Max. Marks:75

(7)

(8)

January- 2024

B.Sc. (H) Mathematics -VI SEMESTER

Riemann Integral and Metric Space (BMH-602)

It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.

Time: 3 Hours

Instructions:

		Z. Allower any roar questions from Part -B in detail.	
		3. Different sub-parts of a question are to be attempted adjacent to each other	r.
		4. Symbols used in this paper have their usual meaning.	
		PART —A	
QI	(a)	Prove that if f is real valued function defined on the closed and bounded interval	(1.5)
		[a,b] and P be any partition of [a,b], then $L(f,P) \le U(f,P)$.	
	(b)		(1.5)
	(c)	Give an example of a discontinuous function having only finite number of points of	(1.5)
		discontinuity on the interval [0,5].	
	(d)	Let A be a subset of a metric space (X, d) , then define the interior of A .	(1.5)
	(e)	Test the convergence of the improper in $tegral \int_0^1 \frac{\sin \frac{1}{x}}{\sqrt{x}} dx$.	(1.5)
	(f)	Let (R, d) be the discrete metric space. Then find the derived set of the set of irrational numbers.	(1.5)
	(g)	Define cauchy sequence in a metric space.	(1.5)
	(h)	Prove that every infinte times differentiable function is Riemann integrable on the finite interval [a, b].	(1.5)
	(i)	Define contraction mapping.	(1.5)
	(j)	Let (X, d) be an infinite discrete metric space. Then prove that every function f from (X, d) to any metric space (Y, d^*) is continuous.	

PART-B

any partition of [a, b], then $U(f+g,P) \leq U(f,P) + U(g,P)$, where U(h,P)

Q2 (a) Prove that if f and g are real valued bounded functions defined on [a, b] and P be

denotes the upper Darboux sum of the function h for the partition P.

Evaluate $\int_a^b e^x dx$ by using the limit of Riemann sums.

Test whether the following improper integrals are convergent or not

(i)
$$\int_{-\infty}^{0} \frac{1}{p^2 + q^2 x^2} dx$$

(ii)
$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$
, $m > 0, n > 0$.

- Q4 (a) Let X be the set of all real valued functions defined on [a, b] and let d be a function from $X \times X \to \mathbb{R}$ such that $d(f,g) = \sup |f(x) g(x)|$, where $x \in [a,b]$, for all $f,g \in X$, then prove that (X,d) is a metric space.
 - (b) Show that in a metric space (X, d), the complement of every singleton set is open. (8)
- Q5 (a) Prove that a point a is a limit point of a subset A of a metric space (X, d) if and (7) only if there exists a sequence < a_n > of points of A distinct from a such that < a_n > converges to a.
 - (b) Let (R, d) be a usual metric space. Prove or disprove that the following subsets of (8) R are neighbourhood of 2.
 - (i) (0,2)
 - (ii) [1,2]
 - (iii) [0,2]-1
 - (iv) R
- Q6 (a) Show that every cauchy sequence is bounded in a metric space. (7)
 - (b) Evaluate the following integrals:

(i)
$$\int_0^{\pi/2} \cos^{20} \theta \, \sin^{24} \theta \, d\theta$$

(ii)
$$\int_0^\infty \frac{dx}{4+x^2}.$$

- Q7 (a) Prove that the function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$ for all $x \in \mathbb{R}$ (7)
 - is not uniformly continuous on \mathbb{R} . (b) Prove the inequality $\frac{1}{\pi} \le \int_0^1 \frac{\sin \pi x}{1+x^2} dx \le \frac{2}{\pi}$.
