518201

May, 2024 M.Tech. (PED) II Semester PWM Converter and Applications (MP-ED-201)

Time: Three Hours] [Maximum Marks: 75

Note:

- 1. Question no. 1 is compulsory from Part-I.
- 2. Attempt any four questions from Part-II.

(b) Excelain the world I-TRAP coded H-bridge multilevel

- 1. (a) Enumerate the applications of current source converters.
 - (b) Why do you use PWM in inverters?
 - (c) What are the advantages of Multilevel inverters?
 - (d) Define a space vector with example.
 - (e) What are the drawbacks of passive filters?
 - (f) What is inverter dead time?
 - (g) What is the principle of operation of Shunt active filter?
 - (h) What are zero state vectors in space Vector modulation?
- (i) What is load commutation in inverters?
 - (j) Enumerate the applications of Multilevel inverters?

15119VII III Slagit Instituto 10 notismiles maio (1.5×10=15)

PART-II

		raki-ii	
2.	(a)	Explain the operation of Single-phase has controlled converter with R-L load. Draw relevative waveforms. (7)	
	(b)	Explain the operation of 3-phase Voltage sour	rce
	ashu)	inverter in 180 degree conduction mode with s connected load. Draw load voltage waveform	tar
3.	(a)	Explain the operation of 5 Level Flying Capaci multilevel inverter with switching table. (7	tor .5)
	(b)	Explain the working of Cascaded H-bridge multile	vel
	102]	inverter with relevant waveforms. (7	
4.	Exp	lain space vector modulation technique for inverte	ers.
			15)
5.	(a)	Explain Sinusoidal PWM for inverters. (7	(.5)
	(b)	Explain staircase modulation. (7	.5)
6.	(a)	Explain the working of constant V/F induction mo	tor
		drive. (7	(.5)
	(b)	Explain the principle of operation and application	ons
		44444	(.5)
7.	(a)	Explain selective harmonic elimination PWM meth	nod
		for inverters.	(8)
	(b)	Explain estimation of current ripple in inverter	fed
			(7)