentedLinesCSRF(); // append calls for adding hidden input equal to Session ID.

13: inputFile.saveModifiedFile();

 }

 }

Figure4.12.Instrumentation for SQL Injection, XSS and CSRF attack

72

4.8.3 Algorithm 3: Model Generation

The Model Generation algorithm for SQL Injection, CSRF and XSS attack is shown below in

Figure 4.13.

Input : String identified as hotspot alongwith the filename

Output : Comparison of Static and Dynamic mode

scannedLine = Vulnerable lines found during scanning of the code

pageHotspot = The name of the page which is currently being scanned

hotspotCount=The number of hotspots identified in a PHP file

SQL Injection Attack

1:int StaticModeAnalysisSQLI(String scannedLine, File pageHotspot) //performing analysis in Static-Mode

for SQLIA

 {

2: String inputLine = scannedLine.substring(scannedLine.indexOf('=');

3: String[] line = getStaticModeInput();

4: String evaluation = performEvaluation(line); // Performs evaluation of the SQL statement on given

inputs

5: String[] countStaticMode = evaluation.split("=");

6: int staticModeLength = countStaticMode.length();

7: return staticModeLength;

 }

8:int dynamicModeAnalysisSQLI(String scannedLine, File pageHotspot) //performing analysis in

Dynamic-Mode for SQLIA

 {

9: String inputLine = scannedLine.substring(scannedLine.indexOf('=');

10: String[] line = getdynamicModeInput();

11: String evaluation = performEvaluation(line);

12: String[] countDynamicMode = evaluation.split("=");

13: int dynamicModeLength = countDynamicMode.length();

14: return dynamicModeLength;

 }

15:String compareDifferentModesSQLI(String pageHotspot) //comparison of Static-Mode and Dynamic-

Mode for SQLIA

 {

16:for(int i=0; i< hotspotCount;i++)

 {

17: int staticModeLength = staticModeAnalysisSQLI(hotspotLine[i],currentPage);

73

18: int dynamicModeLength =dynamicModeAnalysisSQLI(hotspotLine[i],currentpage);

19: if(staticModeLength >dynamicModeLength)

20: return " Tried SQL-Injection Attack in this page " + pageHotspot;

21: else if(staticModeLength == dynamicModeLength)

22: return " Operation is safe to perform! No Attack from this page " + pageHotspot;

23: else

24: return "Something invalid happened. Please perform operations again! ";

 }

 }

XSS Attack

1:List staticModeAnalysisXSS(String scannedLine,String pageHotspot) // performing analysis in Static-

Mode for XSS

 {

 2: String inputLine = receiveInput();

 3: String[] inputSplit = inputLine.split(VulnerableTagList.allTags());

 4: for (String atATime : inputSplit)

 5: XSSSafeList.add(atATime);

 6: return XSSSafeList;

 }

7:List dynamicModeAnalysisXSS(String scannedLine,String pageHotspot) // performing analysis in

Dynamic-Mode for XSS

 {

8: String inputLine = receiveInput();

9: String[] inputSplit = inputLine.split(VulnerableTagList.allTags());

10: for (String atATime : inputSplit)

11: XSSVulnerableList.add(atATime);

12: return XSSVulnerableList;

 }

13:String compareDifferentModesXSS(String pageHotspot) // comparison of Static-Mode and Dynamic-

Mode for XSS

 {

14: XSSSafeList = staticModeAnalysisXSS(scannedLine,currentPage);

15: XSSVulnerableList = dynamicModeAnalysisXSS(scannedLine,currentPage);

16: if(XSSSafeList.contains(XSSVulnerableTagList.anyTag())

17: return "Safe Mode result has encountered some problem,please perform the safe again! ";

18: if(XSSVulnerableList.contains(XSSVulnerableTagList.anyTag())

 {

19: return "Vulnerable XSS Attack was tried!!! It has been blocked... ";

20: FilteredInput = XSSVulnerableList.XSSSanitiser();

21: displayOutput(FilteredInput);

 }

22: if(XSSSafeList.equalElements(XSSVulnerableList))

 return "Operation successfully performed. No threats detected ";

23: else

24: return "Some error occurred somewhere in between. Please perform this operation again! ";

 }

74

CSRF Attack

1: EncryptedValue staticModeAnalysisCSRF(String scannedForm,String pageHotspot) // performing

 analysis in Static-Mode for CSRF Attack

 {

2: String action = getSessionID(); // performing encryption of Session-ID and storing that in token

3: EncryptedValue smev = action.encrypt();

4: return smev;

 }

5: EncryptedValue dynamicModeAnalysisCSRF(String scannedForm,String pageHotspot) // performing

analysis in Dynamic- Mode for CSRF Attack

 {

6: EncryptedValue real_action = getHiddenInputValueOfFormTriggered();

7: return real_action;

 }

8: String compareDifferentModesCSRF(String scannedForm,String pageHotspot)

 {

9: EncryptedValue smev = staticModeAnalysisCSRF(scannedForm,pageHotspot);

10: EncryptedValue rmev = dynamicModeAnalysisCSRF(scannedForm,pageHotspot); // perform checking

of the tokens at runtime

11: if(smev == null OR rmev = null)

12: return "Some error occurred while processing information about CSRF attack in page

"+pageHotspot;

13: if(smev.matches(rmev))

14: return "User is genuine and there doesn't exist any attempt to attack in page "+pageHotspot;

15: else

16: return "There was an attempt of CSRF attack on the page "+pageHotspot;

 }

Figure4.13.Model Generation for SQL Injection, XSS and CSRF attack

4.8.4 Algorithm 4: Prevention of XSS attack

The Prevention algorithm for XSS attack is shown below in Figure 4.14.

String Q = username; // Q = username

Int Length = length of Q;

Bool Attack = false;

Int Counter = 1;

Char c;

while (Attack=false or Counter <=Length){

c = scan nextCharacter(Q); // Scans next character from string

75

Counter++;

If (c=’<’ or c=’>’)

Attack=checkForTag(Q);

} // Explained below

If (Attack=true){

If (input to be stored in public section)

Print “Stored xss attack”;

Else

Print “Reflected xss attack”;

 }

Else

Print “safe input”;

// Function checkForTag(Q)

Char c;

String tag;

Bool attack = false;

While (c!=’>’ or attack=false){

c =nextCharacter(Q);

If (c=’<’)

attack=checkForTag(Q);

Append c to tag; // Appends char c to string tag

Attack = checkTagPresent(tag);

}

return value of attack;

 Figure4.14. Prevention of XSS attack

4.8.5 Algorithm 5: Prevention of SQL Injection attack

The Prevention algorithm for SQL Injection attack is shown below in Figure 4.15.

String input = User input from query string;

Send these inputs to dummy table;

If (exception)

Redirects user to login page showing an error;

Else

Check username and password in database;

 Figure4.15. Prevention of SQL Injection attack

76

4.8.6 Algorithm 6: Prevention of CSRF attack

The Prevention algorithm for CSRF attack is shown below in Figure4.16.

String credentials = user credentials; // from HTTP request

Int id = token_id of credentials;

Int Session_id = session_id of credentials;

Int Generated_id = Generate(credentials) ; // returns token_id from credentials

If (Token_id = null or Token_id != Generated_id)

Abandon request;

User is authenticated and requested action is executed;

 Figure4.16. Prevention of CSRF attack

4.8.7 Algorithm 7: Validation and Error reporting

The Validation and Error reporting algorithm is shown below in Figure4.17.

Input : The current input page

Output : The output screen with results and errors

1: void resultObtainedAfterAnalysis() // To perform test and generate errors

 {

2: String attackSQL = compareDifferentModesSQLI(currentPage);

3: String attackXSS = compareDifferentModesXSS(currentPage);

4: String attackCSRF =compareDifferentModesCSRF(currentForm,currentPage);

5: printOutput(attackSQL);

6: printOutput(attackXSS);

7: printOutput(attackCSRF);

8: printOutput("All Operations performed on the current input page ");

 }

 Figure4.17.Validation and Error report

77

4.9 CONCLUSION

The chapter began by justifying the need of security system. It is a hybrid system which is a

combination of three attacks which are Cross Site Script i.e. XSS, SQL Injection i.e. SQLI,

Cross-Site Request Forgery i.e. CSRF. It is developed in PHP. This proposed hybrid security

system prevents the most commonly found serious and dangerous website attacks i.e. XSS, SQL

injection and CSRF attack in a more efficient way by reducing the drawbacks of the existing

techniques which are being observed and thereby to improve performance. The proposed hybrid

security system comprised of four phases which has been explained in this chapter. The

implementation and experimental analysis of hybrid security system is discussed in the next

chapter in detail.

78

79

CHAPTER V

 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

5.1 INTRODUCTION

In the previous chapter, we proposed a hybrid security system which is a combination of three

attacks which are SQL Injection i.e. SQLI, Cross Site Script i.e. XSS, Cross Site Request

Forgery i.e. CSRF. It is developed in PHP. This security system prevents the most commonly

found serious and dangerous web attacks which are XSS, SQLI and CSRF attack in a more

efficient way by reducing the drawbacks of the existing techniques given by different researchers

which are being observed and thereby to improve performance. The proposed hybrid system

works in different phases which leads to easy design and implementation.

5.2 IMPLEMENTATION OF PROPOSED HYBRID SECURITY SYSTEM

The Security System[76] is a tool which is developed in PHP to prevent SQLI,XSS and CSRF

attack. The proposed technique is implemented for applications which are PHP based. The tool

works in different phases which leads to easy design and implementation.

5.2.1 SQL Injection Vulnerability

SQLI is a standout amongst the most widely recognized major threat to database driven

applications security.[5,22] SQL injection is a method where malicious SQL queries are induced

as an input so as to exploit the weakness present within database. The attacker tries to inject

malicious data. The unauthorized access takes place after the execution of malicious input. It

permits a hacker to pick up control over the database of an application and therefore, a hacker

will be able to change the data.[23,24,25]

80

5.2.1.1 Exploiting SQL Injection Vulnerability

The user login page for inputting username and password is shown below using Figure 5.1.

Figure5.1. User Login Input Page

The user login page to input username and password for legitimate user is shown using

Figure5.2.

INPUT:

81

Figure5.2. User Login Page with Legitimate Input

OUTPUT:

The output showing successful login as shown below in Figure5.3.

82

Figure5.3. Output showing successful login

The User Login Page with malicious input is shown below using Figure5.4.

INPUT:

Figure5.4. User Login Page with Special Character Input

83

OUTPUT:

The output showing successful login is shown below in Figure5.5.

Figure5.5. Output showing successful login with special character

 The above output shows successful login. From the output it can be observed that the code is

vulnerable to SQL injection attack.

5.2.1.2 Preventing SQL Injection Vulnerability

The following snapshots shows the stepwise working of prevention of SQL injection attack

using the proposed tool.

Step 1: Enter the Path of web application as shown below in Figure5.6

84

Figure5.6. SQL form to enter web application path

Step 2: click on the option1.The output is shown below in Figure 5.7.

Figure5.7. Output generated after completion of step2

85

Step 3: click on the option2. The output is shown below in Figure 5.8.

Figure5.8. Output generated after completion of step3

Step 4: click on the option3. The output is shown below in Figure 5.9.

Figure5.9. Output generated after completion of step4

86

Step 5: click on the option4. The output is shown below in Figure5.10.

 Figure5.10. Output generated after completion of step5

Step 6: click on the option5 i.e Run option . The output is displayed.

The User Login Page with legitimate input is shown below using Figure 5.11.

INPUT:

87

Figure5.11. User Login Page with legitimate input

OUTPUT:

Figure 5.12 shows successful login.

88

Figure5.12. Output showing successful login

From the above output it can be observed that this is not a SQL Injection.

The User Login Page with Tautology based non-legitimate input as shown below using

Figure5.13.

INPUT:

89

Figure5.13. User Login Page with Tautology based non- legitimate input

OUTPUT:

The output showing SQL Injection attempted as shown below in Figure5.14.

Figure5.14. Output showing SQL Injection attempted

90

The User Login Page with Union query based non-legitimate input as shown below using

Figure5.15.

INPUT:

Figure5.15. User Login Page with union query based non- legitimate input

OUTPUT:

The output showing SQL Injection attempted as shown below in Figure5.16.

91

Figure5.16. Output showing SQL Injection attempted

The User Login Page with Blind injection based non-legitimate input as shown below using

Figure5.17.

INPUT:

92

Figure5.17. User Login Page with blind injection based non- legitimate input

OUTPUT:

The output showing SQL Injection attempted as shown below in Figure5.18.

 Figure5.18. Output showing SQL Injection attempted

93

The User Login Page with Stored procedure based non-legitimate input as shown below using

Figure5.19.

INPUT:

Figure5.19. User Login Page with stored procedure based non- legitimate input

OUTPUT:

The output showing SQL Injection attempted as shown below in Figure5.20.

94

 Figure5.20. Output showing SQL Injection attempted

The User Login Page with Piggy-backed query based non-legitimate input as shown below

using Figure5.21.

INPUT:

95

Figure5.21. User Login Page with Piggy-backed query based non- legitimate input

OUTPUT:

The output showing SQL Injection attempted as shown below in Figure5.22.

96

Figure5.22. Output showing SQL Injection attempted

The above output shows the presence of SQLIA. An error report is generated and hence SQLI

attack is prevented. Thus the non-legitimate user will not be allowed to access database.

5.2.2 XSS Vulnerability

It is a kind of injection in which hacker injects his own script code into a vulnerable website

page. At the point when a victim visits this infected page in the web application just by browsing

the web site, his browser downloads the hacker code and automatically executes it with

accessing any file[19]. A hacker can send a malicious script to a non-suspecting client utilizing

XSS. The end client browser does not have the possibility that the script ought not be trusted,

and thus run the script. The malicious JavaScript appears as a legitimate component of web

application by the victim's program. Hacker would be able to access data i.e. cookies, session id

etc. after running the malicious script. [20,21]

5.2.2.1 Exploiting XSS Vulnerability

The user login page for inputting username and password is shown below using Figure 5.23.

97

INPUT:

Figure5.23. User Login Page with legitimate input

OUTPUT:

The output showing successful login as shown below in Figure5.24.

98

Figure5.24. Output showing successful login

The User Login Page with malicious input is shown below using Figure5.25.

INPUT:

99

 Figure5.25. User Login Page with malicious input

The output shown below in Figure 5.26 shows vulnerability to XSS attack.

OUTPUT:

100

 Figure5.26.Output showing vulnerability to XSS attack

From the above output it can be observed that the code is vulnerable to XSS attack.

5.2.2.2 Preventing XSS Vulnerability

The following snapshots shows the stepwise working of prevention of XSS attack using the

proposed tool.

Step 1: Enter the Path of web application as shown below in Figure 5.27.

101

Figure5.27. XSS form to enter web application path

Step 2: click on the option1.The output is shown below in Figure 5.28.

Figure5.28. Output generated after completion of step2

102

Step 3: click on the option2. The output is shown below in Figure5.29.

 Figure5.29. Output generated after completion of step3

Step 4: click on the option3. The output is shown below in Figure5.30.

 Figure5.30. Output generated after completion of step4

103

Step 5: click on the option4 i.e Run option . The output is displayed.

Figure 5.31 shows User Login Page with legitimate input.

INPUT:

 Figure5.31. User Login Page with legitimate input

OUTPUT:

Figure 5.32 shows successful login.

104

Figure5.32. Output showing successful login

The above output shows successful login.

Figure 5.33 shows User Login Page with malicious script tag input.

INPUT:

105

Figure5.33. User Login Page with malicious script tag input

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.34.

 Figure5.34. Output showing XSS attack attempted

106

Figure 5.35 shows User Login Page with malicious source tag input.

INPUT:

 Figure5.35. User Login Page with malicious source tag input

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.36.

107

 Figure5.36. Output showing XSS attack attempted

Figure 5.37 shows User Login Page with malicious body tag input.

INPUT:

 Figure5.37. User Login Page with malicious body tag input

108

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.38.

 Figure5.38. Output showing XSS attack attempted

Figure 5.39 shows User Login Page with malicious image tag input.

INPUT:

109

 Figure5.39. User Login Page with malicious image tag input

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.40.

 Figure5.40. Output showing XSS attack attempted

110

Figure 5.41 shows User Login Page with malicious iframe tag input.

INPUT:

Figure5.41. User Login Page with malicious iframe tag input

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.42.

111

 Figure5.42. Output showing XSS attack attempted

Figure 5.43 shows User Login Page with malicious div tag input.

INPUT:

 Figure5.43. User Login Page with malicious div tag input

112

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.44.

 Figure5.44. Output showing XSS attack attempted

Figure 5.45 shows User Login Page with malicious embed tag input.

INPUT:

Figure5.45. User Login Page with malicious embed tag input

113

OUTPUT:

The output showing XSS attack attempted as shown below in Figure5.46.

 Figure5.46. Output showing XSS attack attempted

The above output shows the presence of XSS attack. An error report is generated and hence XSS

attack is prevented. Thus the non-legitimate user will not be allowed to access the credentials.

5.2.3 CSRF Vulnerability

CSRF attack arises when a non trusted website causes a client's web browser to permit a

malicious activity on a trusted website. This is due to the fake HTTP request as it exploits the

currently running client’s session of the web browser. A CSRF web attack requires inclusion of

three things. A target client, a trustable website, and a non trustable web site. The target client is

currently holding an active session with a trustable site and in the meanwhile, the client visits a

malicious or non trusted website. The non trustable or malicious web site injects a HTTP request

for the trustable web site into the target client’s session which compromises its integrity. These

vulnerabilities permit a hacker to exchange money out from client’s account, to collect client’s

email id, disregard client privacy etc.

5.2.3.1 Exploiting CSRF Vulnerability

User login page for inputting username and password is shown below using Figure 5.47.

114

INPUT:

 Figure5.47. User Login Page with legitimate input

OUTPUT:

Figure 5.48 shows successful login.

115

Figure5.48. Output showing successful login

5.2.3.2 Preventing CSRF Vulnerability

The following snapshots shows the stepwise working of prevention of CSRF attack using the

proposed tool.

Step 1: Enter the Path of web application as shown below in Figure 5.49.

 Figure5.49. CSRF form to enter web application path

116

Step 2: click on the option1.The output is shown below in Figure 5.50.

 Figure5.50. Output generated after completion of step2

Step 3: click on the option2. The output is shown below in Figure 5.51.

117

 Figure5.51. Output generated after completion of step3

Step 4: click on the option3. The output is shown below in Figure 5.52.

 Figure5.52. Output generated after completion of step4

118

Step 5: click on the option4 i.e Run option . The output is shown below.

Figure 5.53 shows User Login Page with legitimate input.

INPUT:

 Figure5.53. User Login Page with legitimate input

OUTPUT:

Figure 5.54 shows successful login.

119

Figure5.54. Output showing successful login

Figure 5.55 shows User Login Page with malicious input.

INPUT:

 Figure5.55. User Login Page with malicious input

120

OUTPUT:

The output showing CSRF attack attempted as shown below in Figure5.56.

 Figure5.56. Output showing CSRF attack attempted

From the above output it can be observed that there is an attempt of CSRF attack. An error report

is generated and hence CSRF attack is prevented. Thus the non-legitimate user will not be

allowed to access the credentials.

5.3 EXPERIMENTAL AND COMPARATIVE ANALYSIS

In this section, test-bed is used to analyze the efficiency of the methodology which has been

proposed. This test bed is a set of web applications which are vulnerable to SQLI, XSS and

CSRF attacks along with test inputs that represent malicious and legitimate access to the web

application.

121

5.3.1 Test Input Generation

As per the proposed methodology, every application consists of two sets of test inputs. The first

testing set is having the HTTP request statements containing valid input. They are required

during static mode so as to construct model[76]. It is the developer’s responsibility to consider

all kind of test inputs so that they can cover every hotspot in the application. The second testing

set consists of malicious SQLI, XSS and CSRF HTTP request statements.

5.3.2 Web Application Testing And Results

To analyze the efficacy of the methodology which has been proposed, results are calculated on

different set of PHP applications having multiple complexities. The web applications selected are

exposed to SQLI attack. Similarly, the web applications selected are exposed to XSS attack and

finally, the web applications selected are exposed to CSRF attack. Experimental results for

SQLIA is mentioned below in Table5.1. Similarly, experimental results for XSS attack is

mentioned below in Table5.2. The experimental results for CSRF attack is mentioned below in

Table5.3. The instrumentation overhead is defined as the %age of code which is appended to the

original code. Query execution overhead is computed as the percentage increase in the time

needed for running queries of modified web application to the time needed for running queries in

original web application. False positive is to detect an attack even if it does not exist.

Table5.1 Experimental analysis for SQLIA

Web

Application

Lines

of code

(K)

Hotspots

Instrumented

Instrumentation

overhead(%)

Query

execution

overhead(%)

Prevention

(%)

False Positive

College portal 1.2 25 8 1.05 100 0

ToyRental 7.6 40 10 2.10 100 0

BuyMilkOnline 4.5 20 7 1.80 100 0

122

Table5.2 Experimental analysis for Cross Site Script attack

Web

Application

Lines

of code

(K)

Hotspots

Instrumented

Instrumentation

overhead(%)

Query

execution

overhead(%)

Prevention

(%)

False Positive

College portal 1.2 17 6 1.01 100 0

ToyRental 7.6 32 7 1.91 100 0

BuyMilkOnline 4.5 13 5 1.66 100 0

Table5.3 Experimental results for Cross Site Request Forgery attack

Web

Application

Lines

of code

(K)

Hotspots

Instrumented

Instrumentation

overhead(%)

Query

execution

overhead(%)

Prevention

(%)

False

Positive

College portal 1.2 30 8 1.30 100 0

ToyRental 7.6 45 10 2.21 100 0

BuyMilkOnline 4.5 35 6 1.80 100 0

The efficiency of the solution which is proposed is tested by noticing the total attacks which are

prevented to the total attacks which are performed. From the experimental analysis mentioned

above, it can be seen that the security system is 100% effective to prevent the most commonly

found serious and dangerous web attacks namely SQLI ,XSS as well as CSRF attack with very

little overhead and no false alarms.

5.3.3 Comparative Analysis

The comparative analysis of different techniques/approaches proposed by different researchers is

shown below in Table5.4.

123

Table5.4 Comparative analysis of different techniques/approaches

S.No. Technique/Approach Attack Advantages Disadvantages Prevention

1. Runtime monitors for

tautology[51]

SQLI

Simple to

implement and

less complex.

For java

applications

only, detects

tautology only,

incomplete

implementation

Yes

2. SQLIMW[50]

SQLI

More flexible

and scalable,

less

computation

time

Works for sign-

in applications

only

Yes

3. Blueprint[42]

XSS

Robust

prevention

approach

Possibility of

false positive

Yes

4. Client based proxy

[74]

CSRF

Easy to

monitor attack

Chances to lose

sensitive

information

No

5. Randomizing the

instruction set[69]

CSRF

Easy to

implement

Possibility of

false positive

Yes

6. Dynamic cookie

rewriting[19]

XSS

Effective

technique

Not tested with

HTTP

connection

Yes

7. CANDID[56] SQLI

Less complex Performance

issues,less

efficient

Yes

8. Integrated approach

for SQLI and

SQLI, Less complex

Doesn’t work

for zero day

Yes

124

reflected XSS[49] Reflected XSS

exploits, false

positive

9. SQLDOM[63]

SQLI

Efficient in

solving

compiler errors

Developer

learning is

required,

increased

runtime cost

No

10. Browser

protection[27]

CSRF

Easy to

implement

Plugins may

get crushed

Yes

11. Proposed Hybrid

Security System[76]

SQLI,XSS,

CSRF

Easy to

implement,no

false positive,

less runtime

overhead

Works for PHP

applications

and for known

attacks

Yes

The comparative analysis shows that the proposed Hybrid Security System prevents three attacks

whereas other techniques prevent either one or two attack. The proposed hybrid security system

which is a combination of three attacks prevents SQLI, XSS and CSRF attack with very little

overhead and no false positives whereas other techniques shows false positives.

5.4 CONCLUSION

This chapter discussed the implementation of hybrid security system. Later on experimental

analysis and comparative analysis for different web attacks is performed. To analyze the

efficiency of proposed method, results are evaluated on different web based applications. The

experimental analysis shows that the hybrid security system is 100% effective in preventing the

web attacks namely SQLI , XSS as well as CSRF attack with very little overhead and no false

alarms. The detailed conclusion of the work proposed and the possibilities of future research

work is discussed in the next chapter.

125

CHAPTER VI

 CONCLUSIONS AND FUTURE SCOPE

6.1 CONCLUSIONS

This chapter presents the major achievements of the research work and provides an outlook to

further research in this area. The research work has given a security system for web attacks.

Web applications are often vulnerable to perform attacks, which further give hackers to easy

access to the database. In light of the expanded number of assaults exploiting, many endeavors

have been made to discover solution for the issue. The best arrangement is to create the programs

in a safe way. Many archives have been distributed in regard to secure advancement of web

based applications although very little has managed. Web engineers are not yet security mindful,

and the issues keep on appearing. Accordingly, security administrators are continuously

searching for different measures that can be taken against this issue. Developers are not yet

security aware, and the issues continue to appear. Thus security experts constantly looking for

some other countermeasures which can be considered against the problem.

An in-depth literature work was carried out and the critical analysis of the same raised the

following objectives:

 To propose framework for Security system

 To propose prevention techniques for the most commonly found serious and

dangerous web attacks such are Cross Site Script i.e. XSS, SQL Injection i.e. SQLI,

Cross-Site Request Forgery i.e. CSRF on web applications.

 To perform validation and to generate results and error report.

126

 To perform evaluation of security system with a set of web applications of different

complexities.

 To perform comparative analysis of security system

In the light of the objectives identified and in order to counter the increased number of attacks

taking advantage of the confidential access of information, a security system for the most

commonly found serious and dangerous web based attacks is proposed. It is a hybrid system

which is developed in PHP. This hybrid security system prevents the most commonly found

serious and dangerous web based attacks which are Cross Site Script i.e. XSS, SQL Injection i.e.

SQLI, Cross-Site Request Forgery i.e. CSRF in a more efficient way by reducing the drawbacks

of the existing techniques given by different researchers and thereby to improve performance.

The proposed hybrid system works in different phases which leads to easy design and

implementation.

To analyze the efficacy of the methodology which has been proposed, results are calculated on

different set of PHP applications having multiple complexities. The efficiency of the solution

which is proposed is tested by noticing the total attacks which are prevented to the total attacks

which are performed. From the experimental analysis mentioned above, it can be seen that the

security system is 100% effective to prevent the most commonly found serious and dangerous

web attacks namely SQLI ,XSS as well as CSRF attack with very little overhead and no false

alarms.

6.2 BENEFITS OF PROPOSED DESIGN

The significant achievements of the proposed design are listed below:

 A security system which is 100% effective to prevent the most commonly found

serious and dangerous web attacks namely SQL injection ,XSS and CSRF.

 Simple framework

 Complete implementation

 Less overhead

 No false alarms

127

6.3 FUTURE SCOPE

The work contained in the thesis made an attempt to answer the questions which came forward

as a result of literature survey. The work can be extended with the further research in the near

future as mentioned below-

 The proposed Hybrid Security System counter web based attacks which are Cross

Site Script i.e. XSS, SQL Injection i.e. SQLI, Cross-Site Request Forgery i.e. CSRF.

This hybrid security system is specifically for PHP applications. The implementation

can be done using different scripting languages other than PHP depending upon the

requirement.

 The proposed Hybrid Security System works for known attacks. It can be extended

for zero day exploits.

 The Hybrid Security System can be expanded for more web vulnerabilities and

attacks which are listed by OWASP.

128

129

 REFERENCES

[1] www.open.edu / openlearn / science-maths-technology /computing-and-ict /introduction-

information-security/content-section

[2] http://www.slideshare.net/cchamnap/introduction-to-web-architecture

[3] https://www.techopedia.com/definition/24649/three-tier-architecture

[4] J.G. Kim, ”Injection Attack Detection using the Removal of SQL Query Attribute

Values,” in 11
th

 IEEE conference on Information Science and Applications(ICISA),April

2011.

[5] The Open Web Application Security Project, " OWASP TOP 10 Project ",

 http://www.owasp.org/

[6] http://www.sans.org/reading-room/whitepaper/application/web based attacks

[7] http://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/

[8] M.Christodorescu, S. Jha, ”Static analysis of executables to detect malicious patterns,” in

 12
th

 USENIX Security Symposium(Security’03),ACM, August 2003,pp.169-186.

[9] F.Bellard, “ Qemu , a Fast and Portable Dynamic Translator, ” In USENIX Annual

 Technical Conference, ACM,April 2005.

[10] G. Kniesel, “Type-Safe Delegation for Run-Time Component Adaptation,” in European

 Conference on Object-Oriented Programming, Springer, November 1999, pp. 351–366.

[11] S.O. Al-Mamory, H. Zhang, “ Intrusion Detection Alarms Reduction Using Root Cause

 Analysis And Clustering,” in Computer Communications, Elsevier,Vol. 32,No.2,February

http://www.slideshare.net/cchamnap/introduction-to-web-architecture
https://www.techopedia.com/definition/24649/three-tier-architecture
http://www.owasp.org/
http://www.sans.org/reading-room/whitepaper/application/web%20based%20attacks

130

 2009, pp. 419-430.

[12] B . Nagpal, N. Chauhan, N. Singh, P .Sharma, "Preventive Measures For Securing Web

 Applications Using Broken Authentication And Session Management Attacks: A Study, "

 in International Conference on Advances in Computer Engineering and Applications

 (ICACEA-2014),Feb2014.

[13] A. Shrestha, P.S. Maharjan , S. Paudel , ”Identification and Illustration of Insecure Direct

 Object References and their Countermeasures, ” International Journal of Computer

 Applications (IJCA), Vol. 114, No.18, , March 2015.

[14] B. Eshete,A. Villafiorita,K Weldemariam, ” Early Detection of Security Misconfiguration

 Vulnerabilities in Web Applications , ” in 6
th

IEEE International Conference on

 Availability, Reliability and Security (ARES), August 2011.

[15] X.Shu , D.Yao, E. Bertino,” Privacy-Preserving Detection of Sensitive Data Exposure,”

 IEEE Transactions on Information Forensics and Security,Vol. 10, No. 5, 2015, pp 1092-

 1103.

[16] H.T.Le, C.D. Nguyen, L.Briand, B.Hourte , “ Automated Inference of Access Control

 Policies for Web Applications,” in 20
th

 ACM Symposium on Access Control Models and

 Technologies, June 2015, pp. 27-37.

[17] I. Chowdhury, M. Zulkernine , ” Using Complexity, Coupling, and Cohesion metrics as

 Early Indicators of Vulnerabilities , ” Journal of Systems Architecture, Elsevier, Vol.

 57, No. 3, March 2011.

[18] J. Wang , H. Wu , ” URFDS : Systematic discovery of Unvalidated Redirects and

 Forwards in web applications , ” in IEEE Conference on Communications Network

and Security (CNS), September 2015.

[19] R. Putthacharoen , P. Bunyatnoparat , “ Protecting Cookies from Cross Site Script

 Attacks using Dynamic Cookies Rewriting Technique , ” in 13
th

 IEEE International

 Conference on Advanced Communication Technology (ICACT), February 2011.

131

[20] Q. Z. H. Chen , J. Sun , “ An Execution flow Based Method for Detecting Cross

 Site Scripting Attacks, ” in 2
nd

 IEEE International Conference on Software

 Engineering and Data Mining (SEDM), June 2010, pp160-165.

[21] B.Nagpal,N.Chauhan ,N. Singh,"Approaches to Detect and Prevent Cross-Site Scripting

 Attacks on Websites : A Survey, ” I-Manager’s Journal on Information Technology

 (JIT),ISSN :2277-5110,Vol.2,No.4, 2013,pp 36-43.

[22] D. Aucsmith , ” Creating and maintaining software that resists malicious attack,”

 Distinguished Lecture Series,Atlanta GA,September 2004.

 http://www.gtisc.gatech.edu/aucsmith_bio.htm

[23] G. Jiao , C. M. XU, J. Msohua ,“ SQLIMW : a new mechanism against SQL Injection

 , “ in IEEE International Conference on Computer Science and Service System,

 August2012.

[24] B. Nagpal ,N.Chauhan,N. Singh," A Survey on the Detection of SQL Injection Attacks

 and Their Countermeasures,”Journal of Information Processing Systems(JIPS),Korea,

 ISSN: 1976-913X, Vol.13, No.4, 2017, pp 689-702.

 [25] B. Nagpal , N. Singh ,N. Chauhan , A. Panesar ,“ Tool based Implementation of SQL

 Injection for Penetration Testing, ” in IEEE International Conference on Computing,

 Communication and Automation(ICCCA-2015),2015.

 [26] A. Barth,C.Jackson,J.C.Mitchell, “ Robust Defenses for Cross-Site Request Forgery

 ,” in Proceedings of the 15
th

 ACM Conference on Computer and Communications

 Security (CCS’08), October 2008,pp 75-88.

 [27] W. Maes, T. Heyman, L. Desmet, W. Joosen, “ Browser protection against cross-

 site request forgery,” in proceedings of the first ACM workshop on Secure Execution

 Untrusted Code (SecuCode’09), November 2009, pp 3-10.

 [28] N.Jovanovic, E.Kirda , C. Kruegel,”Preventing Cross-Site Request Forgery Attacks,”

http://www.gtisc.gatech.edu/aucsmith_bio.htm

132

 in IEEE International Conference on Securecomm and Workshop , August 2006,

 pp 1- 10.

 [29] www.webappsec.org/

 [30] S. Gupta,B. B. Gupta, ” Cross–site scripting(XSS) attacks and defense Mechanisms

 : classification and state-of-the-art, ” International Journal of System Assurance

 Engineering and Management, Springer , Vol 6, September 2015,pp1-19.

 [31] B.B. Gupta, S. Gupta, S.Gangwar, M.Kumar, P.K.Meena, ”Cross-site scripting (XSS)

 abuse and defense: exploitation on several testing bed environments and its defense,”

 Journal of Information Privacy and Security,Taylor & Francis , Vol. 11 , No.2,July

 2015,pp 118–136.

 [32] A.Z.M Saleh,N.A.Rozali,A.G.Buja,K.A.Jalil,F.H.M. Ali,T.F.A. Rahman ,” A Method

 For Web Application Vulnerabilities Detection by Using Boyer - Moore String

 Matching Algorithm ,” Procedia Computer Science , Elsevier , ISSN: 1877- 0509,

 Vol.72,2015,pp112- 121.

 [33] B.B.Gupta, S .Gupta , ” XSS-SAFE: A Server-Side Approach to Detect and Mitigate

 Cross - Site Scripting (XSS) Attacks in JavaScript Code ,” Arabian Journal for

 Science and Engineering, Springer ,Vol. 41,No. 3, March 2016,pp 897-920.

 [34] M.I.P Salas, E. Martins ,” Security Testing Methodology for Vulnerabilities Detection

 Of XSS in Web Services and WS-Security , ” Electronic Notes in Theoretical

 Computer Science, Elsevier, ISSN 1571-0661, Vol. 302, February 2014,pp 133-154.

 [35] F. Duchene , R. Groz , S. Rawat , J.L. Richier , “ XSS Vulnerability Detection

 Using Model Inference Assisted Evolutionary Fuzzing*,” in 5
th

 IEEE International

 Conference on Software Testing , Verification and Validation , April 2012.

 [36] Y. Sun , D. He , “ Model Checking for the Defense against Cross-site Scripting

 Attacks ,” in IEEE International Conference on Computer Science and Service

http://www.webappsec.org/

133

 System, August 2012.

 [37] L. K. Shar and H. B.K Tan , “ Mining Input Sanitization Patterns for Predicting

 SQL Injection and Cross Site Scripting Vulnerabilities”,in 34
th

 IEEE International

 Conference of Software Engineering (ICSE), June 2012.

 [38] L.K. Shar and H.B.K. Tan, “Defending against Cross-Site Scripting Attacks,” IEEE

 Computer Society ,Vol. 45,No. 3, March 2012,pp 55-62.

 [39] A. Avancini ,M. Ceccato,“ Security Testing of Web Applications : a Search Based

 Approach for Cross - Site Scripting Vulnerabilities, ” in 11
th

 IEEE International

 Working Conference of Source Code Analysis and Manipulation (SCAM) ,

 September 2011.

 [40] R. Putthacharoen , P. Bunyatnoparat , “ Protecting Cookies from Cross Site

 Script Attacks Using Dynamic Cookies Rewriting Technique , ” in 13th IEEE

 International Conference of Advanced Communication Technology (ICACT),

 February 2011.

 [41] A. K. Zun , P. J. Guo , K. Jayaraman, M. D. Ernst, ”Automatic Creation of SQL

 Injection and Cross - Site Scripting Attacks , ” in 31
st

 IEEE International

 Conference of Software Engineering (ICSE), May 2009, pp 199-209.

 [42] M.T. Louw, V.N. Venkatakrishnan , “ BLUEPRINT: Robust Prevention of Cross-

 Site Scripting Attacks for Existing Browsers , ” in 30
th

 IEEE International

 Symposium on Security and Privacy, May 2009,pp 331-346.

 [43] G.Wassermann , Z. Su , “ Static Detection of Cross -Site Scripting Vulnerabilities

 ,” in 30
th

 ACM International Conference on Software engineering (ICSE’08),

 May 2008, pp 171-180.

134

 [44] J. Shanmugam , M. Ponnavaikko , ” Behavior - based anomaly detection on the

 serverside to reduce the effectiveness of Cross Site Scripting vulnerabilities ,” in

 3
rd

 IEEE International Conference on Semantics , Knowledge and Grid, October

 2007.

 [45] Z. Qianjie,H Chen, J. San,”An Execution-flow based method for detecting cross-

 site scripting attacks , “ in 2
nd

 IEEE Conference on Software Engineering and

 Data Mining(SEDM), June 2010, pp 160-165.

 [46] J. Shanmugam ,M. Ponnavaikko , “Risk Mitigation for Cross Site Scripting Attacks

 Using Signature Based Model on the Server Side, ” in 2
nd

 IEEE International

 Multi - Symposiums on Computer and Computational Sciences (IMSCCS),

 August 2007.

 [47] J. Shanmugam, “ A solution to block Cross Site Scripting Vulnerabilities based

 on Service Oriented Architecture , ” in 6
th

 IEEE International Conference on

 Computer and Information Science(ICIS), July 2007.

 [48] S. J. Wang ,Y. H.Chang , W. Y. Chiang and W.S. Juang, “Investigations in Cross

 Site Script on Web – systems Gathering Digital Evidence Against Cyber

 Intrusions, ”in Proceedings of Future Generation Communication and Networking

 (FGCN),IEEE Computer Society,Vol.2, Dec 2007,pp 125-129.

 [49] P.Sharma , R. Johari ,S.S. Sarma ,”Integrated approach to prevent SQL injection

 attack and reflected cross site scripting attack,” in International Journal of System

 Assurance Engineering and Management, Springer ,Vol.3,No.4,pp 343- 351,2012.

 [50] G. Jiao ,C. M. XU,J.Msohua, “SQLIMW: a new mechanism against SQL-Injection

 ,“ in IEEE International conference on Computer Science and Service System,

 August 2012.

135

 [51] R. Dharam , S. G. Shiva , “ Runtime Monitors for Tautology based SQL Injection

 Attacks, ” in IEEE International Conference on Cyber Security, Cyber Warfare

 and Digital Forensic (CyberSec), June 2012.

 [52] I. Balasundaram , E Ramaraj , “ An Authentication Scheme for Preventing SQL

 Injection Attack Using Hybrid Encryption ,” in European Journal of Scientific

 Research,Vol. 53,No. 3,2011, pp 359-368.

 [53] S. Kunal, R.MohanDas, A.R.Pais, ” Model based hybrid approach to prevent SQL

 Injection attacks in PHP ,” in 1
st

 International Springer conference on security

 aspects of information technology(InfoSecHiComNet’11),2011,pp 3-15.

 [54] K.X. Zhang, C.J. Lin, S.J. Chen, Y. l.Hwang, H.L. Huang, F. H. Hsu, “ TransSQL:

 A Translation and Validation - based Solution for SQL - Injection Attacks, ” in

 1
st

 IEEE International Conference on Robot,Vision and Signal Processing (RVSP)

 ,November 2011.

 [55] A.Pomeroy,Q. Tan,"Effective SQL Injection Attack Reconstruction Using Network

 Recording, " in 11
th

 IEEE International Conference in Computer and Information

 Technology (CIT), September 2011.

 [56] P. Bisht , P . Madhusudan , and V. N. Venkatakrishnan , " CANDID : Dynamic

 Candidate Evaluations for Automatic Prevention of SQL Injection Attacks,"in ACM

 Transactions on Information System Security, Volume 13, No. 2, February 2010, pp

 1–39.

 [57] M. Ruse , T. Sarkar and S . Basu , " Analysis & Detection of SQL Injection

 Vulnerabilities Via Automatic Test Case Generation of Programs," in 10
th

 Annual

 International Symposium on Applications and the Internet, July 2010, pp. 31 – 37.

 [58] X. Wang , L. Wang, G. Wei , D . Zhang , Y. Yang , ” Hidden Web Crawling

136

 For SQL Injection Detection,”in 3
rd

 IEEE International Conference on Broadband

 Network and Multimedia Technology (IC-BNMT),October 2010.

 [59] R. Ezumalai , G. Aghila , “ Combinatorial Approach for Preventing SQL Injection

 Attacks,” in IEEE Conference on International Advance Computing Conference

 (IACC 2009), March 2009.

 [60] M. Junjin, “An Approach for SQL Injection Vulnerability Detection-AMNESIA,”in

 6
th

International Conference on Information Technology:New Generations, April

 2009, pp 1411- 1414.

 [61] S.Thomas , L. Williams , T. Xie," On automated prepared statement Generation

 to remove SQL Injection vulnerabilities ," in Information and Software Technology

 ,ACM,Vol. 51, No. 3, March 2009.

 [62] M. Kiani , A. Clark and G. Mohay , ” Evaluation of Anomaly Based Character

 Distribution Models in the Detection of SQL Injection Attacks, ” in 3
rd

 IEEE

 International Conference on Availability, Reliability and Security (ARES), March

 2008.

 [63] R. A. McClure and I. H. Krüger , “ SQL DOM : Compile Time Checking of

 Dynamic SQL Statements, ” in 27
th

 International ACM Conference on Software

 Engineering(ICSE),May 2005.

.

 [64] F. Valeur, D. Mutz, G. Vigna , " A Learning -Based Approach to the Detection of

 SQL Attacks,"in 2
nd

 International ACM Conference on Detection of Intrusions and

 Malware and Vulnerability Assessment, July 2005 ,pp 123-140.

 [65] C. Gould , Z. Su, P. Devanbu , “ JDBC Checker: A Static Analysis Tool for SQL/

 JDBC Applications, ” in 26
th

 International ACM Conference on Software

 Engineering (ICSE), May 2004, pp 697-698.

137

 [66] Y .Huang, S.Huang, T. Lin, C Tasi, " Web application security assessment by fault

 injection and behavior monitoring,"in12
th

 International ACM Conference on World

 Wide Web(WWW), May 2003,pp 148-159.

 [67] A. Barth, C.J.J.C. Mitchell , "Robust Defenses for Cross-Site Request Forgery,”

 in 15th ACM Conference on Computer and Communications Security, October

 2008.

 [68] N. Jovanovic , E. Kirda, and C. Kruegel, “Preventing Cross Site Request Forgery

 Attacks , ” in IEEE International Conference on Securecomm and Workshops,

 August 2006, pp 1-10.

 [69] M. S. Siddiqui , D. Verma , “ Cross Site Request Forgery : A Web Common

 Application weakness, ”in 3
rd

 IEEE International Conference on Communication

 Software and Networks (ICCSN), May 2011.

 [70] B.Chen , P. Zavarsky , R.Ruhl and D. Lindskog , “ A Study of the Effectiveness

 of CSRF guard , ” in 3
rd

 IEEE International Conference on Privacy, Security,

 Risk and Trust (PASSAT), October 2011.

 [71] W.Maes, T.Heyman, L. Desmet, W. Joosen , “ Browser protection against cross

 site request forgery, ” in 1
st
 ACM workshop on Secure Execution of Untrusted

 Code(SecuCode ’09), November 2009.

 [72] T. Alexenko , M. Jenne, S.D. Roy ,W. Zeng , “Cross Site Request Forgery: Attack

 and Defense , ” in 7
th

 IEEE International Conference on Consumer

 Communications and Networking Conference (CCNC), January 2010.

 [73] X.Lin, P. Zavarsky , R.Ruhl, D. Lindskog, “Threat modeling for CSRF Attacks,”

 in IEEE International Conference on Computational Science and Engineering

138

 (CSE),August 2009.

 [74] H. Shahriar and M. Zulkernine , “ Client side Detection of Cross Site request

 forgery attacks, ” in 21
st

 IEEE International Symposium on Software Reliability

 Engineering (ISSRE), November 2010.

 [75] B. Nagpal, N.Chauhan , N.Singh , “ Cross – Site Request Forgery : Vulnerabilities

 and Defenses,”in I-Manager’s Journal on Information Technology(JIT),ISSN:2277-

 5110,Vol.3,No.2,2014,pp 13-21.

 [76] B. Nagpal, N.Chauhan, N.Singh,“SECSIX:Security Engine for CSRF,SQL Injection

 and XSS attacks, ” in International Journal of System Assurance Engineering &

 Management (IJSA) , Springer , ISSN - 0976-4348,2016.doi. 10.1007/s1 3198-016-

 0489-0.

 [77] B.Nagpal, N.Chauhan, N.Singh,”A substitution based encoding scheme to mitigate

 Cross site script vulnerabilities , ” in I - Manager’s Journal on Information

 Technology(JIT),ISSN: 2277-5110,Vol.5,No.1,2015,pp 7-12.

 [78] B.Nagpal ,N.Chauhan,N.Singh,” Injection and Prevention of SQL Injection Attacks

 on Web Applications , ” in International Journal of Software and Web Sciences

 (IJSWS), ISSN: 227 9-0071,Vol.2,No.9,2014,pp 125-128.

 [79] B. Nagpal, N.Chauhan, N. Singh,“A viable solution to prevent SQL injection attack

 using SQL injection, ”in I - Manager’s Journal on Computer Science (JCOM),

 ISSN: 2347- 6141,Vol. 3,No.3,2015,pp 1-6.

 [80] B.Nagpal , N. Chauhan, N. Singh , “ Additional Authentication Technique : An

 Efficient approach to prevent cross site request forgery attack,” in I -

 Manager’s Journal on Information Technology (JIT) , ISSN: 2277- 5110, Vol.5,

139

 No.2,2016,pp.14-18.

 [81] S.Som, S.Sinha, R. Kataria , “ Study on SQL injection attacks:Mode,Detection and

 Prevention” , in International Journal of Engineering Applied Sciences and

 Technology(IJEAST),ISSN:2455-2143,Vol. 1,No.8,2016,pp 23-29.

 [82] M. S. S Sayyad, T.P. Bahare , “Study of SQL Injection Attacks , ” in International

 Journal of Computer and Communication Engineering , Vol. 2 ,No.5,Sept.

 2013.

 [83] R. P. Mahapatra , S. Khan , “ A Survey of SQL Injection Countermeasures, ” in

 International Journal of Computer Science & Engineering Survey (IJCSES) ,

 Vol. 3, No. 3,June2012.

 [84] K. Elshazly, Y.Fouad , M .Saleh , A.Sewisy, “ A Survey of SQL Injection Attack

 Detection and Prevention, ” in Journal of Computer & Communications , Vol.

 204,No.2,2014,pp1-9.

 [85] M .Rohilla , R. Kumar, G. Gopal , “ XSS Attacks : Analysis , Prevention and

 Detection , ” in International Journal of Advanced Research in Computer

 Science & Software Engineering (IJARCSSE), ISSN: 2277-128X,Vol.6, No.6, June

 2016.

 [86] A.Shrivatava,S.Chaudhary,A.Kumar,“XSS vulnerability assessment and prevention

 in web application, ” in 2
nd

 IEEE International Conference on Next Generation

 Computing Technologies(NGCT),Oct.2016.

 [87] M.V.Panah, N.K.Bayat,A.Asami,M.A. Shahmirzadi,“ SQL Injection Attacks : A

 Systematic Review, ”in International Journal of Computer Science & Information

 Security(IJCSIS),ISSN:1947-5500, Vol. 14,No.12,Dec.2016,pp 678-696.

 [88] R.D Giri , P.S. Kumar , L. Prasannakumar , V.R.N.V Murthy , “ Object Oriented

 Approach to SQL Injection Preventer, ” in 3
rd

 International Conference on

140

 Computing Communication & Networking Technologies(ICCCNT),2012.

 [89] M. Sonoda, T. Matsuda, D. Koizumi , S. Hirasawa ,“On automatic detection of SQL

 Injection Attacks by the feature extraction of the single character , ” in 4
th

 International Conference on Security of Information & Networks(SIN’11),2011.

 [90] N. Manaswini ,P.K. Sahoo , “ CSRF attacks on web applications, ” in International

 Journal of Advanced Computing Technique and Applications (IJACTA), ISSN:

 2321-4546,Vol.4,No.1,June2016.

141

BRIEF PROFILE OF RESEARCH SCHOLAR

Ms. Bharti Nagpal did her M.Tech(Information Systems) from N.S.I.T Dwarka, Delhi in 2009

and B.Tech(Computer Engineering) from N.I.T. Kurukshetra in 1999.She has over 16 years of

experience in teaching in B.Tech and MCA courses. Her areas of interest includes Information

Security,Operating Systems,Programming Languages ,Web Technologies.She has published 30

research papers in various journals and conferences of international fame.Currently,she is

working as Assistant Professor in the Department of Computer Engineering at Ambedkar

Institute of Advanced Communication Technology & Research(AIACT&R),Delhi.

142

LIST OF PUBLICATIONS OUT OF THESIS

(i)List of Published Papers (International Journal)

S.No Title of Paper Name of

Journal where

published

No. Volume &

Issue

Year Pages

1. Approaches to Detect

and Prevent Cross-Site

Scripting Attacks on

websites : A Survey

I-manager

Journal on

Information

Technology

(JIT)

2277-

5110

Vol. 2,4 2013 36-43

2. Cross-Site Request

Forgery:

Vulnerabilities and

Defenses

I-manager

Journal on

Information

Technology

(JIT)

2277-

5110

Vol.3,2 2014 13-21

3. A Survey on the

Detection of SQL

Injection Attacks and

Their Countermeasures

Journal of

Information

Processing

Systems

(JIPS),Korea

(ESCI)

1976-

913X

Vol.13,4 2017 689-702

4. Injection and

Prevention of SQL

Injection Attacks on

Web Applications

International

Journal of

Software and

Web Sciences

(IJSWS)

2279-

0071

Vol. 2,9 2014 125-128

5. Defending against

Remote File Inclusion

attacks on web

applications

I- manager

Journal on

Information

Technology

(JIT)

2277-

5110

Vol.4,3 2015 25-33

6. A viable solution to

prevent SQL Injection

attack using SQL

Injection

I-manager

Journal on

Computer

Science

(JCOM)

2347-

6141

Vol.3,3 2015 1-6

7. A substitution based

encoding scheme to

mitigate Cross Site

Script vulnerabilities.

I-manager

Journal on

Information

Technology

(JIT)

2277-

5110

Vol.5,1 2015 7-12

8. Additional

Authentication

I-manager

Journal on

2277-

5110

Vol.5,2 2016 14-18

143

Technique: An efficient

approach to prevent

Cross Site Request

Forgery attack.

Information

Technology

(JIT)

9. SECSIX: Security

Engine for CSRF,SQL

Injection and XSS

attacks.

International

Journal of

System

Assurance

Engineering

&

Management

(IJSA),

Springer

(SCOPUS)

0976-

4348

doi

10.1007/s13

198-016-

0489-0

2016

(ii)List of Communicated Papers

S. No Title of the Paper Name of Journal Present Status Year

1. Syntax analysis based hybrid

approach to mitigate web

attacks

International Arab

Journal of

Information

Technology(IAJIT)

 (SCIE)

Under review 2017

144

LIST OF RESEARCH PAPERS

 International Journal

[1] Nagpal Bharti , Chauhan Naresh , Singh Nanhay ,"Approaches to Detect and Prevent

 Cross – Site Scripting Attacks on Websites : A Survey, ” I- Manager Journal on

 Information Technology(JIT),ISSN :2277-5110,Vol.2,No.4, 2013, pp 36-43.

[2] Nagpal Bharti, Chauhan Naresh, Singh Nanhay , " A Survey on the Detection of SQL

 Injection Attacks and Their Countermeasures ,” Journal of Information Processing

 Systems(JIPS),Korea,ISSN: 1976-913X, Vol.13, No.4, 2017, pp 689-702.

 [3] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , “ Cross – Site Request Forgery :

 Vulnerabilities and Defenses, ” I-Manager Journal on Information Technology (JIT),

 ISSN: 2277- 5110,Vol.3, No.2, 2014, pp 13-21.

 [4] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , “ SECSIX : Security Engine for

 CSRF, SQL Injection And XSS attacks, ” International Journal of System Assurance

 Engineering & Management (IJSA) , Springer , ISSN - 0976-4348 ,doi. 10.1007/s1

 3198-016- 0489-0, 2016.

 [5] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , ” A substitution based encoding

 scheme to mitigate Cross site script vulnerabilities , ” I - Manager Journal

 on Information Technology(JIT),ISSN: 2277-5110,Vol.5,No.1, 2015, pp 7-12.

 [6] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , ” Injection and Prevention of

 SQL Injection Attacks on Web Applications, ” International Journal of Software and

 Web Sciences (IJSWS), ISSN: 2279-0071, Vol. 2, No.9, 2014, pp 125-128.

145

 [7] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , “ A viable solution to prevent

 SQL injection attack using SQL injection, ” I -Manager Journal on Computer

 Science (JCOM),ISSN: 2347- 6141,Vol. 3,No.3, 2015, pp 1-6.

 [8] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , “ Defending against Remote

 File Inclusion attacks on web applications, ” I - Manager Journal on Information

 Technology (JIT) ,ISSN- 2277-5110,Vol.4,No.3,2015, pp.25-33.

 [9] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , “ Additional Authentication

 Technique : An Efficient approach to prevent cross site request forgery

 Attack,” I –Manager Journal on Information Technology (JIT) , ISSN: 2277-5110,

 Vol. 5, No. 2, 2016, pp.14-18.

 International Conference

 [1] Nagpal Bharti , Singh Nanhay ,Chauhan Naresh , Panesar Angel ,“ Tool based

 Implementation of SQL Injection for Penetration Testing, ” in IEEE International

 Conference on Computing, Communication and Automation(ICCCA-2015),2015.

 [2] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , Sharma Pratima , “ CATCH :

 Comparison and Analysis of Tools covering Honeypot , ” in IEEE International

 Conference on Advances in Computer Engineering and Applications (ICACEA-2015)

 ,2015.

 [3] Nagpal Bharti ,Chauhan Naresh , Singh Nanhay , Kamal Pratibha , “Analysis and

 Comparison of Web Application Firewall Tools , ” in IEEE International Conference

 on Advances in Computer Engineering and Applications (ICACEA-2015),2015.

146

[4] Nagpal Bharti ,Chauhan Naresh , Singh Nanhay , Sharma Pratima , “ Preventive

 Measures For Securing Web Applications Using Broken Authentication And Session

 Management Attacks: A Study, ”in International Conference on Advances in Computer

 Engineering and Applications (ICACEA-2014),2014.

 [5] Nagpal Bharti , Chauhan Naresh , Singh Nanhay , Murari Radhika , “A Survey and

 Taxonomy of Packet Classification algorithms, ” in IEEE International Conference

 on Advances in Computer Engineering and Applications (ICACEA-2015),2015.

