- (b) Explain, how PID controller improves the time domain specifications of a system ? 7
- 7. (a) Explain lead compensator in detail with the circuit diagram and transfer function.8
 - (b) What are the fundamental principles and mathematical frameworks underlying optimal control theory?

Roll No.

Total Pages: 04

009401

May 2024

B.Tech. (EIC) (Fourth Semester)
Control System Engineering (El-401)

Time: 3 Hours

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other. Assume any missing data.

Part A

- 1. (a) What do you mean by steady state and transient accuracy?

 1.5
 - (b) What is the effect of PI and PD controller on time domain specifications of control system?

 1.5
 - (c) Define necessary and sufficient conditions for stability,

 1.5
 - (d) What are the key characteristics and challenges associated with nonlinear dynamical systems?

 1.5

- (e) Define state variables.
- (f) Explain optimality. 1.5

1.5

- (g) Find velocity error coefficient for 1st order system to a step input. 1.5
- (h) Write Masons gain formula to find the transfer function of a system.

 1.5
- (i) Explain how robustness and sensitivity are affected by introducing feedback in control systems.

 1.5
- (j) What is the need of compensation in control systems? List different types of compensation.

 1.5

Part B

2. (a) Reduce the block diagram and find C(s)/R(s):

- (b) Obtain the time domain response of second order control system.
- 3. (a) Obtain the mathematical modelling of DC servo motor and determine the transfer function.
 - (b) Find the steady state error for unit step and unit ramp input for following systems. 8 1000(s + 1)/(s + 10) (s + 50)
- 4. Sketch the root locus plot of the following feedback system

$$G(s) = k/s(s + 2)(s^2 + 2s + 4)$$

Find the value of K at breakaway points. 15

- 5. (a) Compare time domain and frequency domain specifications.
 - (b) Obtain the bode plot for the system: 10 $G(s) = \frac{100}{s}(s^2 + 12s + 100)$
- 6. (a) Examine the stability of the characteristics polynomial for k using Routh stability criteria.

$$D(s) = s^4 + 20ks^3 + 5s^2 + 10s + 15$$