Roll No.

Total Pages: 3

311103

December 2023 BCA/BCA(DS) 1st SEMESTER Digital Electronics-I (BCA-23-105)

Time: 3 Hours

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Assume relevant data, if required.

PART-A

1.	(a)	Implement EXOR gate using NOR gate.	(1.5)
	(b)	Convert the following: - $1010101 = ()_{16}$	(1.5)
	(c)	What is the decimal equivalent range of 8 bit Binary	
		number?	(1.5)
	(d)	Explain don't care condition.	(1.5)
	(e)	State and prove De Morgan's theorem.	(1.5)
	(f)	Name any one 1-bit Memory element/device.	(1.5)
	(g)	What are the uses of Shift registers?	(1.5)

311103/790/111/257

- (h) What is the weight associated with LSB in 3 bit weighted DAC? (1.5)
- (i) Which type of clock is preferable for JK flip flop? (1.5)
- (j) Explain Sample and Hold Circuit. (1.5)

PART-B

- (a) Discuss a simple logic system, incorporating an AND gate, for control of an elevator motor. (05)
 - (b) Prove the following using Boolean Algebraic theorems:
 - (i) $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = AB + BC + CA$
 - (ii) $\overline{A}\overline{B} + AB + \overline{A}B = \overline{A} + B$
 - (c) Perform the following: (05)
 - (i) 4F+2D
 - (ii) A05C -24CA
 - (iii) $(1E.53)_{16} = ()_8$
 - (iv) $10101_2 \times 101_2$ (05)
- 3. (a) Minimize the following using Karnaugh MAP: (10) $f(A, B, C, D) = \Sigma m (1, 3.5, 8, 9, 11, 15) + d (2,13)$

2

(b) Explain the working of 3 to 8 decoder. (05)

- 4. (a) Draw the diagram of serial in parallel out Shift Register. (10)
 - (b) Make a SR flip flop using JK flip flop. (05)
- 5. (a) A 12 bit DAC has full scale analog voltage of 5 V.

 Determine step size, percentage resolution and analog output voltage to input of 1101 0000 0001. (10)
 - (b) Explain the working of R-2R ladder network type DAC. (5)
- 6. (a) What are the specifications for D/A converters? (8)
 - (b) Draw the output waveform of a 4 bit shift registor. (7)
- 7. Minimize the following function using Boolean algebra.

$$f(A, B, C, D) = \pi M (1, 3, 5, 8, 9, 11, 15)$$
 (15)