- A metal disc of radius 200 cm is rotated at a constant angular speed of 60 rad/s in a plane at right angles to an external field of magnetic induction 0.05 Wb/m². Find the e.m.f. induced between the centre and a point on the rim.
- (a) Discuss Maxwell's equation in non-conducting along with medium their physical significances.
 - In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0×10^{10} Hz and amplitude 48 V/m. 8
 - (i) What is the wavelength of the wave?
 - (ii) What is the amplitude of the oscillating magnetic field?
 - (iii) Find the total average energy density of the electromagnetic field of the wave.
- What is Continuity equation for current densities? Define displacement current and modify equation for the curl of magnetic field to satisfy continuity 15 equation.

Roll No.

Total Pages: 04

013201

May 2024

B. Tech. (ME/ME(Hindi)) (Second Semester) Physics (Introduction to Electromagnetic Theory) (BSC-101F)

Time: 3 Hours

(7-M24-06/21)C-013201

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other. Non-scientific calculator is allowed.

Part A

- 1. What is Electric Displacement? Discuss in brief. 1.5
 - Show that the potential function $V = a(x^2 + y^2 + z^2)^{1/2}$ does not satisfy the Laplace equation. 1.5
 - Twelve negative charges of same magnitude are equally spaced and fixed on circumference of a circle of radius R. Relative

to potential being zero at infinity, find	the
electric potential and electric field at	the
centre C of the circle.	1.5
What is divergence of a static magne	etic
field? Describe the physical significance	of

1.5

- (e) Define the relation between relative magnetic permeability and susceptibility. 1.5
- (f) Differentiate between Ferromagnetic and Paramagnetic materials along with an example.

 1.5
- (g) What is Electromagnetic breaking? Write its applications.
- (h) What factor governs the magnitude of E.M.F. induced in a coil?
- (i) Describe quasi-static approximation. 1.5
- (j) What is Poynting vector? What does it governs?

Part B

2. (a) Determine the electric field intensity due to an electric dipole at the axial and equatorial positions.

- (b) Two charges 3 × 10⁻⁸ C and -2 × 10⁻⁸ C are located 15 cm apart. At what point on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
- 3. (a) Define the boundary conditions on the magnetic field and vector potential at surface of a magnetic material.
 - (b) A point charge 'Q' is placed at the center of a sphere of linear dielectric material of permittivity ∈, compute the potential difference, volume bound charge density and surface bound charge density.
- 4. (a) What is Vector Potential? Calculate it for a given magnetic field using Stoke's Theorem.
 - (b) A wire placed along north-south direction carries a current of 5A from south to north. Find the magnetic field due to a 1 cm piece of wire at a point 200 cm north east from the piece.
- 5. (a) Develop the equivalence between Faraday's Law and Motional EMF.

(d)

it.