- Find the outward flux of $\vec{F} = yz\hat{i} + x\hat{j} z^2\hat{k}$ through the parabolic cylinder $y = x^2$, $0 \le x \le 1$, $0 \le z \le 4$.
 - (b) Verify Gauss Divergence theorem for the vector filed $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 - a^2$.

323303/100/111/24

Roll No.

Total Pages: 4

December 2023

B.Sc(Maths/MAC) III SEMESTER Multivariate Calculus (BMH-303A)

Time: 3 Hours [Max. Marks: 75]

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Find the domain and range of the function f(x, y) = $\sin^{-1}(y-x)$.
- (b) Find an equation for the level surface of the function $f(x, y, z) = \sqrt{x - y - \log z}$ through the point (3, -1, 1). (1.5)
 - (c) Give an example of a function which is not continuous at a point but possesses both its first order partial derivatives at that point. (1.5)
 - (d) Find the critical points for the function $f(x, y) = 3y^2 y^2$ $2y^3 - 3x^2 + 6xy. ag{1.5}$
- (e) Find the equation normal line to the surface $x^2 + y^2 + z$ = 9 at the point (1,2,4). (1.5)

323303/100/111/24

44 [P.T.O.

- (f) Evaluate the integral $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{1} \rho^{2} \sin \phi \, d\rho d \phi \, d\theta.$
- (g) State Fubini's second theorem. (1.5)
- (h) Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C' joining origin to the point (1,1,1). (1.5)
- (i) Define a conservative vector field. (1.5)
- (j) State Green's theorem. (1.5)

PART-B

2. (a) Show that the function $f(x, y) = \frac{x^2 + y}{y}$ has no limit as

$$(x, y) \to (0, 0).$$
 (6)

(b) State and prove chain rule for a function of two independent variables. Verify this rule for the function

$$w = xy, x = \cos t, y = \sin t \text{ at } t = \frac{\pi}{2}.$$
 (9)

3. (a) Find all the Second-order partial derivatives of the

function
$$f(x, y) = \tan -1 \left(\frac{y}{x}\right)$$
. (6)

(b) If ς is a smooth curve on the level surface f(x, y, z) = c of a differentiable function f, then prove that at every point along the curve, ∇f is orthogonal to the curve's

velocity vector. Use this result to find the parametric equations of the tangent line to the curve of intersection of the surfaces $x^2 + y^2 - 2 = 0$ and x + z - 4 = 0 at the point P (1, 1, 3). (9)

- 4. (a) Find the absolute maxima and minima of $f(x, y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.
 - (b) The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. By using Lagrange's multiplier method, find the points on the ellipse that lie closest to and farthest from the origin. (9)
- 5. (a) By using double integrals, find the area of the cardioid $r = 1 + \cos \theta$. (6)
 - (b) By changing the order of integration of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin px$

$$dxdy$$
, show that $\int_{0}^{\infty} \frac{\sin px}{x} dx = \frac{\pi}{2}$. (9)

6. (a) A fluid's velocity field is $\vec{F} = x\hat{i} + z\hat{j} + y\hat{k}$. Find the flow along the helix $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$, $0 \le t \le 1$

$$\frac{\pi}{2}$$
. (6)