Roll No.

Total Pages: 03

020403

May 2024

B. Tech. (RAI) (Fourth Semester)

Design of Machine Elements (PCC-RAI-403-21)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any *four* questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other.

Part A

(a)	What is the need for factor of safety?	1.5
(b)	What is static loading?	1.5
(c)	What is the use of a knuckle joint?	1.5
(d)	What is the main difference between rive	eted
	joint and a welded joint ?	1.5
(e)	What are the key factors influencing	the
	selection of material?	1.5
(f)	What are types of keys?	1.5
(g)	What are applications of cotter joints?	1.5

What are various material properties? 1.5

P.T.O.

- (i) What is fatigue failure in design? 1.5
- (j) Name different types of gears. 1.5

Part B

- (a) A knuckle joint is required to withstand a tensile load of 25 KN. Design the joint if permissible stresses are Tensile = 56 MPa,
 Shear = 40 MPa and Crushing 70 MPa. 10
 - (b) What are the various design considerations for a mechanical design?
- 3. (a) What are different types of keys? 5
 - (b) The load on the journal bearing is 150 kN due to turbine shaft of 300 mm diameter at 1800 rpm. Determine the following:
 - (i) Length of the bearing if the allowable bearing pressure is 1.6 N/mm²
 - (ii) Amount of heat to be removed by the lubricant per minute if the bearing temperature is 600 C and viscosity of oil is 0.02 kg/m-s and the bearing clearance is 0.25 mm.

- 4. A solid circular shaft is subjected to a bending moment of 3000 N-m and a torque of 10000 N-m. The shaft is made of 45 C 8 steel having ultimate tensile stress of 700 MPa and a ultimate shear stress of 500 MPa. Assuming a factor of safety as 6, determine the diameter of the shaft.
- 5. (a) Differentiate between a shaft and an Axle with examples.
 - (b) Explain the design procedure for an eccentrically loaded riveted joint having six rivets symmetrically.
- with suitable diagrams.

 (a) Explain Goodmans and Soderberg's criterion with suitable diagrams.

 5
 - (b) Explain in detail about various joints installed in mechanical structures with their design and applications.
- 7. Design a muff coupling to connect two shafts for 25 kW at 360 rpm. The shaft and key are made of plain carbon steel (S_y = 400 N/mm²). The sleeve is made of grey cast iron (S_{ut} = 200 N/mm²). The F.O.S for shaft and key is 4 while for sleeve is 6.

15