7. Design a digital Butterworth filter that satisfies the following constraint using billinear transformation. Assume T = 1 sec.

15

$$0.9 \le |H(e^{jw})| \le 1$$
 $0 \le w \le \pi/2$

$$0 \le w \le \pi/2$$

$$|H(e^{jw})| \le 0.2 \qquad 3\pi/4 \le w \le \pi$$

Roll No.

Total Pages: 04

017605

May 2024

B.Tech. (EEIOT) (Sixth Semester) Signal Processing Techniques (EEN-601)

Time: 3 Hours]

(8-M24-02/7)C-017605

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5) marks each) of Part A in short. Answer any four questions from Part B in detail. Different subparts of a question are to be attempted adjacent to each other.

Part A

Check the following system is BIBO stable or not:

$$y(n) = ax(n) + b. 1.5$$

Compute the energy of a discrete signal:

$$x(n) = (1/4) ^n u(n).$$
 1.5

- Find z-transform of $x(n) = 6^n u(n-3)$. 1.5
- What is the condition for FIR system to have linear phase? 1.5
- What is Gibb's phenomenon? 1.5
- What is the convolution of a signal with an impulse? 1.5

- (g) What is the ROC of the signal $x(n) = \delta(n-k), k > 0$?
- (h) What is Decimation? 1.5
- (i) What are the advantages of cascade realization?
- (j) In The Bilinear Transformation, the Relationship between ω and Ω is. 1.5

Part B

2. (a) Develop cascade and parallel realization structures for :

$$H(z) = (1 + 0.25 z^{-1})/(1 + 0.5 z^{-1})$$

 $(1 + 0.5z^{-1} + 0.25z^{-2})$ 10

- (b) Compare IIR and FIR filters.
- 3. (a) Check whether the following system is linear and time invariant:

$$y(n) = a[x(n)]^2 + bx(n)$$

(b) Determine the inverse Z transform of the following X(z) by the partial fraction expansion method: $X(z) = (z + 2)/(2z^2 - 7z + 3)$ if the ROCs are:

(a)
$$|z| > 3$$
, (b) $|z| < 0.5$ and (c) $0.5 < |z| < 3$.

4. A filter is to be designed with the following desired frequency response:

H
$$d(e^{jw}) = \{0, -\pi/4 \le w \le \pi/4 \}$$

 e^{-j2w} $\pi/4 < |w| \le \pi\}$

Determine the filter coefficients $h \ d \ (n)$ if the window function is defined as:

$$w(n) = \{1, 0 \le n \le 4$$

$$0, \text{ otherwise}\}$$

Also, determine the frequency response $H(e^{jw})$ of designed filter.

- 5. (a) What is the need for multi rate signal processing?
 - (b) Given $x(n) = 2^n$ and N = 8, find X(k) using DIT FFT Algorithm.
- 6. (a) Explain AR, MA, ARMA models for power spectrum estimation.
 - (b) Compute the circular convolution of the sequences $x_1(n) = \{1, 1, 2, 2\}$ and x_2 $(n) = \{1, 2, 3, 4\}.$