

December 2023 **B.Sc. - V SEMESTER** Numerical Methods (BMH-502A)

Time: 3 Hours

Max. Marks:75

- Instructions:
- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Scientific calculator can be used

PART-A

- Q1 (a) Explain algebraic and transcendental equations with examples.
 - (b) Find the relative error if the number X=0.004997 is truncated to three decimal (1.5) places.
 - (c) Using Newton's iterative formula establish the iterative formula to calculate (1.5) the cube root of N.
 - (d) Given that (1.5)X 1 3 5 10 17 26

Find $\nabla^2 y_5$.

- (e) To prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ (1.5)
- (f) Write the formula of Newton's divided difference interpolation. (1.5)
- (g) What is the difference between direct and iterative method of solving (1.5) simultaneous linear equation.
- (h) Briefly explain Jacobi method to solve the system of simultaneous equation. (1.5)
- Write down the expressions for $\frac{dy}{dx}$ at x=x_n by Newton's backward difference formula.
- (j) f(x) is given by 0 0.5 f(x)1 0.8 0.5

Then using Trapezoidal rule, find the value of $\int_0^1 f(x) dx$.

PART-B

- Q2 (a) Find a real root of the equation $x \log_{10} x = 1.2$ by Regula-Falsi method correct to four decimal places.
 - (b) Using Newton's iterative method, find the real root of the equation $3x = \cos x + 1$ correct to four decimal places. (8)
- Q3 (a) Find the number of men getting wages between Rs. 10 and 15 from the following data:-

Wages in Rs. 0-10 10-20 20-30 30-40 Frequency 9 30 35 42 1

322

(8)

(7)

(b) Find the polynomial f(x) by using Lagrange's formula and hence find f(3)

for				
X	0	1	2	5
f(x)	2	3	12	147

Q4 (a) Solve the following system of equations

3x+9y-2z=11

4x+2y+13z=24

4x-4y+3z=-8

by using Relaxation method.

(b) Apply LU Decomposition method to solve the following system of equations:-

(8)

3x+2y+7z=4

2x+3y+z=5

3x+4y+z=7.

Q5 (a) From the following table of values of x and y,

(8)

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
у	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at (a) x=1.1 (b) x=1.6

(b) Given that

(7)

X	4.0	4.2	4.4	4.6	4.8	5.0	5.2
logx	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x \, dx$, by using Simpson's $1/3^{\text{rd}}$ rule and Weddle rule.

Q6 (a) Using iteration method to find a root of the equation $x^3 - 9x + 1 = 0$ correct up to four decimal places. (7)

(8)

(b)	A thermocouple	gives the	following output	for rise in temperature	
-----	----------------	-----------	------------------	-------------------------	--

Temp (⁰ C)	0	10	20	30	40	50
Output (mV)	0.0	0.4	0.8	1.2	1.6	2.0

Find the output of the thermocouple for 37°C temperature using Newton's Divided Difference formula.

Q7 (a) Solve the equations

27x+6y-z=85

x+y+54z=110

6x+15y+2z=72

by using Gauss-Seidel method.

(7)

(b) The violegity village (min) of

(b) The velocity v(km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows:

2		4	6	8	10	12	14	16	18	20
v 1	0	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.