Roll No.

Total Pages: 2

de

321101

December 2023

B.Sc. (Physics) - I SEMESTER Mathematical Physics-I (BPH23-101T)

Time: 3 Hours
Instructions:

Max. Marks:75

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- Q1 (a) Solve the differential equation $sec^2x tan y dx + sec^2y tan x dy$. (1.5)
 - (b) Show that $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0.$ (1.5)
 - (c) Find a unit normal to the surface $x^2y + 2xz = 4$ at the point (2,-2,3). (1.5)
 - (d) Determine the value of δ_{ii} for i=1 to 3. (1.5)
 - (e) Prove that the solutions $y_1 = e^{-x} \cos x$ and $y_2 = e^{-x} \sin x$ of a differential equation (1.5) are linearly independent.
 - (f) What is permutation tensor? (1.5)
 - (g) Prove that $dx dy = r dr d\theta$ using Jacobian matrix. (1.5)
 - (h) Solve the differential equation $y \log y dx + (x \log y) dy = 0$. (1.5)
 - (i) Find the volume of a tetrahedron whose vertices are the points A(2,-1,-3), B(4,1,3), (1.5) C(3,2,-1) and D(1,4,2).
 - (j) Determine the value of Div(r), where $r = \sqrt{x^2 + y^2 + z^2}$. (1.5)

PART-B

- Q2 (a) Solve the differential equation $\cot 3x \frac{dy}{dx} 3y = \cos 3x + \sin 3x$, $0 < x < \frac{\pi}{2}$. (5)
 - (b) Solve the differential equation $y'' 4y' + 4y = 8x^2e^{2x}sin2x$. (10)

- Q3 (a) Find the value of λ , for which the differential equation $(xy^2 + \lambda x^2 y)dx + (7)$ $(x + y)x^2 dy = 0$ is exact. Also, solve the equation for this value of λ .
 - (b) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = \sinh x + \sin\left((\sqrt{2})x\right)$. (8)
- Q4 (a) Show that $div(grad r^n) = n(n+1)r^{n-2}$, where $r = \sqrt{x^2 + y^2 + z^2}$. (7)
 - (b) Show that the vector field $\vec{F} = \frac{\vec{r}}{r^3}$ is solenoidal as well as irrotational. Find the scalar potential such that $\vec{F} = \vec{\nabla} \phi$.
- Q5 (a) Prove that $[(\vec{A} \times \vec{B}) \times \vec{C}] \times \vec{D} + [(\vec{B} \times \vec{A}) \times \vec{D}] \times \vec{C} + [(\vec{C} \times \vec{D}) \times \vec{A}] \times \vec{B} + (7)$ $[(\vec{D} \times \vec{C}) \times \vec{B}] \times \vec{A} = 0.$
 - (b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$. (8)
- Q6 (a) Evaluate $\iiint_V (2x + y)dV$, where V is closed region bounded by the cylinder z=4— (5) x^2 and the planes x=0, y=0, y=2, and z=0.
 - (b) Verify Stoke's theorem for the function $\vec{F} = z\hat{\imath} + x\hat{\jmath} + y\hat{k}$, where C is the unit circle in xy-plane bounding the hemisphere $x^2 + y^2 + z^2 = 1$.
- Verify the Gauss Divergence theorem for the function $\vec{F} = 2x^2y\hat{\imath} y^2\hat{\jmath} + 4xz^2\hat{k}$ (15) taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and x = 2.