323503 and a galwollow and and 323503

December 2023

B.Sc. (H) Mathematics- V SEMESTER Discrete Mathematics (DEMH-501A)

1	Ш	le:	3	H	OU	П
In	151	ru	ct	io	2.9.5	

Max. Marks:75

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. All the symbols used in this paper have their usual meanings.

PART-A

Q1	(a)	Prove that every subset of a countable set is countable.	(1.5)
	(b)	Show that $n! \ge 2^{n-1}$, $n = 1, 2, 3,$	(1.5)
	(c)	Find the generating function for the numeric function $a_n = 10.2^n$.	(1.5)
	(d)	Let (L, \leq) be a lattice and a, b, $c \in L$. If $a \leq b \leq c$, then prove that	(1.5)
		$a \lor b = b \land c.$	
	(e)	Define a Connected Graph.	(1.5)
	(f)	Let $A = \{1,2,3,6\}$. Define a relation R on A as follows:	(1.5)
		x R y if x divides y	
		Draw the Hass diagram of the poset (A, R) .	
	(g)	Find the explicit formula for the finite sequence 87,82,77,72,67. Can this	(1.5)
		sequence be described by a recursive relation?	
	(h)	Define validity of the argument.	(1.5)
	(i)	Find the negation of the following proposition:	(1.5)
		$-4 < x \le 2$.	
	(j)	Express $x \wedge y$ in its complete sum-of-products form in three variables x, y, z .	(1.5)

PART-B

Q2 (a)	Prove that the following is true for any natural number n:	(8)
(b)	$1+2+2^2+2^3+\ldots+2^n=2^{n+1}-1$. Let $S=\{a,b,c\}$ and $\tilde{A}=P(S)$ (power set of S). If the partial order on the set $P(S)$ is set inclusion (\subseteq), then draw the Hasse diagram of the poset (\tilde{A},\subseteq).	(7)
MT version h	Find the explicit formula for Fibonacci sequence using generating function method. Find the solution of the difference equation $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5$ and $a_2 = 3$.	(8)
Q4 (a)	Let $c = a * b$ (convolution of a and b) where $a = (a_0, a_1, \ldots, a_n, \ldots) = 2^n$ and $b = (b_0, b_1, \ldots, b_n, \ldots) = 4^n$ are the two numeric functions. Determine the generating function of c .	(8)
(d) _(1.5)	Let (L, \leq) be a lattice and $a, b, c \in L$. Then prove that $a \vee (b \wedge c) \leq (a \vee b) \wedge (a \vee c)$.	(7)
	If p, q and r are any propositions, then prove that $(p \land q) \land r \equiv p \land (q \land r)$. Check the validity of the following argument	(8)
(1.5)	If you invest in the stock market, then you will get rich. If you get rich, then you will be happy. ∴ If you invest in the stock market, then you will be happy.	
Q6 (a)	Let n be a positive integer and D_n denotes the set of all divisors of n . Considering	(8)
(S.T.(p)	the partial order as divisibility on D_n , draw Hass diagram for D_{40} , D_{50} and D_{36} In the following Graph, determine the following walks are path, simple paths, closed walks, circuits, simple circuits or are just walks:	(7)
	1. $v_5 v_4 v_2 v_1$ (h) Define validity of the argument.	
	(i) Find the negation of the following proposition:	

3. $v_4v_2v_3v_4$ $v_5v_2v_4$ mod stouborg-to-mus et aligned at mix A x asserts (1)

Q7 (a) Prove that the five element lattices given in the following figures (Fig 1 and Fig 2) (8) are non-distributive:

(b) Consider the Boolean polynomial $p(x, y, z) = (x \wedge y) \vee (x \vee (y' \wedge z))$. (7)

Construct the truth table for the Boolean function $f: B_3 \to B$ determined by this Boolean polynomial.