Roll No. Total Pages: 3

322305

December 2023

B.Sc. (H) Chemistry – III SEMESTER Waves & Optics (OPHY-301)

Time: 3 Hours]

[Maximum Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of non-programmable simple calculator is allowed.

PART-A

- (a) Write difference between longitudinal and transverse waves. (1.5)
 - (b) Define the plane progressive waves. (1.5)
 - (c) Why is the diffraction phenomenon so common in sound but not in light? (1.5)
 - (d) Distinguish between Uniaxial and biaxial crystals.

(1.5)

[P. T. O.

- (e) What types of diffraction bands are produced in a single slit? (1.5)
- (f) What is grating? Define grating element. (1.5)
- (g) Define the Haidinger and Fizeau fringes. (1.5)
- (h) Sodium light of wavelength 5890 Å passes through two narrow slits 2 mm apart. The interference pattern is seen at a distance of 1.25 m away from the centre of the slits. Determine the fringe width. (1.5)
- (i) What are ordinary and extra-ordinary rays? (1.5)
- (j) What is the relation between phase difference and path difference? (1.5)

PART-B

2. (a) Explain phase velocity and group velocity. Derive the relation between phase velocity and group velocity.

(10)

- (b) Discuss the interference produced in wedge-shaped film and find the conditions of maxima and minima with fringe width. (5)
- 3. (a) What do you understand by polarization of light? Explain the types of polarization in details. (10)
 - (b) Define the sound waves. Explain the production of sound waves with its properties. (5)
- 4. (a) Discuss the formation of Newton's rings by (i) reflected light (ii) transmitted light. Derive an expression for radius of nth dark ring in reflected light. (12)

- (b) In a Newton's ring experiment, the diameters of 4th and 12th dark rings are 0.40 cm and 0.70 cm respectively.
 Deduce the diameter of 20th dark ring. (3)
- 5. (a) Describe the principle, construction and working of Michelson's interferometer. Explain how you will use if to find the wavelength of monochromatic light. (10)
 - (b) What are coherent sources? Give the conditions to produce good interference. (5)
- 6. (a) What is a zone plate and how it is constructed? Derive an expression for its focal length and compare its performance with that of a converging lens. (10)
 - (b) Explain Stokes treatment of Reflection. (5)
- 7. (a) Explain the Fraunhofer diffraction for double slit. (10)
 - (b) Define simple harmonic motion (SHM) and derive the expression for it. (5)