Roll No.

Total Pages: 3

019404

May 2024

B.Tech. (ENV) - IV SEMESTER (Re-Appear) FLUID MECHANICS AND HYDRAULICS MACHINES (PCC-ENV-401)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Pdrt-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Make suitable assumptions wherever necessary.

PART-A

l.	(a)	Define: Surface Tension.	(1.5)
	(b)	Define: Cavitation.	(1.5)
	(c)	Define: Capillarity.	(1.5)

019404/20/111/298

[P.T.O.

(d) Define: Stream line. (1.5)
(e) Define: Path line. (1.5)
(f) Explain: Laminar boundary layer. (1.5)
(g) Explain: Rotation. (1.5)
(h) Explain: Vorticity. (1.5)
(i) What are equivalent pipes? Mention the equation used for it. (1.5)
(j) Define Boundary Layer. (1.5)

PART-B

- 2. (a) Derive an equation of continuity for three dimensional Cartesian coordinate system. (10)
 - (b) Define and derive hydrostatics law. (5)
- 3. (a) The velocity potential function is given by $\emptyset = 4(x^2 y^2)$. Calculate the velocity components at the point (2, 3).
 - (b) Derive equation of total pressure and center of pressure for inclined submerged body. (10)
- 4. Derive Euler's equation of motion for flow along a stream line.

 Obtain Bernoulli's from it. State assumptions clearly. (15)
- 5. (a) A horizontal Venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of oil of sp.gr 0.8. The discharge of oil through Venturimeter is

- 60 Liters/Second. Find the reading of the oil mercury differential manometer take Cd = 0.98. (5)
- (b) Derive an equation for discharge through a Venturimeter.

 Compare it with equation of discharge through an orifice meter. (10)
- 6. (a) State minor and major losses for flow through pipe and obtain Darcy-Weisbach formula for head loss due to friction. (10)
 - (b) State and explain stability criteria of submerged and floating bodies. (5)
- 7. (a) Derive an expression for Hagen-Poiseuille's formula for viscous flow. (10)
 - (b) Define Reynold's stress. Explain Prandtl's mixing length theory for total shear stress in turbulent flow. (5)