December 2023

B.Sc.(H)MATHEMATICS (Re-Appear) - V SEMESTER DISCRETE MATHEMATICS (DEMH-501)

0/4

Time: 3 Hours

Max. Marks:75

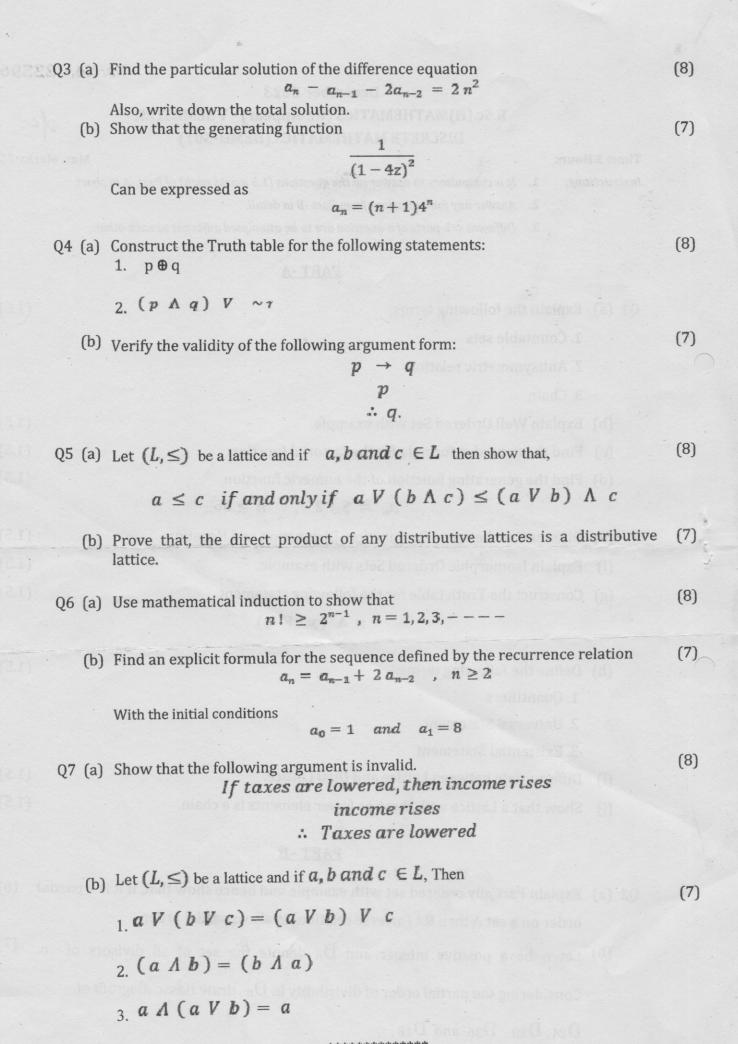
(1.5)

(1.5)

- Instructions:
- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a)	Explain the following terms:	(1.5)
	1. Countable sets	
	2. Antisymmetric relation	
	3. Chain	
(b)	Explain Well Ordered Set with example.	(1.5)
(c)	Find the recursive formula for the factorial function.	(1.5)
(d)	Find the generating function of the numeric function	(1.5)
	$a_n = 5 \cdot 2^n$, $n \ge 0$	
(e)	Differentiate between Conjunction, Disjunction and Negation.	(1.5)
(f)	Explain Isomorphic Ordered Sets with example.	(1.5)
(g)	Construct the Truth table for the following statement	(1.5)
	$p \land (p \lor q)$	
(b)	Define the following towns:	(1.5)
(h)	Define the following terms: 1. Quantifiers	(1.0)
	2. Universal Statement	
	3. Existential Statement	
	J. Existential statement	


PART-B

- Q2 (a) Explain Partially ordered set with example and hence show that, if R is a partial order on a set A then R-1 (inverse relation) is also a partial order.
 - (b) Let n be a positive integer and D_n denote the set of all divisors of n. (7) Considering the partial order of divisibility in D_n , draw Hasse diagram of

D₂₄, D₃₀, D₃₆ and D₁₈.

(i) Differentiate between Lattice and Dual Lattice.

Show that a Lattice with three or fewer elements is a chain.

