Roll No. Total Pages: 3

May 2024 B.Tech. (Civil) - VI SEMESTER HYDRAULIC ENGINEERING (PCC-CE-302)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

- 1. (a) Determine the nature of flow when an oil of specific gravity 0.85 and viscosity 0.38 Ns/m² flows in a 5 cm diameter horizontal pipe with velocity 2 m/s.(1.5)
- (b) What is meant by turbulence? Also write what are the causes of turbulence? (1.5)
 - (c) Define displacement thickness. (1.5)

002620/70/111/334

248[P.T.O.

width 8 m, is 15 m3/s when depth of flow of water is

	(d)	What are the limitations of hydraulic similitude? (1.5)	
	(e)	Differentiate between open channel flow and pipe flow.	
		(1.5)	
	(f)	What is Chezy's formula? (1.5)	
	(g)	Explain Impulse-Momentum Principle. (1.5)	
	(h)	State the conditions under which uniform and non-uniform	
		flows are produced. (1.5)	
	(i)	Find the loss of head when a pipe of diameter 200 mm	
	*	is suddenly enlarged to a diameter of 400 mm. The rate	
		of flow of water through the pipe is 250 litres/sec.	
		M .xaM] [2000H E (1.5)	
	(j)	What do you mean by grid generation in CFD? (1.5)	
		PART-B	
2.	(a)	Derive Hagen-Poiseuille equation and state the	
		assumptions made. (8)	
	(b)	What are the semi-empirical theories of turbulence?	
		Explain the concept of mixing length introduced by Prandtl	
		and state the relationship that exists between the turbulent	
		shearing stress and mixing length. (7)	
3.	(a)	What do you mean by separation of boundary layer?	
	i awc	What is the effect of pressure gradient on boundary layer	
		separation? (7)	
	(b)	What is a boundary layer? Why does it increase with	
		distance from the upstream edge? Also write charact-	
		eristics of a boundary layer. (8)	
002	620/7	0/111/334 2	

- Using the method of dimensional analysis obtain an expression for the discharge Q over a rectangular weir. The discharge depends on the head H over the weir, acceleration due to gravity g, length of weir crest L, height of the weir crest over the channel bottom Z and the kinematic viscosity v of the liquid. (15)
- The discharge of water through a rectangular channel of 5. width 8 m, is 15 m³/s when depth of flow of water is 1.2 m. Calculate:
 - Specific energy of the flowing water.
 - Critical depth and critical velocity.
 - Value of minimum specific energy. (10)
 - (b) Briefly explain classification of flow in open channels.

(5)

- 6. Explain the term hydraulic jump. Prove that loss of energy head in a hydraulic jump is equal to $(d_2 - d_1)^3/(4d_1d_2)$, where d₁ and d₂ are the conjugate depths. (10)
 - (b) What do you mean by 'Most-economical section' of an open channel? How is it determined? (5)
- Write short notes on the following: 7.
 - (a) Hydro informatics. (5)
 - Darcy-Wiesbatch equation. (5)
 - Water hammer in pipes. (5)