May 2024

B.Tech. - IV SEMESTER

Signal and Systems (ECC-01)

T	im	e:	3	H	0	ur	S

Max. Marks:75

Ins	tri	ict	in	no
2110	cr c	ecc	W	113

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

- Q1 (a) Let x(n) = [1, -4,3,1,5,2] be a sequence . Represent x(n) in terms of weighted (1.5) shifted impulse function.
 - (b) Compare energy and power signals. (1.5)
 - (c) Why ROC consists of strips of the s-plane parallel to the $j\omega$ axis? (1.5)
 - (d) Derive the condition for stability of continuous LTI system. (1.5)
 - (e) Perform convolution of x_1 (t) = u(t-2) and $x_2(t) = \delta(t+6)$ using convolution (1.5) theorem of Laplace transform.
 - (f) Write the properties of ROC of Z-transform. (1.5)
 - (g) Determine the Nyquist sampling rate for $x(t) = \sin(200\pi t) + 3\sin^2(120\pi t)$. (1.5)
 - (h) State and prove Parseval's theorem. (1.5)
 - (i) What are the advantages of state space analysis of discrete time system? (1.5)
 - (j) Distinguish between Fourier series and Fourier transform. (1.5)

PART-B

- Q2 (a) Plot the signal u(t-2) + u(t-4). Check the linearity, causality and time invariance (7.5) of system y(t) = x(2-t). Also test the stability of the system $h(t) = e^{-5|t|}$.
 - (b) Perform convolution of the two sequences $x_1(n) = \{1, 1, 3\}$ and $x_2(n) = \{1, 4, -1\}$. (7.5) Also determine the impulse response for two cascaded LTI systems having impulse response $h_1(n) = u(n)$ and $h_2(n) = \delta(n) + 2 \delta(n-1)$.
- Q3 (a) Write the conditions for existence of Fourier series. Explain trigonometric form (7.5) of Fourier series representation of a periodic signal with example.
 - (b) Find the Fourier transform of the following signal $x(t) = t e^{-at} u(t)$. (7.5)
- Q4 (a) Discuss the relationship between Z- transform and Fourier transform. (7.5) Determine the signal x(n) for the following given Discrete-Time Fourier Transform X($e^{j\omega}$) = $e^{-j\omega}$ for $-\pi \le \omega \le \pi$.

- (b) State and prove time reversal property of DTFT. Compute the circular (7.5) convolution of the sequences $x(n) = \{0,1,2,3\}$ and $h(n) = \{2,1,1,2\}$ using graphical and matrix method.
- Q5 (a) Determine the impulse response and step response of the causal system given (7.5) as y(n) y(n-1) 2y(n-2) = x(n-1) + 2x(n-2).
 - (b) State and prove differentiation in Z-domain property. Determine the Z (7.5) transform of the signal $x(n) = \left(\frac{1}{3}\right)^n \left[u(n) u(n-6)\right]$.
- Q6 (a) What are the eigen function and eigen value of LTI continuous time system? (7.5) Determine the Laplace transform of the signal $x(t) = e^{-2t}u(-t) + e^{-3t}u(-t)$ and find its ROC.
 - (b) Using Laplace transform, solve the following differential equation (7.5)

$$\frac{d^2y(t)}{dt^2} + y(t) = x(t)$$

If
$$\frac{dy(0^-)}{dt} = 2$$
, $y(0^-) = 1$ for input $x(t) = \cos 2t$.

- Q7 (a) What are the effects of aliasing? Explain the methods used to reconstruct the (7.5) analog signal from the sampled signal.
 - (b) Describe multi- input and multi- output representation. Find the state transition (7.5) matrix for the continuous time system parameter matrix, $A = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$
