Roll No.

0/c

Total Pages: 3

323101

December 2023

B.Sc. (Hons.) Mathematics/B.Sc. (Mathematics & Computing) – I SEMESTER Calculus–I (BMH23–101)

Time: 3 Hours]

[Maximum Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Check the continuity of the function $f(x) = \frac{x^2 + 2x 3}{x 1}$ at x = 1. (1.5)
 - (b) Find $\frac{dy}{dx}$ if $y = \cos(x^3)$. (1.5)
 - (c) Give an example of a non-differentiable function. (1.5)
 - (d) Find $f^n(x)$ if $f(x) = 3x^4 2x^3 + x^2 4x + 2$. (1.5)

323101/80/111/233

43 [P. T. O.

- (e) State Rolle's theorem. Also, give its geometric interpretation. (1.5)
- (f) Find $\frac{ds}{dt}$ if $s = (1+t)\sqrt{t}$. (1.5)
- (g) Change the polar coordinates $\left(-3, \frac{5\pi}{4}\right)$ to Cartesian coordinates. (1.5)
- (h) Sketch the graph of $\theta = \frac{\pi}{6}$ in polar coordinates. (1.5)
- (i) Find the critical points of $f(x) = (x 1)^2 (x + 2)$. (1.5)
- (j) Find where the graph of $f(x) = x^3 + 3x + 1$ is concave up and where it is concave down. (1.5)

PART-B

- 2. (a) Prove that $\lim_{x \to +\infty} \frac{1}{x} = 0$. (7)
 - (b) Find:
 - (i) $\lim_{x \to +\infty} x^{\frac{1}{x}}$
 - (ii) $\lim_{x \to 0} \frac{x \sin x}{x^3}$. (8)
- 3. (a) Prove that if a function f is differentiable at c, then f is continuous at c. Also, give an example of a differentiable function. (7)

- (b) State and prove Leibnitz's theorem. (8)
- 4. (a) State and prove Cauchy's mean value theorem. (7)
 - (b) Find the Maclaurin's series expansion of f(t) = e^t using Lagrange's form of remainder.
 (8).
- 5. (a) Sketch the graph of the equation $y = x^3 3x + 2$ and identify the location of the intercepts, relative extrema and inflection points. (7)
 - (b) Sketch the graph of the equation $r = a(1 \cos \theta)$ in polar coordinates, assuming a to be a positive constant. (8)
- (a) Let f be a differentiable function on the closed interval

 [a, b] of finite length and suppose f'(a) < y₀ < f'(b).

 Prove that there is a point x₀ in the open interval (a, b) such that f'(x₀) = y₀.
 - (b) Sketch the graph of the function

$$f(x) = \frac{3x - 5}{x - 2}. (8)$$

- 7. (a) Find the n^{th} derivative of x^2e^{3x} . (7)
 - (b) Prove that if limit of a function at a point exists, then it is unique. (8)