(b)	What are the advantages of Threaded Binary						
	Tree	over	Binary	Tree	?	Explain	with
	example.						5

- 7. Write short notes on the following: 15
 - (a) Insertion Sort
 - (b) Hashing
 - (c) Breadth First Search.

Roll No.

Total Pages: 04

007610

May 2024

B. Tech. (EL) (Re-appear) (Sixth Semester)
Data Structure and Algorithm (ELOE-102)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any *four* questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other.

Part A

- (a) Differentiate between linear data structures
 and non-linear data structures.
 - (b) For a given sorted array, which searching technique is best and why?

 1.5
 - (c) Write ADT of stack. 1.5
 - (d) What will be the time complexity of searching an element in a circular queue?

 Justify your answer.

 1.5
 - (e) Write an algorithm to traverse a singly linked list.

 1.5

40

- (f) List any *three* applications of a linked list.
- (g) Differentiate between AVL and Binary SearchTree.1.5
- (h) How do you find the level and height of a binary tree?
- (i) Compare the best case and worst case time complexities of quick sort and merge sort.

1.5

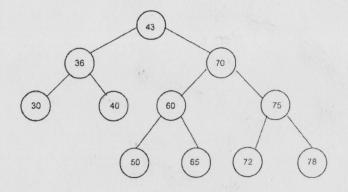
(j) How to represent graph in a memory ? 1.5

Part B

- 2. (a) How to analyze an Algorithm? Discuss by taking suitable example.8
 - (b) What are the asymptotic notations? Explain with example.
- 3. (a) Write an algorithm for binary search. Show step by step procedure to find the element x = 25 in the given sorted array. Also analyze its time complexity:

10 20 25 35 45 56 87.

(b) Discuss different types of operations that can be applied to circular queue. 5


4. Write an algorithm to convert infix expression to postfix expression. Also analyse its complexity. Convert the following infix expression to postfix expression:

$$x^y/(5*z)+2$$
.

- 5. (a) How to insert and delete an element from middle position in the singly linked list?

 Explain with example.
 - (b) Differentiate between B Tree and B + Tree.

6. (a) Write an algorithm of pre-order, post-order and in-order traversal of a binary search tree. Find pre-order, post-order and in-order traversal of the following given binary search tree:

