de

323302

December, 2023

B.Sc. (MAC) / B.Sc. (H) MATHEMATICS-III SEMESTER Group Theory (BMH -302A)

Tim	e:	3	H	0	urs	
-----	----	---	---	---	-----	--

Max. Marks:75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) If G is a group, then inverse of every element of G is unique. (1.5)(b) If $G = Z_4$. How many elements in Z_4 of order 4. (1.5)(c) Show that in a group G, the equations a.x = b and y.a = b have unique (1.5)solutions for all a, b in G. (d) If a is a generator of a cyclic group G, then a^{-1} is also a generator of G. (1.5)(e) Let H < G and $a, b \in G$. Show that $Ha \neq Hb$ iff $a^{-1}H \neq b^{-1}H$. (1.5)(f) Show that there does not exist any non-abelian group G such that (1.5) o(G/Z(G)) = 37, where Z(G) is the centre of G. (g) Show that every homomorphic image of an abelian group is abelian. (1.5) (h) Show that S_1 cannot be written as the internal direct product of its two non- (1.5)trivial subgroups. (i) Show that any infinite cyclic group is isomorphic to (Z,+). (1.5)(j) If G is an abelian group, then the mapping $f: G \to G$ defined as $f(x) = x^5$, (1.5) for all $x \in G$ is a homomorphism.

PART-B

- Q2 (a) Let G be a group and suppose there exist two relatively prime positive (7) integers m and n such that $a^m b^m = b^m a^m$ and $a^n b^n = b^n a^n$, for all $a, b \in G$. Show that G is abelian.
 - (b) Let $f: G_1 \to G_2$ be a homomorphism. Let $a \in G_1$ be such that o(a) = n and (8) o(f(a)) = m. Show that o(f(a))/o(a) and f is one-one iff m = n.
- Q3 (a) Let $\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $M = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $N = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$ and $G = \langle M, N \rangle$ be the group generated by matrices M and N under matrix multiplication, Then, find $o\left(\frac{G}{Z(G)}\right)$.
 - (b) If Z(G) is the centre of a group G such that $\frac{G}{Z(G)}$ is cyclic, then show that G (10) is abelian. Is converse true? Justify your answer.
- Q4 (a) Find number of elements of order 7, 9 and 10 in C^* , where C^* -denotes set (8) of all non-zero complex numbers.
 - (b) If $G = Z_2 \times D_3$, find number of elements of all possible orders. (7)
- Q5 (a) Let G be the group of non-zero complex numbers under multiplication and N (8) the set of complex numbers of absolute value 1. Show that G/N is isomorphic to the group of all positive real numbers under multiplicative.
 - (b) If G has elements of order d, then G has subgroup of order d. But converse (7) need not be true. Justify your answer.
- Q6 (a) If G is a group and $G = Z_2 \times Z_4$, find all subgroups of $Z_2 \times Z_4$. (8)
 - (b) Write the class equation of Dihedral group D_3 and Quaternion group Q_4 . (7)
- Q7 If G is a finite group and $H_1, H_2, H_3, ..., H_n$ are normal subgroups of G such (15) that $G = H_1, H_2, H_3, ..., H_n$ and $o(G) = o(H_1), o(H_2), o(H_3), ..., o(H_n)$, prove that G is the direct product of $H_1, H_2, H_3, ..., H_n$.