

December 2023

B.Sc. (H) Mathematics/B.Sc. Mathematics and Computing Re-Appear Ist SEMESTER Calculus (BMH-101A)

Time: 3 Hours

Max. Marks:75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Find

(1.5) $\lim_{x \to 1} (x^7 - 2x^5 + 1)^{35}$

(b) Find

(1.5)

(c) Find the values of x, if any, at which the given function is not continuous

$$f(x) = \frac{x}{x^2 - 1}$$

(d) If $f(x) = 3x^4 - 2x^3 + x^2 - 4x + 2$, find f''(x). (1.5)

(1.5)(e) State Lagrange's mean value theorem.

(f) Find all the critical points of $f(x) = x^3 - 3x + 1$. (1.5)

(g) Find the intervals on which the function $f(x) = x^3$ is increasing and the (1.5) intervals on which it is decreasing.

(1.5)(h) Sketch the graph of the parametric equations

$$x = \cos t$$
, $y = \sin t$ $(0 \le t \le 2\pi)$

Find the rectangular coordinates of the point P whose polar coordinates are (1.5) $(r,\theta) = \left(4, \frac{2\pi}{3}\right).$

(j) Give an example of a function which is continuous but not differentiable. (1.5)

PART-B

Q2 (a) Using $\varepsilon - \delta$ definition, prove that $\lim_{x \to 3} x^2 = 9$.

(7)

(b) Find

(8)

$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$$

Q3 (a) State and prove Cauchy's Mean Value Theorem.

(7)

(b) Find the n^{th} derivative of $y = x \log x$.

(8)

323106/50/111/431