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ABSTRACT 

The market competition is becoming more and more complex so the speed of delivery 

and quality of products have become the main priorities of manufacturing firms. The 

manufacturing companies need to adopt such type of manufacturing systems which are 

more flexible in operation and are able to satisfy dynamic market demands. Such needs 

of the modern industries can be met with the adoption of flexible manufacturing system. 

Thus the innovation of flexible manufacturing system (FMS) became related to the 

effort of gaining competitive advantage. 

FMS has been developed with the hope that it will be able to tackle new challenges like 

lower cost, better quality and improved delivery speed. They will be more flexible in 

their operations and will be able to satisfy different market segments. FMSs are the 

integrated manufacturing systems which can help the user to achieve the goals of 

increasing profitability through the increase of productivity and flexibility. Productivity 

has often been cited as a key factor in a FMS performance. Improving productivity is 

seen as a key issue for survival and success in the long term of a manufacturing system. 

To increase the manufacturing flexibility, manufacturing organizations are looking at 

FMS as a viable alternative to enhance their competitive edge.  

A lot of research has been done regarding scheduling and operational issues of FMS. 

But performance analysis of FMS is still a major issue for researcher. With this aim, an 

effort has been made in the current research work to analyze the performance of FMS 

so that it can attract more Indian industries for its useful utilization.  

An extensive literature review has been conducted to identify the gaps regarding the 

performance of FMS. A number of variables of performance, productivity and 

flexibility have been identified through the previous research done by different 

researchers. A survey among the Indian manufacturing firms has been conducted to 

gain insight of analysis of FMS especially for performance, productivity and flexibility 

of FMS. 

Interpretive structural modelling and total interpretive structural modelling techniques 

have been used to develop hierarchical structures to identify the relationship among the 

main variables of performance, productivity and flexibility of FMS and to find the 

driving and the dependence power of the variables. Structural equation modelling is 

used for confirming the structure which is developed by interpretive structural 
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modelling and confirming the factors which affect performance, productivity and 

flexibility of FMS. Graph theory and matrix approach has been used to quantify the 

factors in term of FMS performance/ productivity/flexibility index. 

Ranking of types of flexibility in FMS has been done by combined multiple attribute 

decision making method, which consists of analytic hierarchy process (AHP), 

technique for order preference by similarity to ideal situation (TOPSIS), modified 

TOPSIS, VIKOR and improved preference ranking organization method for 

enrichment evaluations (PROMETHEE).   

Estimation of the makespan of Flexible manufacturing system assembly shop is done 

by using adaptive neuro-fuzzy inference system (ANFIS). An attempt has also been 

made to solve tool life management by using the ANFIS to predict the cutting force and 

surface roughness. Cutting force is optimized by metaheuristics such as genetic 

algorithm (GA) and teaching learning based optimization (TLBO) to optimize the tool 

life. 

The major contributions of this research are as given below 

 The present research provides a comprehensive review of the literature and 

identifies the variables which affect performance of FMS. 

 Out of fifteen variables of performance analysis of FMS, three factors such as 

quality, productivity and flexibility are identified. 

 Out of twenty variables of productivity analysis of FMS, four factors such as 

people, machine, quality, and flexibility are recognized. 

 Out of fifteen variables of flexibility analysis of FMS, four dimensions such as 

production, product, machine and volume flexibility are identified. 

 The driving and dependence power of variables which affect the FMS have been 

analyzed and models for performance, productivity and flexibility have been 

prepared. 

 Major factors affecting the performance, productivity, and flexibility of FMS 

have been identified. 

 The driving and dependence power of flexibilities have been analyzed by ISM. 

 FMS performance index, FMS productivity index, and FMS flexibility index 

has been proposed by GTMA framework which help any industry to know its 

own index value to upgrade them. 
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 Combined multiple attribute decision making methods are used for ranking of 

flexibility based on fifteen variables. Spearman’s rank correlation coefficients 

observed that the rankings by different methods are consistent. 

 NEH algorithm found the makespan and made a model by ANFIS for industry 

to predict the makespan of FMS assembly shop. 

 Optimization of cutting parameters by metaheuristics i.e. G.A and TLBO and 

discussed the method to optimize parameters.  

 ANFIS model is proposed for surface roughness and cutting force prediction. 

 

Keywords: FMS; performance; productivity; flexibility; factors; variables; ISM; EFA; 

CFA; SEM; GTMA; TISM; fuzzy MICMAC; SPSS; AMOS; MADM, AHP; TOPSIS; 

Improved PROMETHEE; Fuzzy; Modified TOPSIS; VIKOR; FMS assembly shop; 

NEH heuristic; makespan estimation; ANFIS; tool life management; cutting force 

estimation; surface roughness estimation; unmanned production system; 

metaheuristics; GA, TLBO. 
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CHAPTER I 

INTRODUCTION 

 

1.1 INTRODUCTION 

A flexible manufacturing system (FMS) is a manufacturing philosophy. It controls 

material flow effectively through a network of versatile production stations by using an 

efficient and versatile material handling and storage system. FMS consists  innumerable 

programmable and computerized machine tools connected by an automatic material 

handling system like robots and automatic guided vehicles (AGVs) and automatic 

storage and retrieval system (AS/RS) that can process simultaneously medium-sized 

volumes of the different parts [1].  

FMS is capable of producing a variety of parts and handling flexible routing of parts 

instead of running parts in a straight line through machines [2]. Manufacturing 

industries adopt the FMS for fulfilling the huge demands of the customized production 

[3]. It can be observed as the technology that avail a high power for improvement in 

productivity in the discrete manufacturing systems. FMS is flexible enough to meet the 

fluctuating market demands. It responds soon to the unexpected changes in the market 

and introduces a variety of parts. It has been hailed as one of the best solution for the 

challenges faced by manufacturing industries worldwide [4]. FMS has been known as 

the absolute method to encourage productivity to fulfill the challenges [5]. 

David Williamson, a British engineer who was employed by Molins in the middle of 

1960s, developed the concept of FMS. Molins applied for a patent for the invention and 

it was granted in 1965. The concept was called System 24 because it was believed that 

the group of machine tools comprising the system could operate 24 hours a day. 

Ingersoll-Rand Company of USA was the first where FMS was installed as a machining 

system [6, 7]. 

FMS traits, organizational culture, organizational policy, organizational layout and 

style and experience of management interact with each other to regulate the inclination 

of the organization to opt for FMS [8]. 
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FMS comprises high end software and hardware and other equipment such as CNC 

machine tools, robots, AGVs and coordinate measuring machines (CMMs), etc. FMS 

has the flexibility to exercise many non-identical part styles at the various workstations 

simultaneously and the variety of part styles and quantities of production can be 

managed in response to the flickering demand patterns.  

In FMS, computers operate the numerically controlled (NC) machines, robots handle 

the parts and automated guided vehicles (AGVs) carry the final products to specific 

destinations. CNC machines are needed for machining of materials. CMMs and 

machine vision system are needed for inspection work and advance material handling 

system such as AGVs, robots, conveyors and AS/RS are needed for material movement 

and storage purposes. Robots, CNC machines and automated material handling systems 

controlled by dedicated computers which are the main components of FMS [9]. 

Similarly software used in the FMS environment is very complex [10].  

According to Ranky [11] FMS deals with automated material flow using computer-

controlled machines, assembly cells, industrial robots, inspection machines and so on, 

together with computer integrated material-handling and storage systems.  

The particular manufacturing situations which are apt for the adoption of FMSs are [12]  

• The non-identical high precision parts are machined (typically job shop). 

• Direct numerical control (DNC) machines are required in large number. 

• Automatic material-handling system (MHS) is applied to move the work pieces 

into, within and out of the FMS. 

• On-line computer control is applied to manage the whole FMS for different parts, 

production mixes and priorities. 

1.2 COMPONENTS OF FMS 

Klahorst [13] has defined FMS as a group of machines and parallel equipment which 

are brought together to execute  a group of parts completely. FMS components are 

shown in Figure 1.1. Basic components of FMS are:  

(a) Workstations: Flexible manufacturing systems are being designed with other type 

of processing equipment likes Machining centers, loading and unloading stations, 

assembly works stations and inspection stations etc.  
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The various workstations are: 

(i) Machining centers: The workstations used in FMS are predominantly CNC 

machine tools. It is a common application of FMS. CNC machine tools with 

appropriate automatic tool changing and tool storage features facilitate quick 

physical changeover, as necessary. Machining centers can be ordered with 

automatic pallet changers that can be readily interfaced with the FMS part 

handling system.  

(ii) Loading and unloading stations: It is physical interface between the FMS and the 

rest of the factory where raw parts enter into the system and completely-processed 

parts exit the system. Loading and unloading can be performed manually by 

personnel or it can be automated as part of the material handling system. It should 

be designed to permit the safe movement of the parts. The station includes a data 

entry unit and monitor for communication between the operator and computer 

system, regarding parts to enter into the system and parts to exit the system. In 

some FMSs, various pallet fixtures to accommodate different pallet sizes may 

have to be put in place at loading/unloading stations.  

(iii) Washing stations: Part is cleaned before it goes to the assembly or inspection 

station for removal of swarf. Un-removed swarf creates problem during the 

assembly or inspection process. After being cleaned, the part is carried to other 

stations by the robots or AGVs. 

(iv) Assembly work stations: Flexible automated assembly systems are the assembly 

operation usually consists of a number of workstations with industrial robots that 

sequentially assemble components to the base part to create the overall assembly. 

They can be programmed to perform tasks with variations in sequence and motion 

pattern to accommodate the different product styles assembled in the system. 

(v) Inspection stations: Inspection stations are those stations where various inspection 

tasks may be carried out. Co-ordinate measuring machines and machine vision 

are mainly used for inspection purposes. 

(b) Automated material-handling system: The various automated material handling 

systems are used to transport work parts and subassembly parts between the 

processing stations, sometimes incorporating storage into function. 

The various functions of automated material handling and storage system are: 

(i) Free movement of work parts between workstations
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(ii) Handling system should be capable to handle a variety of work part configurations 

(iii) Handling system should have temporary storage 

(iv) Handling system should be conveniently access for loading and unloading of 

work parts 

(v) Handling system should be controlled by computer system  

(c) Computer control system: It is used to control the activities of the processing 

stations and the automated material handling system in the FMS. The various 

functions of computer control system are: 

(i) To control the work station 

(ii) To distribute the control instruction to work station 

(iii) To control production  

(iv) To control network traffic  

(v) To monitor the work handling system  

(vi) To control tool especially for tool location and tool life  

(vii) To monitor equipment 

(viii) To generates reports 

(d) Human resources: Humans are also required in the FMS to perform a variety of 

supporting operations in the system. 

The various functions of human resources are: 

(i)  Loading raw work parts into the system 

(ii)  Unloading finished parts or assemblies from the system 

(iii)  Changing and setting tools 

(iv)  Performing equipment maintenance and repair 

(v)  Performing NC part programming 

(vi)  Programming and operating the computer system 

 

1.3 BENEFITS OF FMS 

FMS has the main advantage of its high flexibility in manufacturing system to produce 

new product with in minimum time and effort. The suggested benefits of FMS by 

Primrose [14], Groover [15] are as follows: 

• Increased sales volume, by making products more competitive (e.g. delivery, price, 

quality, product specification, etc.) 

• Speedy production   
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• Settled fluctuating demands  

• Increased machine utilization 

• Handling different volumes and variety of parts 

• Reduction in floor space needed 

• Better control due to automation. 

• Elimination of unprofitable orders  

• Minimized per unit production cost 

• Reduced number of labor 

• Reduced work in process inventory  

• Curtailed in manufacturing lead time  

• Increased system reliability especially for delivery 

• Improved ability to match product specification to customer needs 

• Improved ability to deliver products to the quality and specification ordered by 

customers. 

1.4 RESEARCH GAPS 

During this research work, a lot of research papers related to FMS have been studied 

and it is found that there are some research gaps in the areas of performance 

measurement, productivity and flexibility of FMS.  The following gaps are identified: 

 In the literature related to performance of FMS, not much work has been reported 

for modelling of FMS performance variables. 

 Variables related to FMS productivity need to be modelled.  

 Models for factors affecting the flexibility in FMS are not statistically validated. 

 In the literature, ranking of flexibility in FMS have not been categorized by different 

decision making techniques. 

 In the literature, model for estimation of makespan of assembly shop is not defined. 

 In the literature, model is not available for estimation of cutting forces and surface 

roughness for unmanned production system regarding tool life. 
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1.5 RESEARCH OBJECTIVES 

Based on the gaps in the existing literature, research objectives have been identified. 

They are as follows: 

1. Performance measurement of FMS.   

2. Identification of different variables effecting flexibility and productivity of FMS. 

3. Modeling of above variables.     

4. Analysis of scheduling problem in FMS. 

5. Study of flexibility techniques in FMS.   

6. Study of issue of tool life management, especially in case of unmanned shifts, for 

finding the full production capacity of FMS. 

7. Study of different constraints regarding different resources in FMS. These 

constraints may be limited to Machine tool range to hold different parts and cutting 

tools, fix range by part handle by robots, fixed path layout by AGV and the rigidity 

of fixtures. 

1.6 METHODOLOGIES USED IN RESEARCH WORK 

Following methodologies have been used in analysis and preparation of different 

models:  

(a) Interpretive Structural Modeling (ISM) 

A complex system can become a visualized hierarchical structure by interpretive 

structural modeling (ISM). It is used to analyze and solve complex problems to manage 

decision-making. The ISM methodology is understood in the sense that the judgments 

of the groups decide whether the variables are connected or not and how they are 

concerned if they behave. It is structured since an overall structure is extracted from the 

complex set of variables on the basis of relationships [16]. It is a modeling technique, 

in which specific relationships and overall structures are depicted in a digraph model. 

It provides direction on the complexity of relationships among various elements of a 

system [17, 18]. It is primarily intended as a group learning process, but individuals can 

also use it. 
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(b) Structural Equation Modeling (SEM) 

SEM is a technique to represent, to specify, to estimate and assess models of linear  

relationships among a set of observed variables in terms of a generally smaller number 

of unobserved variables [19, 20] . SEM resembles path analysis by providing parameter 

estimates of the direct and indirect links among observed variables [21, 22]. It is 

possible to accomplish factor analysis in SEM by exploratory factor analysis (EFA) and 

confirmatory factor analysis (CFA). By multivariate data structures, EFA explores the 

factors of a measurement instrument, whereas CFA verifies the factor structure of a set 

of observed variables. The SPSS may be employed in the EFA to extract dimension 

from the variables. Subsequently, CFA may be applied to confirm these dimensions in 

the factor analysis by AMOS. 

(c) Exploratory Factor Analysis (EFA) 

EFA, generally used in behavioral and social sciences, is a multivariate statistical 

technique. Costello and Osborne [23] used the technique and provided researchers with 

a compilation of ‘best practices’ in EFA to discuss common practices in studies. The 

researcher can apply this method frequently without bothering whether the data would 

fulfill the requirements of the method or not. The influence of sample size, data 

transformation, factor extraction method, rotation and number of factors on the outcome 

were investigated. 

The primary objectives of an EFA are: 

• To find the number of factors. 

• To identify the factor loading on the variables. 

• To determine the poorly measured dimensions in the study. 

(d) Confirmatory Factor Analysis (CFA) 

CFA is a theory testing model in contrast to a theory generating method like EFA. In 

CFA, the researcher begins with a hypothesis prior to the analysis. The model or the 

hypothesis, specify the variables that are to be correlated with the specific factors. The 

hypothesis is based on a strong theoretical and/or empirical foundation [24]. The factor 

structure of a set of observed variables can be verified by CFA which is a statistical 

technique. It enables the researcher to examine the hypothesis that a relationship exists 

between the observed variables and their underlying latent construct(s). The researcher 
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uses knowledge of the theory, empirical research, or both, postulates the relationship 

pattern a priori and then tests the hypothesis statistically [25]. 

(e) Graph Theory and Matrix Approach (GTMA) 

GTMA is a systematic and logical approach that is applied in various disciplines. 

Digraph or the directed graph models are based on the structure of the system but are 

flexible enough to analyze changes. The conventional displays as block diagrams, cause 

and effect diagrams and flowcharts do not present interactions among the factors and 

unsuitable for further analysis and cannot be processed or expressed in mathematical 

form [26]. GTMA has an edge over the conventional techniques of representation and 

quantification. The features mentioned below highlight the uniqueness of the approach 

over other similar approaches [27]: 

 Single numerical index is presented for all the variables. 

 GTMA is a systematic methodology to converse qualitative factors into quantitative 

values and gives an edge to the proposed technique over conventional methods. 

 It permits modeling of interdependence of variables under consideration. 

(f) Total Interpretive Structural Modeling (TISM) 

Origin of TISM is originated from ISM technique. TISM facilitates the development of 

graphical representations of complex systems. It incorporates the interpretation of each 

relation i.e. it gives not only direct relation but transitive relation also. The interpretive 

matrix can be directly applied in case of structural modeling to interpret directed and 

undirected binary or fuzzy relations. In case of a graphical model, the interpretation of 

the relation can be shown by the side of the link connecting the pair of elements having 

the relation. An ISM model can be upgraded as a TISM model, by interpreting both the 

nodes and links in the structural model, which may have higher applicability in real life 

situations. 

(g) Multiple Attribute Decision Making (MADM) 

The most well-known branch of decision making is multiple attribute decision making 

(MADM). It solves problem of selecting a finite number of alternatives. This method 

specifies to attribute information to arrive at a choice. MADM methods need 

comparisons between inter and intra attributes and include appropriate explicit 

tradeoffs. The decision matrix in MADM methods has four main parts namely (a) 
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alternatives (b) attributes (c) weight or relative importance of each attribute and (d) 

measures of performance of alternatives with respect to the attributes [28]. MADM is 

a decision making model which means decision making in the presence of multiple 

generally conflicting criteria. MCDM is separated into multi objective decision making 

(MODM) and multi attribute decision making (MADM) based on domain of 

alternatives [29]. MODM methods comprise decision variable values that are fixed in 

a continuous or integer domain with either an infinitive or a large number of alternative 

choices the best of which should satisfy the decision maker's constraints and preference 

priorities whereas MADM focuses on problems with discrete decision spaces and in 

these problems the set of decision alternatives is predetermined [30]. There are various 

MADM methods which are considered in this research work such as:  

a) Simple additive weighting (SAW) method 

b) Weighted product method (WPM) 

c) Analytic hierarchy process (AHP) method 

d) Technique for order preference by similarity to ideal solution (TOPSIS) method 

e) Modified TOPSIS method 

f) Compromise ranking method known as VIKOR 

g) Improved preference ranking organization method for enrichment evaluations 

known as improved PROMETHEE 

(h) Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Jang [31] proposed adaptive neuro-fuzzy inference system (ANFIS). This constructs an 

input-output mapping i.e. based on both human knowledge (in the form of fuzzy if-then 

rules) and stipulated input-output data pairs. It is an adaptive network, a network of 

nodes and directional links. This network is associated with a learning rule - for 

example back propagation or hybrid algorithm. ANFIS can predict data by using sugeno 

fuzzy inference system (FIS) to relate membership and tune it using either back 

propagation or hybrid method. The aim of ANFIS is to search a model, which will 

simulate correctly the inputs to the outputs. In this research, the various input variables 

are trained and tested by ANFIS method and the performances of models for deduction 

of surface roughness with unmanned production system are compared and evaluated 

based on testing performances. Five network layers are used by ANFIS to perform the 
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following fuzzy inference steps: (i) input fuzzification, (ii) fuzzy set database 

construction, (iii) fuzzy rule base construction, (iv) decision making and (v) output 

defuzzification [32].  

(i) Genetic Algorithm (GA) 

John Holland invented Genetic Algorithm (GA) in the year 1975. According to Holland 

GA is a heuristic method which is based on ‘Survival of the fittest’. It was observed as 

a useful tool for search and to find approximate solutions to optimization problems. GA 

is considered the main paradigm of evolutionary computing. A genetic algorithm is a 

problem solving method. The method uses genetics as its model of problem solving.  

GA handles a population of possible solutions. Each solution is represented through a 

chromosome, which is just an abstract representation. It starts by generating an initial 

population of chromosomes. GAs are the ways of solving problems by mimicking 

processes nature uses i.e. Evaluation, Selection, Crossover, Mutation and Stopping 

criteria.  

(j) Teaching Learning Based Optimization (TLBO) 

Rao et al. [33] proposed teaching learning based optimization (TLBO) algorithm which 

is a teaching learning process based on the effect of influence of a teacher on the output 

of learners in a class. The algorithm mimics teaching-learning ability of teacher and 

learners in a classroom. In TLBO algorithm, population is the group of learners, 

different subjects offered to the learners are considered as different design variables and 

learners’ results are analogous to the ‘fitness’ value of the optimization problem. In the 

entire population, the best solution is considered as the teacher. The working of TLBO 

is divided into two parts: ‘Teacher phase’ and ‘Learner phase’.  

1.7 ORGANIZATION OF RESEARCH WORK  

In order to achieve the objectives framed in section 1.5, it is important to devise a proper 

methodology involving best practices, methods and usage of necessary software. So, 

this research work was outlined in 11 chapters. The organization of research work has 

been depicted in Figure 1.2. A brief description of 11 chapters, which are embodied in 

this research work, are discussed as below: 

Chapter 1: Introduction 

This chapter contains the introduction of FMS. Selection of FMS is also discussed. 

Research gaps are identified from the literature and research objectives are defined 
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based on the research gap. A brief introduction of methodologies to achieve the research 

objectives as well as organization of thesis have been discussed. 

Chapter 2: Literature review  

More than 500 research papers have been studied in the areas of performance, 

productivity, flexibility, makespan estimation and prediction of tool life based on 

cutting force and surface roughness in FMS. Nearly 400 papers were found relevant to 

this research work. The variables/factors, which effect performance, productivity, 

flexibility of FMS, were finally identified. Issues related to the constraints of FMS have 

been discussed. The different methodologies have been used such as ISM, TISM, SEM, 

GTMA, MADM, ANFIS, GA and TLBO etc. have been used in this research work.  

Chapter 3:  Questionnaire survey  

This chapter covers the development of questionnaire. A questionnaire has been 

prepared for performance, productivity, flexibility variables of FMS. Then across the 

country survey was conducted across the India automobile industries.  

Chapter 4:  Modeling and analysis of performance variables of FMS 

The performance variables of flexible manufacturing system (FMS) by different 

approaches viz. ISM; SEM; GTMA and a cross-sectional survey within manufacturing 

firms in the India have been analyzed. ISM has been used to develop a hierarchical 

structure of performance variables and to find the driving and the dependence power of 

the variables. EFA and CFA are powerful statistical techniques. By performing EFA, 

factor structure is placed whereas CFA verified the factor structure of a set of observed 

variables. CFA is carried by SEM statistical technique. EFA is applied to extract the 

factors in FMS by the statistical package for social sciences (SPSS) software and 

confirming these factors by CFA through analysis of moment structures (AMOS) 

software. SEM using AMOS was used to develop the first order three factor structures. 

GTMA is a multiple attribute decision making (MADM) methodology used to find 

intensity/quantification of performance variables in an organization. The FMS 

performance index has been proposed to quantify the factors which affect FMS. 

Chapter 5: Modeling and analysis of productivity variables of FMS 

The purpose of this research is to make a model and analysis of the productivity 

variables of FMS. This study was performed by different approaches viz. ISM; SEM; 
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GTMA and a cross-sectional survey within manufacturing firms in India. ISM has been 

used to develop a model of productivity variables and then it has been analyzed. EFA 

and CFA are powerful statistical techniques. CFA is carried by SEM. EFA is applied 

to extract the factors in FMS by SPSS software and confirming these factors by CFA 

through AMOS software. SEM using AMOS was used to develop the first order four 

factor structures. GTMA is a MADM methodology used to find intensity/quantification 

of productivity variables in an organization. The FMS productivity index has proposed 

to quantify the factors which affect FMS. 

Chapter 6:  Modeling and analysis of flexibility variables of FMS 

Fifteen variables were identified from the literature and a model was prepared by TISM 

and their evaluation was taken by exploratory factor analysis (EFA) and confirmatory 

factor analysis (CFA). EFA was applied to extract the factors in FMS by SPSS software 

and confirming these factors by CFA through AMOS software. SEM using AMOS was 

used to perform the first order four factor structures. GTMA is a MADM methodology 

used to find intensity/quantification of flexibility variables in an organization. The FMS 

flexibility index has been proposed to intensify the factors which affect FMS. 

Chapter 7: Modeling and ranking of types of flexibility in FMS 

In this research, modeling was done by ISM and impact of types of flexibility in FMS 

was decided by combined multiple attribute decision making method, which consists 

of analytic hierarchy process (AHP), technique for order preference by similarity to 

ideal situation (TOPSIS), modified TOPSIS, VIKOR and improved preference ranking 

organization method for enrichment evaluations (PROMETEE). The criteria weights 

are calculated by using the analytical hierarchy process (AHP). Furthermore, the 

method uses fuzzy logic to convert the qualitative attributes into the quantitative 

attributes.  

Chapter 8: Makespan estimation of FMS assembly shop 

This chapter focuses on to calculate the makespan of flexible manufacturing system 

assembly shop by using adaptive neuro-fuzzy inference system (ANFIS). On the basis 

of Nawaz, Enscor and Ham (NEH) heuristic, a model with combined neuro and fuzzy 

system i.e. ANFIS model is made to predict the makespan of the jobs. This is a case 

study of automobile company. 
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Chapter 9: Study of tool life management especially for unmanned production 

system 

In this chapter, an attempt has been made to solve tool life management by using the 

ANFIS to predict the cutting force and surface roughness. Cutting force is optimized 

by different soft computing techniques or metaheuristics such as genetic algorithm 

(GA) and teaching learning based optimization (TLBO). MATLAB (matrix laboratory) 

software is used for development of necessary programs and the analysis. In this 

research, the cutting forces are used as the indicator of the tool life management. 

Chapter 10:  Synthesis of research work 

In this research section, a connection among different methodologies which have been 

discussed in this research, is shown. 

Chapter 11:  Summary, key findings, scope for future work and conclusion 

In the last chapter of this thesis, the summary of the research, research findings, major 

implications and limitations of the research with conclusion of the research work have 

been presented.  

1.8 CONCLUSION 

It is a common phenomenon among the manufactures to scrutinize the performance of 

their industry. So, they are interested to acknowledge the factors which are responsible 

for the magnification of performance, productivity and flexibility of manufacturing 

system.  There are some certain variables which affect the performance, productivity 

and flexibility of manufacturing system. Therefore the aim of this study is to recognize 

those factors which affect performance, productivity and flexibility of manufacturing 

system. Introduction of research work is presented in this chapter.  Motivation of the 

research work, its objectives, methodologies and its organization have been furnished.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The emerging concept of flexible manufacturing system (FMS) includes a certain 

degree of flexibility that allows systems to react in case of predicted or unpredicted 

changes [34]. An FMS is a production system where a discrete number of raw parts are 

processed and assembled by controlled machines, computers and/or robots [35]. It 

generally consists of a number of CNC machine tools, robots, material handling system, 

automated storage and retrieval system and computers or workstations. A typical FMS 

can fully process the members of one or more part families continuously without human 

intervention and is flexible enough to suit changing market conditions and product 

types without buying other equipment. 

Manufacturing plants in India are expanding at a very fast rate day by day and 

demanding major changes in  diversity of products, so there is a great demand of FMS 

in India. The performance of FMS at all stages of production is only measure of survival 

through the increase in the performance, productivity, flexibility of plants. Model of 

performance, productivity and flexibility variables which affect FMS evaluated. 

Evolution of the flexibility is done by different MADM methods. So, these methods 

have effectively been used for the performance evaluation of FMS. 

2.2 IDENTIFICATION OF VARIABLES WHICH AFFECT PERFORMANCE 

ANALYSIS OF FMS 

Indian manufacturing industries are rapidly modernizing by adopting different aspects 

of advance manufacturing systems. They are putting large potential for increasing the 

performance, productivity and flexibility of own manufacturing industries through 

automation. In machine tool industry, FMS provides the ability to handle small batch 

production of a large variety of parts. Short lead time and reduced work-in-progress are 

the main benefits to be realized. FMS is versatile mechatronics manufacturing platform 

which integrate manual production system, handling and processing, robotics, logistics 

and material flow concept. FMS comprises of individual stations which can be used 

together or separately depending upon the needs. On the basis of the exhaustive 
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literature review and discussions with the industry experts and the academia, some 

variables which affect the performance of FMS are identified and discussed as below: 

2.2.1 Unit Manufacturing Cost  

The cost that is incurred during the production of a product is termed as manufacturing 

cost. The unit manufacturing cost includes the cost of materials used in the 

manufacturing of a product and the cost of labor used for the production process.   

Ferdows and De Meyer [36] used unit manufacturing cost  as a one performance 

measures of four measures i.e. quality conformance, delivery dependability, speed of 

new production development and unit manufacturing cost for performance 

improvement of manufacturing system [37, 38]. 

2.2.2 Unit Labor Cost 

If total labor compensation is divided by output, unit labor cost can be obtained. It is a 

useful measure of productivity. It establishes the relationship between compensation 

per hour and real output per hour. It can be used as an indicator of inflationary pressure 

on producers.  

Chen and Adam Jr [39] indicated in their study that labor costs can be reduced up to 

94% with FMS installation. Thus, the level of productivity can be affected by changes 

in unit labor cost which may further affect the total unit cost [40-42].  

2.2.3 Manufacturing Lead Time 

The manufacturing lead time is the time required to a manufacturing firm to deliver a 

product to the customer in shortest possible time. This means faster customer deliveries 

[43]. The manufacturing lead time is the time period between the placement of an order 

and the shipment of the completed order to the customer. A short manufacturing lead 

time is a competitive advantage; many customers want the delivery of their products as 

soon as possible following the placement of the order. Manufacturing lead time is equal 

to sum of the processing time, setup, moving and waiting time. Generally, it consists of 

waiting time and throughput time. 

A manufacturing company may reduce throughput time by minimizing the time 

consumed by inspecting, moving and queuing activities. As a result of minimizing such 

activities, the manufacturing lead time will also reduce and delivery performance will 

be improved [5, 43, 44].  
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2.2.4 Effect of Tool Life 

In a manufacturing system, the input parameters like speed, feed, depth of cut and 

cutting forces which influence the accuracy and surface finish govern the tool life.  The 

optimum value of these parameters gives an economical tool life. Generally, 

productivity of the manufacturing system and dimensional accuracy are influenced by 

tool life whereas the performance of the manufacturing system is effected by surface 

finish. 

In metal cutting processes tool life is an important consideration. Maximum tool life 

appears to be the solution for achieving increased productivity and immediate cost-

savings. Reducing the number of tool changes allows for minimal disruption to 

production, which provides better process stabilization, less downtime and consistent 

delivery of parts out the door and increasing the performance of the manufacturing 

system [44-46].  

2.2.5 Throughput Time 

The throughput time is the time to require a manufacturer to make a part or a product. 

The time required for a manufacturing process covers the entire period from when it 

first enters manufacturing until it exits manufacturing. It includes the following time 

intervals: 

 Processing time. It is the time required for transforming raw materials into 

finished goods. 

 Inspection time. It is the time to involve for inspecting raw materials, work-in-

process and finished goods, possibly at multiple stages of the production 

process. 

 Move time. It is the time required to move items into and out of the 

manufacturing area, as well as between workstations within the production area. 

 Queue time. It is the time spent for waiting prior to the processing, inspection 

and move activities. 

Manufacturing efficiency can be improved by minimizing the throughput time which 

is an important measure of manufacturing performance. A manufacturing company may 

lessen throughput time by minimizing the time consumed by inspecting, moving and 

queuing activities. As a result of minimizing such activities, the manufacturing lead 

time is also reduced and delivery performance is improved [45, 47, 48]. 
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2.2.6 Setup Cost 

The cost, involved in making the machine or an equipment ready for producing a 

product differently characterized, is setup cost. It includes the costs of changing the 

tools or dies on the equipment, moving materials or components and testing the initial 

output to be certain if it would meet the specifications. The greater cost of setup is the 

lost opportunity of manufacturing profitable output while the machine is idle during the 

setup time. Setup cost is directly proportional to the setup time of machine and therefore 

increases with enhancement in setup time. The setup time decides the flexibility of the 

organization. Shorter setup time gives higher flexibility and vice versa. Hence 

organizations generally prefer to reduce setup time which eventually reduces the setup 

cost. 

Reduction in the setup cost will reflect reduction in the unit cost of the product. Setup 

cost is viewed as a non-value-added cost that should be minimized. Setup costs play an 

important role in assembly line production. The cost is fixed and gets amortized over 

the batch size [40, 49, 50]. 

2.2.7 Scrap Percentage 

Scrap is a left over or residue after a product has been prepared. Low quality raw 

material or abnormal size of raw material, faulty or wrong product designing, 

substandard or unsuitable raw material, abnormal machine operation, wrong parts are 

ordered, when engineering changes aren’t effectively communicated or when designs 

aren’t properly executed on the manufacturing line etc. are the main causes of scraps. 

Thus a correct product design helps check scrap. Scrap is secondary, the primary is its 

impact on an organization which is always the wastage of time and money.  

If priority is given to evaluating and improving the manufacturing processes, it becomes 

much easier to reduce the amount of scrap in the organization and finally the result is 

the increased performance and productivity in the manufacturing system. 

FMS involves the use of special purpose equipment designed to perform one operation 

with the greatest possible efficiency to reduce scrap. Incorporating inspection into the 

manufacturing process permits corrections to the process as the product is being made. 

This result into reduced scrap [15]. But, incorporation of inspection into manufacturing 

system will affect its capability to manufacture more number of parts. Use of CNC 

machines and computer control systems have resulted in reduction of scrap [51-53]. 
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2.2.8 Rework Percentage 

Reworking is the process to rectify the mistakes occurred during production. It could 

be as simple as affixing a new label, or as extensive as welding additional material, heat 

treating and re-machining etc. 

Rework costs are caused by many things-when the wrong parts are ordered, when 

engineering changes aren’t effectively communicated or when designs aren’t properly 

executed on the manufacturing line.  

Operator training and performance monitoring are essential. If priority is given to 

evaluating and improving your manufacturing processes, it becomes much easier to 

reduce the amount of rework in your organization [52, 53]. 

2.2.9 Setup Time 

To produce variety of parts at faster rate it is mandatory to reduce setup time and 

subsequently manufacturing lead time. Therefore FMS generally employs CNC/NC 

machines which have automatic tool interchange capabilities that reduce the setup time 

[40, 49, 51]. 

2.2.10 Automation 

It also reduces the human efforts and introduces some flexibility in the manufacturing 

system. The high level of automation in an FMS allows a manufacturing system to 

operate for extended periods of time without human attention. For example, the use of 

CNC machines with the help of which human efforts can be reduced and flexibility of 

the production system can be enhanced.  

Automation and technological advancements may also help to reduce annual labor 

costs. However, the initial investment in automation is a significant barrier for many 

companies [54-57]. 

2.2.11 Equipment Utilization / Increased Machine Utilization  

FMSs achieve a higher average utilization of machines than in a conventional batch 

production machine shop. Reasons behind this include the following: 

a) 24 hr. /day operation 

b) Automatic tool changing at machine tools 

c) Automatic pallet changing at workstations 

d) Queues of parts at stations 
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e) Dynamic scheduling of production that takes into account irregularities from normal 

operation. 

It should be possible to approach 80–90% asset utilization by implementing FMS 

technology [15]. Higher machine utilization has been achieved because of reduced set-

up times, efficiently handled parts and simultaneously produced several parts [58-60]. 

2.2.12 Ability of Manufacturing of Variety of Products 

Flexible manufacturing system is capable of producing a variety of parts (or 

productions) with virtually no time lost for changeovers from one part style to the next. 

There is no lost production time while reprogramming the system and altering the 

physical set-up (tooling, fixtures and machine setting). Flexibility of any production 

system is directly linked with the variety of products to be manufactured in that 

production system. The more is the variety of products to be handled by a particular 

production system, the more will be its flexibility [61-63]. 

2.2.13 Capacity to Handle New Product 

Flexibility of a particular manufacturing system would be more if it is capable of 

handling more number of new and unexpected products [64-66]. Primrose [14] has 

proposed FMS results in introduction of new products. FMS is compared with a 

functional layout machine shop, the latter will have the ability to produce a much wider 

range of components, have more capacity to deal with fluctuations in demand and have 

a greater ability to cope with uncertainty [67]. 

2.2.14 Use of Automated Material Handling Devices  

Material handling systems provide a key integrating function within a manufacturing 

system. Industrial robots and AGVs are used to pick and place materials from or on to 

the conveyors, loading and unloading the materials from machines. Use of automated 

material handling devices affect lead time, work-in-process (WIP) inventory levels and 

the overall operating efficiency of a facility [60, 68, 69]. 

2.2.15 Reduced Work in Process Inventory 

Because different parts are processed together rather than separately in batches, work-

in-process (WIP) is less than in a batch production mode. Inventory reductions of 60–

80% are estimated [15]. Reduced WIP may help in improving the routing flexibility 

[70-73]. 
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2.2.16 Training 

A company may have the best manufacturing system components, but if it does not 

employ and train the best workers it may not produce quality products, which are the 

only things that can save it from today's stiff competition. Training can be technical, 

social, ethical or managerial. The whole idea rests on the fact that if workers are 

improved by the right training that is targeted to their need, their company’s 

productivity and quality will be improved. On the other hand, if they lack proper 

training say, how to use the company’s software, why drug use is bad, why constant 

lateness or absence from work is bad and such likes, then productivity may be reduced. 

Workers are the most important component of all the manufacturing systems. They are 

the ones who will use their initiative and other system components to produce the 

product to the required specifications and quality. For manufacturing system, the 

greater the time spent in formal job training, the higher the productivity will be [74]. 

People are an integral part of the system. If people lack proper training, then the people 

become part of the productivity problem. Lack of proper training to carry out a job is 

always a crucial factor [75]. 

2.2.17 Financial Incentive  

Millea and Fuess Jr [76] claimed that money can be used to motivate workers, which 

in turn, tends to increase productivity. Wages and labor productivity may have a bi-

directional relationship. Increasing wage can provide an incentive to improve 

productivity. 

2.2.18 Customer Satisfaction  

Bayazit [77] has given a decision that quality affects the flexibility as a factor in FMS. 

On-line inspection is incorporated into the manufacturing process permits corrections 

to the process as the product is being made. This brings the overall quality of the product 

closer to the nominal specification intended by the designer and second concept is 

process control. A wide range of control schemes intended to operate the individual 

processes and associated equipment more efficiently. By this product quality is 

improved and customer satisfaction can be increased [78, 79]. Lubbe [80] proposed that 

productivity can be increased through becoming more effective by increased customer 

satisfaction. 
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2.2.19 Reduction of Rejection 

Rejections may be caused due to the incorrect adjustment of a machine tool, 

malfunctioning equipment and tools, errors in technical specifications, or the workers’ 

low level of skill. Characteristic of production rejects is a discrepancy between the 

quality of the part or article and current technical requirements   (for example, incorrect 

dimensions or failure to follow a standard formula). Although rejected components can 

be recycled but it is a waste which adds up to a company’s net loss especially in mass 

produced product layouts where components travel through a series of operations to be 

a final product. 

Reduction in rejection is controlled by the mechanization and automation of production 

processes and the introduction of advanced forms and methods of technical control. 

Then product quality will be increased and finally productivity of the manufacturing 

system [81, 82]. 

2.2.20 Trained Worker  

Lubbe [80] claimed that productivity can be enhanced by using experienced, 

professional workers. Kilic and Okumus [83] agreed that with higher experience 

perform better in the job [84-86]. 

2.2.21 Reduction in Material Flow 

Bayazit [77] has found that FMS reduce nonproductive time that exists in the use of 

automated material handling and storage system. The FMS includes a distributed 

computer system that is interfaced to the workstations, material handling system and 

other hardware components. The central computer coordinates the activities of the 

components to achieve smooth overall operation of the system. Reduction in material 

flow also aids in the improvement of routing flexibility of the system.  

2.2.22 Flexibility in the Design of the Production System 

Bayazit [77] had discussed that maximum utilization of equipment for job shop and 

medium-volume situations can be achieved by using the same equipment for a variety 

of parts or products. It involves the use of the flexible automation concepts. Prime 

objectives are to reduce setup time and programming time for the production machine. 

This normally translates into lower manufacturing lead time and less work-in-process 

(WIP). The CNC machining heads can be reprogrammed for new jobs very easily. Thus, 

introducing great amount of flexibility in rigid special purpose machines (SPMs) [87].  
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2.2.23 Flexible Fixturing 

 FMS is meant for handling a variety of work part configurations. For prismatic parts, 

this is usually accomplished by using modular pallet fixtures in the handling system. 

The fixture is located on the top face of pallet and is designed to accommodate different 

part configurations by means of common components, quick-change features and other 

devices that permit a rapid build-up of the fixture for a given part. The base of pallet is 

designed for the material handling system. For rotational parts, industrial robots are 

often used to load and unload the turning machines and to move parts between stations 

[15]. 

2.2.24 Combination of Operation 

Groover [15] has discussed that production occurs as a sequence of operations. 

Complex parts may require dozens, or even hundreds, of processing steps. The strategy 

of combined operation involves performing two or more machining operations with one 

cutting tool.  

2.2.25 Use of Reconfigurable Machine Tool  

Koren et al. [88] defined reconfigurable manufacturing system (RMS) as a system 

designed at the outset for rapid changes in structure as well as in hardware and software 

components in order to quickly adjust production capacity and functionality within a 

part family in response to sudden changes in market or in regulatory requirements.  

2.2.26 Speed of Response 

An FMS improves response capability to part design changes, introduction of new parts 

and changes in the production schedule, machine breakdowns and cutting tool failures 

[15].  

2.2.27 Quality Consciousnesses  

Bayazit [77] has suggested that quality affects the flexibility as a factor in FMS. On-

line inspection is generally carried out with machine vision or coordinate measuring 

machine. Improved inspection capabilities have resulted in the improvement of quality. 

All variables are listed in Table 2.1 and shown that which variable affect which factor 

of FMS. Cause and effect diagram of variables affecting performance, productivity and 

flexibility variables in FMS is shown in Figure 2.1, 2.2 and 2.3 respectively. 
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Table 2.1 Variables affecting the performance analysis of FMS 

 

 

 

Name of Variables 
Affecting the factors of FMS 

Performance Productivity Flexibility 
Unit manufacturing cost  Yes Yes  
Unit labor cost  Yes Yes  
Manufacturing lead time Yes Yes Yes 
Effect of tool life Yes Yes  
Throughput time Yes Yes  
Set up cost Yes Yes  
Scrap percentage Yes Yes Yes 
Rework percentage Yes Yes  
Setup time  Yes Yes Yes 
Automation Yes Yes Yes 
Equipment utilization Yes Yes Yes 
Ability of manufacturing of variety of 
product Yes Yes Yes 

Capacity to handle new product Yes Yes Yes 
Use of automated material handling 
devices  Yes Yes Yes 

Reduced work in process inventory Yes Yes Yes 
Training  Yes  
Financial incentive  Yes  
Customer satisfaction  Yes  
Reduction of rejection  Yes  
Trained worker  Yes  
Reduction in material flow  Yes Yes 
Flexibility in the design of production 
system   Yes 

Flexible fixturing   Yes 
Combination of operation   Yes 
Use of reconfigurable machine tool   Yes 
Speed of response   Yes 
Quality consciousness   Yes 
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Figure 2.1 Cause and effect diagram of variables affecting performance in FMS 

 

 

 

 

Figure 2.2 Cause and effect diagram of variables affecting productivity in FMS 
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Figure 2.3 Cause and effect diagram of variables affecting flexibility in FMS 

2.3 IDENTIFICATION OF FLEXIBILITY IN FMS 

Several authors (Groover [15], Sethi and Sethi [89], Stecke et al. [90], Kumar [91], Son 

and Park [92], Zelenović [93]) carried out an extensive survey of the literature on 

flexibility in manufacturing and identified varying types of flexibility and at least 50 

different terms describing these varying types. These definitions are essentially in 

agreement with Browne et al. [94]. According to the group of experts fifteen flexibility 

were taken and these are defined as given below.  

(a) Machine Flexibility 

 It is defined as the capability to adapt a given machine (Workstation) in the system to 

a wide range of production operations and part styles. The greater the range of 

operations and part styles, the greater the machine flexibility will be. The machine 

flexibility can be measured by the number of different operations which can be 

performed without requiring more effort [95]. It increases higher utilization of 

machines, shorter lead times especially for new part production, production of complex 

parts and saving in inventory costs [96]. 

(b) Routing Flexibility 

It has the capacity to produce parts through alternative work station sequences in 

response to equipment breakdowns, tool failures and other interruptions at individual 

stations. It has the ability to produce a part using different process routes. In this 

flexibility a particular part can be delivered to any of the station even any of alternative 

number. Earlier, first path/route was defined before manufacturing but in FMS parts 

can be delivered to any station because all are controlled by computer control system.  
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Material handling system will get signal from computer. It reduces waiting time and 

increases higher utilization of machines. 

(c) Process Flexibility 

Process flexibility has the ability to change between productions of different products 

with minimal delay. It also has the ability to produce a given set of part types although 

each part possibly using different material, in several ways. Process flexibility increases 

as the machine setup costs decrease. This flexibility can be measured by the number of 

parts that can simultaneously be processed without using batches. The motivation of 

this flexibility is to reduce batch sizes and inventory costs [89, 94]. 

(d) Product Flexibility  

The ability to change over to produce a new (set of) product(s) very economically and 

quickly. Product flexibility relates to the ease of new-product introduction and product 

modification. In other words, product flexibility is the ease with which the part mix 

currently being produced can be changed inexpensively and rapidly. It should be kept 

in mind that the addition of new parts will invariably involve some setup. This 

distinguishes product flexibility from process flexibility [89]. 

Product flexibility can be measured by the time required to switch one part mix to 

another, not to same part type [97]. This flexibility allows the manufacturing firms to 

be responsive to the market by enabling it to bring newly designed products quickly to 

the market [95].  

(e) Volume Flexibility  

The ability to economically produce parts in high and low total quantities of production, 

given the fixed investment in the system. A higher level of automation increases this 

flexibility, partly as a result of both lower machine setup cost and lower variable cost. 

Volume flexibility has two feature i.e. speed of response and range of variations, the 

former being useful in the short term and the latter in the long term.   This flexibility 

can be measured by how so ever small the volume is for all part types [63]. 

(f) Material Handling Flexibility 

The ability of the material-handling system to move different parts efficiently 

throughout the manufacturing system. It covers loading and unloading of parts, 

transportation from one machine to other and in the end storing them in suitable 
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condition of the manufacturing facility. This flexibility increases the availability of 

machine, equipment utilization and reduce throughput time [89]. 

(g) Operation Flexibility 

Operation flexibility is the ability to perform more than one operation on a given part 

type. Part can be produced in different ways, i.e. a number of alternative processes or 

ways in which a part can be produced within the system. Operation flexibility of a 

process allows for easier scheduling of parts in real time and increases machine 

availability and utilization, especially when machines are unreliable [94]. 

(h) Expansion Flexibility        

The ease with which the system can be expanded to increase total production quantities 

and capability to expand volumes as needed.  Capability means to such traits as quality 

and the technological state. Expansion flexibility helps to reduce implementation time 

and cost for new products, variations of existing products or added capacity [95]. 

(i) Production Flexibility 

 The range or universe of part types that can be produced without the need to purchase 

new equipment. The range of part types that the FMS can produce. This flexibility is 

measured by the level of existing technology. Production flexibility allows the firm to 

compete in a market where new products are frequently demanded. Production 

flexibility minimizes the implementation time for new products or major modifications 

of existing products [95]. 

(j) Programme Flexibility 

The ability of a system to operate unattended for additional shifts or the length of time 

the system can operate unattended. Program flexibility reduces the throughput time by 

having reduced setup times, improved inspection and gauging and better fixtures and 

tools. Being able to work untended increases the effective capacity of the production 

system [98]. 

(k) Market Flexibility 

The ability of a manufacturing system to adapt to changes in the market environment. 

Market flexibility allows the firm to respond to environments change because of rapid 

technological innovations, change in customer tastes, short product life cycles, 

uncertainty in sources of supply etc. [99]. 
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(l) Response Flexibility 

It may be the ease with which the FMS responses to market demands i.e. time taken by 

the system to respond to market demands in terms of time and/or cost, with which 

changes can be made within the capability envelope, i.e. long-term flexibility. 

(m) Product Mix Flexibility 

 Mix  flexibility  is  the  ability  to  change  the  relative  proportions  of  different 

products  within  an  aggregate  output  level. The total envelope of capability or range 

of states which the manufacturing system is capable of achieving, i.e. short-term 

flexibility. 

(n) Size Flexibility 

The component sizes that can be manufactured without requiring setups that take longer 

than a specific time period. 

(o) Range Flexibility  

The total envelope of capability or range of states which the manufacturing system is 

capable of achieving, i.e. short-term flexibility. 

2.4 ISSUES RELATED TO CONSTRAINTS IN FMS 

FMS is known as a flexible manufacturing system. The manufacturing organizations 

want to use FMS to improve the manufacturing capabilities. They want to shift from 

existing system to advance system i.e. FMS to cope up market condition. But the 

installation implementation of FMS is not easy. Main problem is integration with the 

existing system. Initial installation cost of FMS and operational cost will be high if 

production volume is less. So, it is necessary to have enough volume to justify the use 

of FMS. According to Jain and Raj [100] flexibility in manufacturing has been 

identified as one of the key factors to improve the performance of FMS. But, if tooling 

system is not proper then manufacturing system will not be flexible and performance 

of FMS will be less. So, tooling system is a constraint in FMS to make a system flexible. 

Flexibility of a particular manufacturing system would be more if it is capable of 

handling more number of new and unexpected products. But this machine tool should 

be versatile to produce different variety of parts otherwise machine tool also be a 

constraint in FMS. Jain and Raj [101] have explained that productivity is a key factor 

in a flexible manufacturing system (FMS) and generally, tool life influences 
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productivity of the manufacturing system. If tool life is restricted in some way that 

effect productivity of manufacturing system so, tool life may be a constraint in FMS.   

In FMS, material handling systems, industrial robots and AGVs are used to pick and 

place materials from or on to the conveyors, loading and unloading the materials from 

machines. Robots are used in manufacturing system to do same jobs but if product 

shape changes then it may be a constraint. Similarly, AGVs are used for material 

transportation but its path is defined. If the fixed path of AGV is changed then, it may 

be a constraint. In manufacturing system, for machining operation or inspection or 

transportation workpiece should be stationary. For this purpose, a fixture is required 

and that fixture should be rigid to bear external forces otherwise it also becomes a 

constraint to FMS. Effective strategies are important for the smooth and economical 

functioning of any FMS in designing and controlling phases. It is very difficult to cover 

all problems in detail. From the previous literature, some researchers have taken 

problems of FMS into planning, designing  and controlling [102, 103]. A closed watch 

is required on each and every problem associated with the successful implementation 

of an FMS. Machine tools, material handling like AGV, pallet and fixtures and robots 

etc. are the resources which are jointly controlled by centralized computer system. The 

few constraints which these resources confront are as given below: 

(a) Machine Tool  

The Machine tools are used for machining of different components. But they have some 

means of constraining the workpiece. The relative movement between the workpiece 

and the cutting tool is restrained by the machine to at least some extent. The maximum 

desired feed as well as discrete spindle speed are hindrances that are in machine tool. 

Some restraints like the machine tool maximum power force, low speed power (or 

spindle torque) and the component surface roughness have been generalized and 

represented by an upper feed limit. In the "high" cutting speed region of a machine tool 

operating range, the machine tool maximum power constraint will come into play and 

limit both the feed and cutting speed from which a constrained optimum can be selected 

[104, 105]  The machine tool resources is subjected to the following constraints: 

1. Tool life constraint: The tool life is generally based on subjective decision and it 

should not be less than a prescribed value to avoid the frequent tool changes. The 

minimum desired tool life should be 20 times the machining time of one component 

although to ensure that at least 20 components are machined. A constraint can be 
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put on the maximum value of the tool life as well, but often it will be an inactive 

constraint. 

2. Surface roughness constraint: The surface roughness value may be restricted to lie 

in a zone. Because certain tribological and heat transfer characteristics are 

dependent on it. 

3. Cutting force constraints: Excessive job and tool deflection and breakage of the tool 

should be avoided. These can be found by physics based or soft computing based 

models. 

4. Machine power constraint: The machine power can be calculated using the 

following formula:                     

main cutting force x cutting speedMachine Power =    
efficiency of  the machine

                         (2.1) 

It is necessary to limit the machine power to avoid excessive overloading of the 

spindle motor. If machine power is much lesser than the power of the spindle motor, 

the machine is underutilized. 

5. Geometric constraint: There may be some restrictions based on the geometry of 

workpiece. 

6. Temperature constraints: Dimensional accuracy and tool life especially in dry 

machining can be maintained by constraining temperature of the workpiece, 

machine tool and cutting tool. 

7. Variable bounds: Cutting speed, feed and depth of cut should be dependent on the 

type of machine, type of tool and type of material. 

8. Flexibility constraints: For a new part, set up time is high because integration of 

cutting tool, machine tool and material handling device constraints. So, it effect the 

flexibility of FMS. 

9. Cost: CNC machines are the main component of machine tool in FMS. But, it can 

be controlled only by the computerized system. Moreover the cost of CNC machine 

is high. So, high cost of CNC machine is a constraint in FMS. 

10. Maintenance of machine: Maintenance cost of CNC machines are so high because 

it required highly skilled technician for maintenance.     

The many technological and practical constraints which limit the feasible domain for 

the selection of optimum cutting conditions should also be accounted in a realistic 

optimization study.  
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(b) Tool Management 

The basic function of a tool management system is to ensure that the right tools are 

made available at the right place and at the right time to support the required production 

schedule. Tool management is defined as a strategy which aims at resolving problems 

related to various tool activities, including acquisition, storage, database development, 

selection and allocation, inspection, presetting, delivery, loading, monitoring, 

replacement, requirement planning and inventory control of tools [106]. In fact, the 

centralized tool management has introduced the fifth generation of FMS environment, 

indicating that tool management is one of the more important subsystems in the FMS 

which influences the whole structure and operation of the system [107]. 

Tool management is a very complicated task and is often stressed by FMS users and 

researchers [108, 109]. Despite such complexity, there are successful working FMSs, 

whose performance has been considerably augmented with efficient tool management 

[110, 111].  The major constraint in FMS is element of tooling that does not allow 

manufacturer to realize the full flexibility [112].Tool management is motivated in FMS 

by two factors i.e. tooling cost and availability of tool [113]. Tooling cost have 

significance on economic, because tooling accounts for 25-30 per cent of the fixed costs 

of production in automated machining environment whereas availability of tool in FMS 

has an impact for flexibility and capability of production system [114].  Several firms 

have recently developed integrated tool management systems with tremendously 

encouraging results [111].  

The important resource in FMS are tool and need attention for the management. But 

the constraint in the management of tools are as given below [115]: 

1. Tool life: Tool life plays a significant role in manufacturing industry because its 

effects overall production process. It is an important parameter of tool management 

because 20% down time attributed to tool failure. Tool life depends on the 

workpiece material and on cutting conditions. Various methods are used to calculate 

tool life but due to various combination of factor some time it is difficult to find out 

the best result. Tools are subject to wear and often need to be reconditioned. Once 

the tool is worn, it needs replacement or reconditioning, processes which are 

performed in the tool room.  
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2. Tool cost: The loading method should take into account the availability of tool 

copies while assigning the load to the various machines as only few copies of a 

given tool type are available in the system because of the cost. 

3. Tool magazine capacity: Generally, machine tool builders equip their machining 

centers with large tool magazines to reduce the impact of the capacity constraint 

which result in high seek time, sometimes greater than the time required to perform 

an operation because tool magazines have finite capacity. This leads in high spindle 

idle times between two different operations. This puts constraints on the set of 

operations that can be assigned to a machine during a given period. Whereas in low 

capacity magazine, the tools have to be changed manually as per requirement and 

it increases the nonproductive time. So optimal selection of tool magazine may be 

another problem in FMS. 

4. Tool management in unmanned production: Monitoring in the cutting processes to 

determine tool life regarding tool breakage, tool wear, and surface roughness (Ra) 

of the workpiece is a constraint for tool management in unmanned production 

system. 

5. Availability of tool: New cutting tool for new parts may not be readily available 

and may be problem in reprograming of the system. 

(c) Robot 

Picking the objects by a robot and placing them in a certain orientation within its 

workspace require a majority of the applications. In a structured environment this works 

more or less smoothly as both the picking spot and placing spots are fixed [116]. 

Industrial Robots should be used not to move from one end position to another but also 

for loading and unloading machine tools and for simple assembly operations in mass 

production. They traverse in two, three or occasionally four axes, but the control of 

intermediate positions between programmed end points is not normally possible.  

In a robot operating system interaction with different types of parts is a common 

problem. These mechanisms model with a single revolute or prismatic joint impose 

constraints to the motion of the robot. As it is difficult to infer the type of the mechanism 

(e.g. sliding or rotating) and the corresponding parameters (e.g. radial distance, 

orientation of rotational axis).The estimated uncertain quantities are [117]: 
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1. Direction of motion:   Robots can pick the object only within its reachable 

workspace not beyond the workspace. To work in 3D manipulator, minimum 6 

degree of freedom is required but at a singular configuration, the manipulator loses 

one or more degree of freedom.   

2. Type of the hinged mechanism: There is a constraint due to joints like as in sliding 

it can move according to length of slide or in rotating generally it can rotate 0 to 

180 degree.  

3. Trajectory of robot: Finding a collision-free, optimal assembly path which leads the 

robot to move parts from initial positions to final assembled position is not easy. 

Any obstacle in the path of the robot will hamper its movement. 

4. Geometrical constraint: Each robot end effector is designed for a particular 

geometry. It cannot hold the part of other geometry effectively. 

5. Capacity of Robot: Robots are used in manufacturing plant to carry material from 

one station to other stations. So, they are designed for a particular load carrying 

capacity. They cannot be interchange with robots of different load carrying 

capacity. 

6. Cost: The wages of labor is not as much as the cost of the robot. Therefore the 

availability of economical labor is a constraint in FMS. Moreover there 

maintenance is also very expensive. 

7. Availability of robot: Generally, robots are not manufactured in India. Those are 

imported from other countries which hike the cost of robots. Moreover the 

maintenance is also not readily available. 

(d) Automated Material Handling 

Material handling systems are integrated with the machining center and the storage and 

retrieval systems. For prismatic parts material handling is accompanied with modular 

pallet fixture. In rotational parts industrial robots are used to load/unload the machines 

and to move parts between stations. The material handling system must be capable of 

being controlled directly by the computer system to direct it the various workstations 

load/unload station and storage area. 

In FMS, to simplify production line, an unmanned vehicle is used for material handling. 

Automated guided vehicle (AGV) system is most prominent material handling system 

in FMS. It consists of multiple automated guided vehicles (AGVs) and is operated by 

computers. AGVs are unmanned vehicles they carry workpiece among the workstations 
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following fixed guide paths and are controlled either by on-board computers or by a 

central computer. AGVs are widely used in FMSs as they provide flexibility in routing 

parts among elements present in the system. These systems are highly complex and 

costly due to the dynamic environment in which the FMS functions. Hence only careful 

design and operational planned AGVs are essential for unimpaired performance. 

Researchers proposed alternate procedures for estimating the number of AGVs required 

in manufacturing system. Simulation experiments also conducted to find the number of 

AGVs, number of pallets, buffer sizes, dispatching rules etc.[118-120] . 

The main limitation of the available simulation methods are that they are time-

consuming and need large computer memory. Hence, they are limited in their practical 

usefulness for on-line monitoring of AGVs.  

Generally, automated material handling is done by AGV with defined path for 

movement. There is a fixed path for movement. So, fixed path is a constraint for AGV. 

There are some constraint as given below [105, 121-123]: 

1. Number of AGV: The number of vehicles (AGVs) can be calculated based on a 

transport profile i.e. the loading and unloading matrix with the number of working 

shifts, the operating times and the break times. Depending on the planning and 

operation, additional vehicles should be kept in reserve (repairs and maintenance). 

Many AGVs create the deadlock situation on the path and increase the price.  

2. Path of AGV: A network of guided paths is defined in advance and the guided paths 

have to pass through all pickup/delivery points. So, AGV’s path cannot be modified 

with the requirement with immediate effect. 

3. Speed of AGV: The vehicles travel at a constant speed on the fixed path layout. The 

speed does not go up and down on the path according to the requirement because it 

is not programmed. 

4. Movement of AGV: The vehicles just travel forward on the guided path. They do 

not move backward. 

5. Types of product: AGVs are designed to carry only one kind of product at a time. 

If the specific product is not in production, the AGVs lie idle and cannot be utilized 

in carrying different designed products. 

6. Load carrying capacity: Generally, AGVs are designed according to the load carry 

capacity therefore it cannot carry more than its capacity.   



38 
 

7. Cost: Although AGV is the main component of material handling system of FMS, 

its cost of maintenance and operation is high. AGV is also itself costly. 

8. Integration of AGV: Integration of AGV with other component of FMS is 

complicated because AGV move only on a guided path.                                               

(e) Fixture 

A fixture locates, holds and supports a workpiece in most of the automated 

manufacturing, inspection, and assembly operations. Fixtures locate a workpiece in a 

given orientation for instance cutting tool or measuring device, other components. Such 

location must be invariant in the sense that the devices must clamp and secure the 

workpiece in that location for the particular processing operation. 

In order to maintain the workpiece stability an operational fixture has to meet several 

requirements to perform its functions completely. The following constraints are 

observed as given below [105, 124]: 

1. Deterministic location: A locator is usually a fixed component of a fixture that 

establishes and maintain the position of a part in the fixture so that it is presentable 

for the machining operation. Due to locating errors in the fixture the workpiece does 

not set within the machine coordinate frame accurately and uniquely. 

2. Total constraint: The external forces should not affect the machining operation so 

the workpiece should be held tightly by the fixture to prevent its movement.  

3. Contained deflection: Due to the elastic/plastic nature of the workpiece, the 

workpiece deform. Other external forces impacted by the clamping actuation and 

machining operations also deform the workpiece. So, deformation has to be 

minimized to achieve the tolerance specifications. 

4. Geometric constraint: In the machining operation the cutting tools path should be 

free without being interfered by the fixture.  

5. Flexibility of fixture: Flexibility of fixture is also a constraint in FMS. It is the 

interface between the FMS and the parts to be machined. As parts differ in size, 

shape, material and operation, one fixture cannot accommodate for different parts. 

If it is manual it increases nonproductive time in setting the parts. If it is automated 

it is costly.  

Apart of theses constraints, a fixture design should possess some other necessary 

characteristics such as quick loading and unloading, minimum number of components, 

accessibility, design for multiple cutting operations, portability, low cost, etc. 
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The flexibility of a whole FMS is restricted by the flexibility of any of its components, 

including fixture systems. The cost of designing and fabricating the fixtures in an FMS 

can amount to 10- 20% of the total system cost. Traditionally, the function of a fixture 

is to hold a part in order to keep that part in a desired position and orientation while the 

part is in manufacturing, assembly, or verification processes [125]. 

2.5 METHODOLOGIES 

To achieve the research objectives, the following methodologies are used in this 

research work. The methodologies are discussed in detail given below: 

2.5.1 Interpretive Structural Modelling (ISM) 

Warfield [126] proposed an approach i.e. interpretive structural modelling (ISM) to 

make a complex system into a visualized hierarchical structure. It is used for analyzing 

and solving complex problems to manage decision- making. The ISM process 

transforms unclear, poorly articulated mental models of systems into visible, well-

defined models useful for many purposes [17]. It helps in identification of the 

interrelationships among variables under consideration. The ISM methodology is 

understood in the sense that the judgments of the groups decide whether the variables 

are connected or not and how they are concerned if they behave. In this approach an 

overall structure is extracted from the complex set of variables on the basis of 

relationships [16]. ISM application has been reviewed from the literature as Azevedo 

et al. [127] identify and rank performance measures. Govindan et al. [128] discussed 

about third party reverse logistics provider. Raj et al. [129] have analyzed modelling of 

flexibility factors. Raj and Attri [26] made a model of TQM barriers. Faisal [130] 

discussed social responsibility in supply chains. Kannan et al. [131] applied ISM for 

selection of reverse logistics provider.  Raj et al. [10] analyzed the enablers of flexible 

manufacturing system. Thakkar et al. [132] have evaluated buyer and supplier 

relationships. Singh et al. [133] discussed critical success factors of advanced 

manufacturing technologies. Faisal et al. [134] discussed about supply chain risk 

mitigation. Ravi and Shankar [135] analyzed the productivity improvement of 

computer hardware supply chain. Ravi and Shankar [135] developed a model for 

reverse logistics barriers. Jharkharia and Shankar [136] discussed about IT enablement 

in supply chain enablers. and  Mandal and Deshmukh [137] have done vendor selection 

through ISM model. 
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The various steps involved in ISM modelling are as follows. 

Step 1: Different variables are identified which are related to problems. 

Step 2: A contextual relationship is established among variables with respect to whom 

the pairs of variables would be examined, which is identified in step 1. 

Step 3: A structural self-interaction matrix (SSIM) is developed for variables. This 

indicates the pairwise relationship among the variables of the system under 

consideration.  

Step 4: From SSIM, reachability matrix (RM) is developed and the matrix is checked 

for transitivity. The transitivity of the contextual relation is a basic assumption made 

in ISM. It states that if a variable A is related to B and B is related to C, then A is 

necessarily related to C as shown in Figure 2.4. 

 

Figure 2.4 Transitive graph 

Step 5: The RM is partitioned into different levels. 

Step 6: The RM is converted into its conical form, i.e. with most zero (0) elements in 

the upper diagonal half of the matrix and most unitary (1) elements in the lower half. 

Step 7: Based upon the relationship above, a directed graph (digraph) is drawn and 

transitivity links are removed and then digraph is converted into an ISM model by 

replacing element nodes with statements. 

Step 8: Finally, the ISM model is checked for conceptual inconsistency and necessary 

modifications are incorporated. 

Various steps involved in ISM technique are illustrated in Figure 2.5. 

2.5.2 Factor Analysis 

Factor analysis (FA) is an old technique that is widely used as a data reduction 

technique. It is also used for the analysis of data in social and behavioral sciences in 

general and other applied sciences that deal with large quantities of data (variables) 
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[138]. Basically, factor analysis is frequently employed in the social sciences where the 

main interest lies in measuring and relating unobserved constructs, such as emotions, 

attitudes, beliefs and behavior. The main idea behind the analysis is that the latent 

variables (referred to also as factors) account for the dependencies among the observed 

variables (referred to also as items or indicators) in the sense that if the factors are held 

fixed, the observed variables would be independent. Theoretically, factor analysis can 

be distinguishable between exploratory and confirmatory analysis, but in practice, the 

analysis always lies between the two [139].  

2.5.3 Structural Equation Modelling (SEM) 

Structural equation modelling (SEM) is a technique to represent, to specify, to estimate 

and to evaluate models of linear relationships among a set of observed variables in 

terms of a generally smaller number of unobserved variables [19, 20]. Path analysis and 

confirmatory factor analysis are two special cases of SEM which are regularly used. 

Structural equation modelling was introduced in the early 1970s; it comprises two 

divisions, the measurement model and the structural equation model [21]. The 

measurement model specifies how latent variables or hypothetical constructs depend 

upon or are indicated by the observed variables. The model describes the measurement 

properties (reliabilities and validities) of the observed variables. Structural equation 

modelling resembles path analysis by providing parameter estimates of the direct and 

indirect links between observed variables [21, 22]. Factor analysis in SEM can be 

distinguishable between exploratory and confirmatory factor analysis. EFA is 

commonly used to explore the dimensionality of a measurement instrument by 

multivariate data structures whereas CFA is a statistical technique used to verify the 

factor structure of a set of observed variables. Statistical software is an invaluable tool 

for business decision making and scientific research. Therefore, decision makers and 

researchers need to be aware of the limitations of individual software packages [140]. 

The statistical package for social sciences (SPSS) has been used in the EFA to extract 

dimension from the variables. Subsequently, CFA has been applied to confirm these 

dimensions in the factor analysis by analysis of moment structures (AMOS). SEM 

application has been reviewed from the literature as Ramanathan and Muyldermans 

[141] proposed a methodology for identifying demand based upon promotion using the 

SEM approach. Su and Yang [142] used this approach for analyzing the impact of ERP 

on SCM. Lau et al. [143] presented an article related to supply chain integration and  
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Figure 2.5 Flow diagram for preparing ISM 
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modular product design. Vázquez-Bustelo et al. [144] studied agility drivers, enablers 

and results and empirically tested the model. Fitch [145] focused on SEM for risk 

assessment instruments. Golob [146] proposed an SEM approach for travel behavior 

research. The SEM analysis proceeds in two steps. First the exploratory factor analysis 

is used to identify the dimensions of FMS and Next, confirmatory factor analysis to 

confirm the factor structure of the which identify by the EFA. 

2.5.4 Exploratory Factor Analysis (EFA) 

Exploratory factor analysis (EFA) is a multivariate statistical technique widely used in 

social and behavioral sciences. Costello and Osborne [23] discuss common practices in 

studies using these techniques and provide researchers with a compilation of ‘best 

practices’ in EFA. Frequently, the method is blindly applied without checking if the 

data fulfill the requirements of the method. The influence of sample size, data 

transformation, factor extraction method, rotation and number of factors on the outcome 

were investigated. 

The primary objectives of an EFA are: 

• To find the number of factors/Dimensions 

• To identify variables that are poor factor loading 

• To identify factors that are poorly measured in the study 

2.5.5 Confirmatory Factor Analysis (CFA) 

Confirmatory factor analysis (CFA) is a theory testing model in contrast to a theory 

generating method like exploratory factor analysis. In confirmatory factor analysis, the 

researcher begins with a hypothesis prior to the analysis. This model, or hypothesis, 

specify which variables will be correlated with which factors and which factors are 

correlated. The hypothesis is based on a strong theoretical and/or empirical foundation 

[24]. CFA is a statistical technique used to verify the factor structure of a set of observed 

variables. CFA allows the researcher to test the hypothesis that a relationship between 

the observed variables and their underlying latent construct(s) exists. The researcher 

uses knowledge of the theory, empirical research, or both, postulates the relationship 

pattern a priori and then tests the hypothesis statistically [25].  

The use of CFA could be impacted by the following: 

• The research hypothesis being tested  
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• The requirement of sufficient sample size  (e.g., 5-20 cases per parameter 

estimate)  

• Measuring instruments  

• Multivariate normality  

• Parameter identification  

• Outliers  

• Missing data  

• Interpretation of model fit indices [147].   

To perform CFA, structural equation modeling (SEM) is one statistical test to determine 

the significance of the analysis to determine the adequacy of the model fit to the data. 

SEM has become one of the techniques of choice for researchers across disciplines and 

increasingly is a ‘must’ for researchers in the social sciences [148]. A variety of fit 

indices which can be used as a guideline for prospective structural equation modelers 

to confirm the model are discussed below:  

a) Absolute fit indices:  

Absolute fit indices determine how well a-priori model fits the sample data and 

demonstrate the most superior fit for the proposed model. These measures provide the 

most fundamental indication of how well the proposed theory fits the data [149]. In this, 

categories are the Chi-Squared test, goodness-of-fit statistic (GFI), adjusted goodness-

of-fit statistic (AGFI), root mean square residual (RMR) and root mean square error of 

approximation (RMSEA). 

b) Model chi-square (χ2):  

The Chi-Square value is the traditional measure for evaluating the overall model fit 

[150].  

c) Goodness-of-fit statistic (GFI):  

The GFI calculates the proportion of variance that is accounted for by the estimated 

population covariance [151]. The goodness-of-fit index (GFI) is based on a ratio of the 

sum of the squared discrepancies to the observed variance. The GFI ranges from 0 to 1, 

with values exceeding 0.9 indicating a good fit to the data [152].  
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d) Adjusted goodness-of-fit statistic (AGFI):  

Related to the GFI is the AGFI which adjusts the GFI based upon degrees of freedom, 

with more saturated models reducing the fit [151]. In addition to this, AGFI tends to 

increase with sample size. As with the GFI, generally accepted asset value for the AGFI 

is 0.90 or greater indicate well-fitting models. 

e) Root mean square residual (RMR):  

The RMR is the square root of the difference between the residuals of the sample 

covariance matrix and the hypothesized covariance model. Values for the RMR with 

well-fitting models obtaining values less than .05 [153, 154], however, values as high 

as 0.08 are deemed acceptable [150]. 

f) Root mean square error of approximation (RMSEA):  

The RMSEA is the second fit statistic [155]. The RMSEA tells us how well the model, 

with unknown but optimally chosen parameter estimates would fit the population 

covariance matrix [153]. An RMSEA of between 0.08 and 0.10 provides a mediocre fit 

and below 0.08 shows a good fit [156].  

g) Incremental fit indices:  

Incremental fit indices are a group of indices that do not use the chi-square in its raw 

form but compare the chi square value to a baseline model. For these models, the null 

hypothesis is that all variables are uncorrelated [149].   

h) Normed-fit index (NFI):  

The first of these indices to appear in the output is the NFI [157]. This statistic assesses 

the model by comparing the χ 2 value of the model to the χ 2 of the null model. The 

null/independence model is the worst- case scenario as it specifies that all measured 

variables are uncorrelated. Bentler and Bonett [157] recommended values greater than 

0.90 indicating a good fit. For example, an NFI of 0.9 means that the model is 90% 

better fitting than the null model.  A major drawback to this index is that it is sensitive 

to sample size, underestimating fit for samples less than 200 [158, 159] and is thus not 

recommended to be solely relied on [160]. This problem was rectified by the Non-

Normed Fit Index (NNFI). 
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i) Non-normed fit index (NNFI):  

It is also known as the Tucker-Lewis index (TLI) which prefers simpler models. The 

NNFI adjusts the NFI for the number of degrees of freedom in the model. However, in 

situations where small samples are used, the value of the NNFI can indicate a poor fit 

despite other statistics pointing towards a better fit [151, 159, 160]. Higher values of 

the NNFI indicate a better fitting model and it is common to apply the 0.90 as a cutoff 

indicating a good fit to the data.  

j) Comparative fit index (CFI):  

This index was introduced by Bentler [159], based on the non-central chi-square 

distribution. The CFI also ranges between 0 and 1, with values exceeding 0.90 

indicating a good fit to the data. This index is included in all SEM programs and is one 

of the most popularly reported fit indices due to being one of the measures least affected 

by sample size [161]. 

k) Incremental fit Index (IFI):   

Bollen [162] defined incremental fit index (IFI) which is given by (chi-square of 

independence model - chi-square of target model) / (chi-square of independence model 

- df of target model). IFI values range between 0 and 1, exceeding 0.90 indicating a 

good fit to the data.  

The following steps are followed to perform EFA and CFA: 

Step1: Collect and explore data  

Relevant variables are chosen from the literature and expert opinion. After this, a survey 

takes place to collect data regarding these variables. Min. Sample size of at least 5 cases 

per variable and ideal sample size of at least 20 cases per variable, while total sample 

size of 200+ preferable. Data set 50 = very poor, 100 = poor, 200 = fair, 300 = good, 

500 = very goodand1000+ = excellent. 

Step 2: Check the relatively internal consistency 

To check relatively internal consistency, reliability test is performed. For this purpose 

cronbach’s alpha is calculated and its value should be greater than 0.7 [163]. 
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Step 3: Check the adequacy of sample size 

To check the sample is adequate or not, Kaiser-Meyer-Olkin measure of sampling 

adequacy test (KMO-test) is performed. Kaiser-Meyer-Olkin (KMO) measure of the 

sample adequacy is used to validate the use of factor analysis. It is an index used to 

examine the appropriateness of factor analysis. The value of KMO in between 0.5 and 

1.0 indicates the factor analysis is appropriate. Values below 0.5 imply that factor 

analysis may not be appropriate for the data [164]. Bartlett’s test of sphericity is used 

to examine the hypothesis that the variables are uncorrelated in the population. The 

significance level gives the result of the test. Very small values (less than 0.05) indicate 

that there are probably significant relationships among the variables. If the significance 

value is more than 0.10 then it indicates that the data is not suitable for factor analysis 

[165]. 

Step 4: Initial extraction 

For initial extraction, communalities are calculated. Communality is the amount of 

variance a variable share with all the others being considered. Communalities indicate 

the amount of variance in each variable that is accounted for. Initial communalities are 

estimates of the variance in each variable accounted for by all components or factors. 

Extraction communalities are estimates of the variance in each variable accounted for 

by the factors (or components) in the factor solution. Smaller values indicate the 

variables which do not fit well with the factor solution and should possibly be dropped 

from the analysis. Communalities range between 0 and 1. High communalities (> 0.5) 

mean there is considerable variance explained by the factors extracted. Low 

commonalities (< 0.5) mean there is considerable variance unexplained by the factors 

extracted. 

Step 5: Choose the variables to retain 

Smaller values indicate the variables which do not fit well with the factor solution and 

should possibly be dropped from the analysis. It may be needed to extract more factors 

to explain the variance or remove these items from the EFA. 

 



48 
 

Step 6: Extract initial factors (via principal components analysis) 

For extracting initial factors, following techniques are used: 

a) Kaiser’s criterion, suggested by Guttman and adapted by Kaiser, considers factors 

with an eigenvalue greater than one as common factors [163]. 

b) A good factor solution is one that explains the most variance with the fewest factors. 

Realistically happy with 50-75% of the variance explained. 

c)  According to Cattell [166] scree test. On a scree plot, because each factor explains 

less variance than the preceding factors, an imaginary line connecting the markers 

for successive factors generally runs from top left of the graph to the bottom right. 

If there is a point below which factors explain relatively little variance and above 

which they explain substantially more, this usually appears as an “elbow” in the 

plot. Cattell’s guidelines call for retaining factors above the elbow and rejecting 

those below it. 

d) At least 3 items or observed variables per factor with significant factors i.e. > .30. 

Step 7: Choose the number of factors to retain 

Step 8: Rotate the component matrix with Varimax with Kaiser Normalization. 

Step 9 : Decide if changes need to be made (e.g. drop item(s), include item (s) etc.). 

Step 10: Identified dimensions and use in the further analysis. 

Step 11: Make the path diagram/model according to these dimensions and items. 

Step 12: Find the model fit summary 

a) χ2/DF  (CMIN/DF) 

b) Absolute fit indices: GFI, AGFI, RMR, RMSEA 

c) Incremental fit indices: NFI, CFI, TLI, IFI   

Step 13: Confirm the factor/dimensions results.  

The flow diagram of Exploratory and Confirmatory Factor Analysis are illustrated in 

Figure 2.6. 

2.5.6 Graph Theory and Matrix Approach (GTMA) 

GTMA is a systematic and logical approach that is used in various subject fields. The 

conventional representations like block diagrams, cause and effect diagrams and 

flowcharts do not depict interactions among factors and are not suitable for further 

analysis and cannot be processed or expressed in mathematical form. GTMA has an 

edge over the conventional techniques of representation and quantification.  
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Figure 2.6 Flow diagram of exploratory and confirmatory factor analysis 
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GTMA application has been reviewed from the literature as Sabharwal and Garg [167] 

evaluated the economic viability of remanufacturing by using the graph theoretic 

approach. Malhotra et al. [168] evaluated the barriers affecting reconfigurable 

manufacturing system. Saha and Grover [169] discussed critical factors of website 

performance. Raj et al. [27] quantify the barriers of FMS. Dou et al. [170] optimized 

single-product flow-line. Rao and Padmanabhan [171] selected rapid prototyping 

process. Garg et al. [172] used for selection of power plants. Rao [173] used for 

industrial robots selection, identification and comparison. Rao [173] made a material 

selection model. Grover et al. [174] developed a performance index in TQM 

environment for human resource. Grover et al. [175] developed a digraph approach for 

TQM evaluation of an industry. Gandhi and Agrawal [176] used diagraph and matrix 

approach for FMEA. Hammouche and Webster [177] used GTMA for Layout problem. 

This methodology consists of the following elements:  

• Digraph representation 

• Matrix representation 

• Permanent function representation 

Which are explained as below: 

• Digraph representation : 

A digraph is used to represent the performance factors and their interdependences in 

terms of nodes and edges. Experts, both from industry and academia, have been 

consulted in identifying and developing the contextual relationship between the 

elements.  

• Matrix representation : 

Matrix representation of the FMS performance digraph gives one-to-one representation. 

This is represented by a binary matrix (fij), where fij represents the relative importance 

between attributes i and j such that,  

fij  = 1, if the i-th attribute is more important than the j-th attribute  

        = 0, otherwise [28].  

The FMS’s performance matrix, (P) for the FMS digraph is written as: 
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• Permanent function representation: 

Permanent is a standard matrix function and is used in combinatorial mathematics 

[178]. The permanent function is obtained in a similar manner as its determinant. A 

minus sign appears in the calculation of determinants while in the permanent, i.e. the 

variable permanent function, positive signs reduce these negative marks. 

The FMS’s performance intensity function for matrix P* is written as: 

( ) ( )
3

3

 P* =                 i ij ji k ij jk ki ik kj ji
i j k i j ki

Per F f f F f f f f f f
=

+ + +∑∑∑ ∑∑∑∏     (2.3) 

The permanent function of the matrix (i.e. equation 2.3) is a mathematical expression 

in symbolic form for three factors. These terms are arranged in groupings whose 

physical significance is explained below: 

 The first grouping represents the interactions of the three major elements (i.e., 

F1F2F3).  

 The second grouping is absent, as there is no self-loop in the digraph.  

 Each term of the third grouping represents a two-element interdependence loop 

(i.e., fij fji) and the FMS performance measure of the remaining one unconnected 

elements.  

 Each term of the fourth grouping represents a set of three-element 

interdependence loops (i.e., fij fjk fki or fik fkj fji).  

The following steps to take place to perform GTMA: 

1. Firstly, classify the various variables into the primary factors that affect 

performance in FMS by SPSS. 

2. Secondly, a digraph is developed between the elements depending on their 

interdependencies.  
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3. Develop a variable digraph considering inheritance and interactions among 

them. The nodes in the digraph represent variables while edges represent 

interaction among variables. This is the digraph at each subsystem level.  

4. Based on the above mentioned digraphs among the variables, the variables’ 

matrix is developed at the subsystem level with diagonal elements representing 

inheritances and the off diagonal elements representing interactions among 

them. The numerical values for inheritance of attributes and their interactions 

with the help of experts are taken from Table 2.2 and 2.3.     

Table 2.2 The inheritance of FMS factor 

Sr. No. Qualitative measure of FMS factor Assigned value of FMS factor 

1 Exceptionally low 1 

2 Extremely low 2 

3 Very low 3 

4 Below average 4 

5 Average 5 

6 Above average 6 

7 High 7 

8 Very high 8 

9 Extremely high 9 

10 Exceptionally high 10 

Table 2.3 The values of interdependence of FMS factor 

Sr.    
No. 

Qualitative measure of interdependence of FMS factor Assigned value 

1 Very strong 5 

2 Strong 4 

3 Medium 3 

4 Weak 2 

5 Very weak 1 

5. Determine the value of a permanent function for sub-factor. 

6. Repeat steps (3) to (6) for each sub-component. 
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7. Develop FMS digraph and FMS matrix at system level as explained in steps (2) 

and (3). 

8. At system level, the permanent value of each sub factor (obtained in step (7)) 

provides inheritance for FMS performance/productivity/flexibility (i.e. 

diagonal elements). The quantitative value of interactions among factors (i.e. 

off diagonal elements) is obtained from Table 2.4 through proper interpretation 

by experts. This will form an FMS performance/productivity/flexibility matrix 

at the system level. 

9. Determine the value of a permanent function of the organization. This is the 

value of the FMS performance/productivity/flexibility index. 

Based on the above-discussed methodology, the intensity of variable affecting 

performance/productivity/flexibility can be measured. 

2.5.7 Total Interpretive Structural Modeling (TISM) 

ISM technique has been one of the most popular techniques for identification of the 

structure within a system, which have become very popular in the last one decade. But 

ISM does not provide an explanation on interpreting the structural links and ISM model 

lacks complete transparency [34]. So, to overcome the limitations of ISM methodology, 

it is extended to total interpretive structural modeling (TISM). 

 TISM is reviewed by some researcher as Mangla et al. [179] proposed TISM model to 

evaluate the causality and illustrate factors with interpretation of relations via direct 

links in the form of interpretive matrix and suggest that factors at the bottom level are 

crucial for the sustainability focused chain to build its capability on risks and risk issues. 

Dubey and Ali [180] identified key variables of FMS through systematic literature 

review and made the relationship among various constructs of FMS and their 

relationship using ISM and TISM analysis. Sandbhor and Botre [181] implemented 

TISM methodology for identifying and summarizing the relationships among factors 

which affect productivity of labor. Srivastava and Sushil [182] identified the variables 

of adapt in the context of strategy execution and develop a framework to shows the 

linkages among the identified dimensions/variables. Nasim and Sushil [183] presented 

a flexible strategy framework for managing the confluence of continuity and change in 

e-government domain is proposed and is illustrated with the help of a real case project, 

thus, providing insights for both academia and practitioners. Yadav [184] developed a 

model of strategic factors related to performance management in the context of Indian 
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Telecom Service Providers taking dual perspectives in account, i.e. enterprise 

perspective and subscribers’ perspective. Singh and Sushil [185] identified and 

analyzed the interactions among different enablers of total quality management (TQM) 

and its outcome variables in service sector specific to the Indian domestic airline 

industry. TISM based quality framework structural model have been proposed for 

Indian domestic aviation industry, which is a new effort in the area of TQM 

implementation in this sector. Sagar et al. [186] explore the connection between various 

factors that affect customer defection rate in cloud computing through the veil of 

customer loyalty and put forth a void-in customer loyalty amplification model a void 

SM. Srivastava and Sushil [187] used TISM to develop a model of strategic 

performance factors for effective strategy execution. Wasuja and Sagar [188] proposed 

a cognitive bias amplification model explaining the phenomenon of cognitive bias in 

specialty pharmaceutical selling specialty drugs. TISM is used to create a hierarchy 

amongst the factors and interpret the relationships amongst them.  Prasad and Suri [189] 

studied the continuity and change forces in education sector the model has lot of policy 

implication for planner and implementers in education sector. Nasim [190] attempted 

toward strategic management of continuity and change forces and understanding 

relations among these forces by TISM. The central tool of ISM, i.e. reachability matrix 

and its level partitions is adopted as it is in the process of TISM. 

The following steps are followed in TISM methodology [34]:  

Step1: Identify and define elements 

Identification of different elements (or variables), which are related to problems from 

the literature published in reputed journals followed by expert opinions from academia 

and industry. 

Step 2: Define contextual relationship 

 In order to develop the model, it is crucial to state the contextual relationship between 

the elements. Type of structure that are dealt with such as intent, priority, attribute 

enhancement, process or mathematical dependence [34]. For example, in case of intent, 

structure, which is widely used in management, the contextual relationship between 

different objectives as elements could be ‘A should help achieve B’ or ‘A will help 

achieve B’. 
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Step 3: Interpretation of relationship 

This is the first step forward over the traditional ISM. Though in ISM, the contextual 

relationship interprets the nature of the relationship as per the type of structure, but it 

remains silent on how that relationship really works. Thus, in order to interpret the ISM 

further and to make it TISM, clarification from the domain experts and stakeholders 

were asked for the interpretation/logic behind the expressed relationship. Experts not 

only indicate whether ‘elements A will influence/enhance element B’ or not, but also 

will explain ‘in what way they will influence/enhance each other?’ It is shown in Table 

2.4 

Table 2.4 Factors, contextual relationship and interpretation 

Step 4: Interpretive logic of pairwise comparison 

In ISM, the elements are compared to develop self-structural interaction matrix (SSIM), 

the interpretation of which indicates direction of the relationship only. In order to 

upgrade it to TISM, it is proposed to make use of the concept of the Interpretive Matrix 

to fully interpret each paired comparison by answering the interpretive query as 

mentioned in the previous step, i.e. step III. For paired comparison, the ith element is 

compared individually to all the elements from (i+1)th to the nth element [191]. For 

each link the entry could be ‘Yes (Y)’ or ‘No (N)’ and if it is ‘Yes’, then the reason is 

to be provided. This reveals the interpretive logic of the paired relationships in the form 

of ‘interpretive logic–knowledge base’. 

Step 5: Reachability matrix and transitivity check 

The paired comparison in the interpretive logic–knowledge base are translated in the 

form of the reliability matrix by making entry 1 in i–j cell, if the corresponding entry in 

the knowledge base in ‘Y’, or else it should be entered as 0 for the corresponding entry 

‘N’ in interpretive logic– knowledge base. 

Factor No. Factor Contextual 

relation 

Interpretation 

 

  

Factors which 

affect flexibility 

Factor A will 

influence / enhance 

factor B 

How or in what way factor 

A will influence/enhance 

factor B 
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This matrix is further checked for the transitivity rule, e.g. if A Related to B and B 

Related to C then this implies A Necessarily Related to see and updated till full 

transitivity is established. 

Also, for each new transitive link, the interpretive logic– knowledge base is also 

updated. The ‘No’ entry is to be changed to ‘Yes’ and in the interpretation column 

‘Transitive’ is entered. If the transitive relationship can be meaningfully explained, then 

the logic is written along with the ‘Transitive’ entry or else left as it is. 

A semi structured questionnaire has been personally administered to the domain experts 

from academia and industry and their responses were further used to develop 

reachability matrix and for pairwise comparison. To make a clear distinction and 

decisions for the cutoff for the reachability matrix, if a 60 % response is given 

affirmative response, i.e. ‘Y’, the responses is taken as 1; otherwise taken as 0. During 

the transitivity check, if responses are more than 50%, then the transitivity was taken 

as significant transitivity otherwise transitive. 

Step 6: Level partition on reachability matrix 

The level partition is carried out similar to ISM to know the placement of element level-

wise and determined the reachability and antecedent sets for all the elements. The 

intersection of the reachability set and the antecedent set will be the same as the 

reachability set in the case of the elements in a particular level. The top level elements 

satisfying the above condition should be removed from the element set and the exercise 

is to be repeated iteratively till all the levels are determined. 

Step 7: Developing digraph 

The elements are arranged graphically in levels and the directed links are drawn as per 

the relationships shown in the reachability matrix. A simpler version of the initial 

digraph is obtained by eliminating the transitive relationships step-by step by examining 

their interpretation from the knowledge base. Only those transitive relationships may 

be retained whose interpretation is crucial. 

Step 8: Interaction matrix 

The final digraph is translated into a binary interaction matrix form depicting all the 

interactions by 1 entry. The cells with 1 entry are interpreted by picking the relevant 

interpretation from the knowledge base in the form of interpretive matrix.  
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Finally, the digraph is translated into ISM by interpreting the node in box-bullet 

representation. 

Step 9: Total interpretive structural model (TISM) 

The connective and interpretive information contained in the interpretive direct 

interaction matrix and digraph is used to derive the TISM. The nodes in the digraph are 

replaced by the interpretation of elements placed in boxes. The interpretation in the 

cells of the interpretive direct interaction matrix is depicted by the side of the respective 

links in the structural model. This leads to total interpretation of the structural model in 

terms of the interpretation of its nodes as well as links. 

2.5.8 Multiple Attribute Decision Making (MADM) Methodology 

The multiple attribute decision making (MADM) refers to an approach that is employed 

to solve problems involving selected from among a finite number of alternatives. An 

MADM method is a procedure that specifies how attribute information is to be 

processed in order to arrive at a choice. MADM application is summarized in Table 

2.5. 

Table 2.5 MADM applications found in literature 

Sr. No. Name of the authors Application 

1 Chauhan and Vaish [192] Hard coating material selection 

2 Baykasoğlu et al. [193] For truck selection 

3 
Fallahpour and Moghassem 

[194] 

Selection for rotor spun knitted fabric 

4 İç [195] 

Selection of computer-integrated 

manufacturing technologies 

5 Athawale et al. [196] Industrial robot selection problems 

6 Pei and Zheng [197] 

A novel approach to multi-attribute 

decision making 

7 Lavasani et al. [198] 

Selecting the best barrier for offshore 

wells 

8 Jahan et al. [199] Technique for materials selection 

9 Xu et al. [200] 

Linguistic power aggregation 

operators 
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10 Kalbar et al. [201] 

Selection of an appropriate wastewater 

treatment technology 

11 Daim et al. [202] Site selection for a data centre 

12 Bakhoum and Brown [203] Ranking of structural materials 

13 Sharma and Balan [204] Supplier selection model 

14 San Cristóbal [205] 

Selection of a renewable energy 

project 

15 Shemshadi et al. [206] Supplier selections 

16 Kuo and Liang [207] Evaluate service quality of airports 

17 Devi [208] Robot selection 

18 Jahan et al. [209] Material selection 

19 Maniya and Bhatt [210] 

Selection of appropriate FMS 

alternatives 

20 Vahdani et al. [211] Group decision making 

21 Afshari et al. [212] Personnel selection problem 

22 Kaya and Kahraman [213] Renewable energy planning 

23 Dağdeviren [214] 

Personnel selection in manufacturing 

systems 

24 Sanayei et al. [215] Supplier selections 

25 Zavadskas et al. [216] 

Contractor selection for construction 

works 

26 Zeydan and Çolpan [217] Performance measurement 

27 Rao [218] Improved compromise ranking method 

28 Chou et al. [219] Facility location selection 

29 Lixin et al. [220] Selection of logistics service provider 

30 Brauers et al. [221] Decision‐making for road design 

31 Önüt et al. [222] Machine tool selection 

32 Tong et al. [223] 

Optimization of multi-response 

processes 

33 Liu and Yan [224] 

Bidding-evaluation of construction 

projects 

34 Opricovic and Tzeng [225] Comparison with outranking methods 
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35 Shyur [226] 

Ranking commercial-off-the-shelf 

products of electronic company 

36 Byun and Lee [227] 

Selection of a rapid prototyping 

process 

37 Srdjevic et al. [228] Water management 

38 Deng et al. [229] Inter-company comparison 

39 Parkan and Wu [230] Robot selection 

The following MADM methods are used in this research to achieve the objectives of 

the research: 

a) Fuzzy Theory 

 Rao [28] has consolidated the information on fuzzy MADM.  Bellman and Zadeh [231] 

were the first to relate fuzzy set theory to decision-making problems.  Yager and Basson 

[232] proposed fuzzy sets for decision making. Baas and Kwakernaak [233] proposed 

a fuzzy MADM method that is widely regarded as the classic work of fuzzy MADM 

methods. Chen and Hwang [234] proposed an approach to solve more than 10 

alternatives and they proposed first converts linguistic terms into fuzzy numbers and 

then the fuzzy numbers into crisp scores.  An 11-point scale is used in the research is 

shown in the Figure 2.7 and crisp score is shown in Table 2.6. 

Table 2.6 Conversion of linguistic terms into fuzzy scores (11-point scale) 

Linguistic term Fuzzy no. Crisp no. 

Exceptionally low M1 0.045 

Extremely low M2 0.135 

Very low M3 0.255 

Low M4 0.335 

Below average M5 0.410 

Average M6 0.500 

Above average M7 0.590 

High M8 0.665 

Very high M9 0.745 

Extremely high M10 0.865 

Exceptionally high M11 0.955 
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Figure 2.7 Linguistic terms into their corresponding fuzzy 

b) Simple Additive Weighting (SAW) Method 

Churchman and Ackoff [235] first utilized the SAW method to cope with a portfolio 

selection problem. The SAW method is probably the best known and widely used 

method for multiple attribute decision making MADM. The main procedure to find the 

overall or composite score of the alternative by SAW method is described below [28]:  

Step 1: The first step is to determine the objective and to identify the pertinent 

evaluation attributes.  

Step 2: This step represents a matrix based on all the information available on attributes. 

Each row of this matrix is allocated to one alternative and each column to one attribute. 

In the case of a subjective attribute (i.e. objective value is not available), a ranked value 

judgment on a scale is adopted. Chen and Hwang [234] proposed an approach to solve 

more than 10 alternatives and they proposed first converts linguistic terms into fuzzy 

numbers and then the fuzzy numbers into crisp scores. An 11-point scale is used in this 

research is shown in Figure 2.7 and crisp score is shown in Table 2.6. 

Step 3: The weights are calculated by using the analytical hierarchy process (AHP). 

Step 4: Construct a decision matrix (m × m) that includes m alternatives and m 

attributes.  

Calculate the normalized decision matrix for beneficial attributes: 

  i=1, ….. m and j= 1,….m       (2.5) 

Calculate the normalized decision matrix for non-beneficial attributes: 

  i=1,…..m and j= 1,….m       (2.6) 

Step 5: Evaluate each alternative, by the following formula: 

max/ij ij jm r r=

min /ij j ijm r r=

iP
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                        (2.7) 

Where represents the normalized value of and  is the overall or 

composite score of the alternative . The alternative with the highest value of is 

considered as the best alternative. 

c) Weighted Product Method (WPM) 

This method is similar to SAW. The main difference is that, instead of addition in the 

model, there is multiplication [236]. The overall or composite performance score of an 

alternative is given by equation 2.8. 

      (2.8) 

The normalized values are calculated as explained in SAW method step 4. Each 

normalized value of an alternative with respect to an attribute, i.e.,  is raised 

to the power of the relative weight of the corresponding attribute. The alternative with 

the highest  value is considered the best alternative. 

d) Analytical Hierarchy Process (AHP) Methodology  

Saaty [237] developed AHP, which decomposes a decision-making problem into a 

system of hierarchies of objectives, attributes (or criteria) and alternatives. The main 

procedure of AHP using the radical root method (also called the geometric mean 

method) is as follows: 

Step 1: To determine the objective and the evaluation attributes. Then develop a 

hierarchical structure, objective at the top level, the attributes at the middle level and 

the alternatives at the last level. 

Step 2: To determine the relative importance of different attributes with respect to the 

goal or objective. 

• To construct a pairwise comparison matrix using a scale of relative importance. The 

judgments are entered using the fundamental scale of the analytic hierarchy process 

[237]. An attribute compared with itself is always assigned the value 1, so the main 

diagonal entries of the pairwise comparison matrix are all 1. The numbers 3, 5, 7 and 9 
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correspond to the verbal judgments 'moderate Importance ', ' strong importance ', ' very 

strong importance ' and ' absolute importance’ (with 2, 4, 6 and 8 for compromise 

between these values). Assuming M attributes, the pairwise comparison of attribute, i 

with attribute j yield a square matrix BM x M where aij, denotes the comparative 

importance of attribute, i with respect to attribute j. In the matrix, bij=1 when i = j and 

bji = l / bij. 

                           (2.9) 

• To find the relative normalized weight (wj) of each attribute by (i) calculating the 

geometric mean of the i-th row and (ii) normalizing the geometric means of rows in the 

comparison matrix. This can be represented as 

      (2.10) 

and                    (2.11) 

The geometric mean method of AHP is commonly used to determine the relative 

normalized weights of the attributes, because of its simplicity, ease, determination of 

the maximum eigenvalue and reduction in inconsistency of judgments [238]. 

• To calculate matrices A3 and A4 such that A3 = A1 * A2 and A4 = A3 / A2, where 

A2 = [w1, w2,….. ,wj] T. 

• To determine the maximum eigenvalue λmax that is the average of the matrix A4 

Calculates the consistency index (CI) = (λmax - M) / (M -1). The smaller the value of 

CI, the smaller is the deviation from the consistency. 

• To obtain the random index (RI) for the number of attributes used in decision making 

[239].  
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To calculate the consistency ratio (CR) = CI/RI. Usually, a CR of 0.1 or less is 

considered as acceptable and it reflects an informed judgment attribute to the 

knowledge of the analyst regarding the problem under study. 

Step 3: To express the attribute values (may be qualitative or quantitative). It then 

normalized the values of attributes. 

Step 4: To obtain the overall or composite performance scores for the alternatives by 

multiplying the relative normalized weight ( wj ) of each attribute (obtained in step 2) 

with its corresponding normalized weight value for each alternative (obtained in step 

3) and summing over the attributes for each alternative.  

e) Technique for Order Preference by Similarity to Ideal Situation (TOPSIS) 

Methodology 

The TOPSIS method was developed by Hwang and Yoon [240]. This method is based 

on the concept that the chosen alternative should have the shortest Euclidean distance 

from the ideal solution and the farthest from the negative ideal solution. The main 

procedure of the TOPSIS method for the selection of the best alternative from among 

those available is described below: 

Step 1: To determine the objective and to identify the pertinent evaluation 

attributes and develop a hierarchical structure. 

Step 2: To represent a matrix based on all the information available on attributes. Such 

a matrix is called a decision matrix. Each row of this matrix is allocated to one 

alternative and each column to one attribute. Therefore, an element  dij of the decision 

table 'D' gives the value of the j-th attribute in original real values, that is, non-

normalized form and units, for the, i-th alternative. 

If the number of alternatives is M and the number of attributes in N, then the decision 

matrix is an M x N matrix can be represented as: 

     (2.12) 
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In the case of a qualitative attribute (i.e. quantitative value is not available); a ranked 

value judgment on a scale is adopted by using fuzzy set theory. Once a qualitative 

attribute is represented on a scale then the normalized values of the attribute assigned 

for different alternatives are calculated in the same manner as that for quantitative 

attributes. 

Step 3: To obtain the normalized decision matrix, Rij. This can be represented as  

                 (2.13) 

Step 4: To decide on the relative importance (i.e., weights) of different attributes with 

respect to the objective. It is same as step 2 in AHP Methodology.  A set of weights wj 

(for j= 1, 2, ....., M) such that  may be decided upon. 

Step 5: To obtain the weighted normalized matrix Vij .This is done by the multiplication 

of each element of the column of the matrix, Rij with its associated weight wj .Hence, 

the elements of the weighted normalized matrix Vij are expressed as: 

Vij= wj Rij           (2.14) 

Step 6: To obtain the ideal (best) and negative ideal (worst) solutions in this step. The 

ideal (best) and negative ideal (worst) solutions can be expressed as: 

                 (2.15) 

  

                           (2.16) 

                    
 

Where J= (j=1, 2,….., M) /j is associated with beneficial attributes and 

           J’= (j=1, 2,....., M) /j is associated with non-beneficial attributes. 

indicates the ideal (best) value of the considered attribute among the values of the 

attribute for different alternatives. In the case of beneficial attributes (i.e., those of 

which higher values are desirable for the given application), indicates the higher 

value of the attribute. In the case of non-beneficial attributes (i.e., those of which lower 
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values are desired for the given application). indicates the lower value of the 

attribute. 

indicates the negative ideal (worst) value of the considered attribute among the 

values of the attribute for different alternatives. In the case of beneficial attributes (i.e., 

those of which higher values are desirable for the given application),  indicates the 

lower value of the attribute. In the case of non-beneficial attributes (i.e., those of which 

lower values are desired for the given application), indicates the higher value of the 

attribute. 

Step 7: To obtain the separation measure. The separation of each alternative from the 

ideal one is given by the Euclidean distance in the following equations. 

      (2.17) 

Where i=1, 2,… N 

       (2.18) 

Where i=1, 2,… N 

Step 8: To find the relative closeness of a particular alternative to the ideal solution, Pi, 

can be expressed in this step as follows. 

(2.19) 

 

Step 9: To arrange alternative in the descending order according to the value of Pi 

indicating the most preferred and least preferred feasible solutions. Pi may also be called 

the overall or composite performance score of alternative Ai. 

f) Modified TOPSIS Method 

The technique for order preference by similarity to ideal situation (TOPSIS) method 

was developed by Hwang and Yoon. This method is based on the concept that the 

chosen alternative should have the shortest Euclidean distance from the ideal solution 

and the farthest from the negative ideal solution. In the TOPSIS method, the normalized 

decision matrix Rij is weighted by multiplying each column of the matrix by its 
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associated attribute weights. The overall performance of an alternative is then 

determined by Its Euclidean distance to Vj+ and Vj- . However, this distance is 

interrelated with the attribute weights and should be incorporated in the distance 

measurement. This is because all alternatives are compared with Vj+ and Vj-, rather than 

directly among themselves. Deng et al. [229] have used modified TOPSIS in which 

they have presented the weighted Euclidean distances, rather than creating a weighted 

decision matrix. In this process, the positive ideal solutions (R+) and the negative ideal 

solutions (R-), which are not dependent on the weighted decision matrix.  

The main procedure of the modified TOPSIS method for the selection of the best 

flexibility from among those available is described below [28]. 

Step 1: To determine the objective, alternatives and to identify the pertinent evaluation 

attributes. 

Step 2: To represent a matrix based on all the information available on attributes. Each 

row of this matrix is allocated to one alternative and each column to one attribute. In 

the case of a subjective attribute (i.e., objective value is not available), a ranked value 

judgement on a scale is adopted. An 11-point scale is used in this research for crisp 

score as shown in Table 2.6. 

Step 3: To obtain the positive ideal solution (best) and negative ideal solution (worst). 

The ideal (best) and negative ideal (worst) solutions can be expressed as: 

    (2.20) 

 

    (2.21) 

 

Where J= (j=1, 2,….., M) / j is associated with beneficial attributes and 

           J’= (j=1, 2,....., M) / j is associated with non-beneficial attributes. 

Step 4: To find the weights of attributes as analytic hierarchy process (AHP) method 

[237]. It is same as step 2 in AHP Methodology. 
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max min
'/ , / / 1, 2,.....ij ij

i i
R R j J R j J i N−     = ∈ ∈ =    

    
∑ ∑

{ }1 2 3, , ,........., MR R R R− − − −=
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Step 5: To calculate the weighted Euclidean distances as: 

 

      (2.22) 

Where i=1, 2,…, N 

      (2.23) 

Where i=1, 2,…, N 

Step 6: To find the relative closeness of a particular alternative to the ideal solution, 

Pi-mod, can be expressed as follows: 

      (2.24) 

Step 7: To arrange alternative in the descending order according to the value of Pi-mod 

indicating the most preferred and least preferred feasible solutions. Pi-mod may also be 

called the overall or composite performance score of alternative Ai. A Flow diagram 

for Modified TOPSIS is shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Flow diagram for modified TOPSIS 
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g) Improved PROMETHEE Methodology 

The preference ranking organization method for enrichment evaluations 

(PROMETHEE) method was introduced by Mareschal et al. [241] and belongs to the 

category of outranking methods.  

It may be added here that the original PROMETHEE method can effectively deal 

mainly with quantitative criteria. However, there exists some difficulty in the case of 

qualitative criteria. In the case of a qualitative criterion (i.e. Quantitative value is not 

available); a ranked value judgment on a fuzzy conversion scale is adopted in this 

research. By using fuzzy set theory, the value of the criteria can be first decided as 

linguistic terms, converted into corresponding fuzzy numbers and then converted to the 

crisp scores. The improved PROMETHEE methodology for ranking of flexibility is 

described below: 

Step 1: To determine the objective, to identify the pertinent evaluation 

attributes and then shortlist the alternatives. After short listing the alternatives, 

prepare a decision table, including the measures or values of all criteria for the 

shortlisted alternatives. 

Step 2: To find the weights of attributes by using the analytic hierarchy process (AHP) 

method [237]. It is same as step 2 in AHP Methodology. 

Step 3: After calculating the weights of the criteria using the AHP method, the next step 

is to have the information on the decision maker preference function, which he/she uses 

when comparing the contribution of the alternatives in terms of each separate criterion. 

The preference function (Pi) translates the difference between the evaluations 

obtained by two alternatives (a1 and a2) in terms of a particular criterion, into a 

preference degree ranging from 0 to 1. Let Pi,a1a2 be the preference function associated 

with the criterion ci. 

          Pi, a1a2 = Gi [ci (a1) - ci (a2)]                            (2.25) 

0 ≤ Pi,a1a2 ≤ 1                                 (2.26) 

where Gi is a non-decreasing function of the observed deviation (d) between two 

alternatives a1 and a2 over the criterion ci.  
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Step 4: To specify a preference function Pi and weight wi for each criterion ci (i = 1, 2 ,  

M) of the problem. The multiple criteria preference index a1a2Π  is then defined as the 

weighted average of the preference functions Pi.  

       (2.27) 

a1a2Π  represents the intensity of preference of the decision maker of alternative a1 over 

alternative a2, when considering simultaneously all the criteria. Its value ranges from 

0 to 1[242]. 

For PROMETHEE outranking relations, the leaving flow, entering flow and the net 

flow for an alternative a belonging to a set of alternatives A are defined by the following 

equations: 

        (2.28) 

                   (2.29) 

             (2.30) 

is called the leaving flow, is called the entering flow and is called 

the net flow. is the measure of the outranking character of a (i.e. dominance of 

alternative an overall other alternatives) and  gives the outranked character of a 

(i.e. degree to which alternative a is dominated by all other alternatives). The net flow, 

represents a value function, whereby a higher value reflects a higher 

attractiveness of alternative a. The net flow values are used to indicate the outranking 

relationship between the alternatives.  

The proposed decision making framework using PROMETHEE method provides a 

complete ranking of the alternatives from the best to the worst one using the net flows. 
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h) VIKOR Methodology 

The compromise solution was introduced in MCDM by Po-Lung Yu in 1972 and it was 

extended by Milan Zeleny.  Opricovic had developed the basic ideas of VIKOR in his 

Ph.D. dissertation in 1979and an application was published in 1980. Opricovic use 

VIseKriterijumska Optimizacija I Kompromisno Resenje (abbreviated as VIKOR), 

which means: multicriteria optimization and compromise solution. VIKOR is a helpful 

tool in MADM, particularly in a situation where the decision maker is not able, or does 

not know how to express preference at the beginning of system design. The obtained 

compromise solution could be accepted by the decision makers because it provides a 

maximum ‘group utility’ (represented by Ei-min) of the ‘majority’ and a minimum of 

individual regret (represented by Fi-min) of the ‘opponent’ [243]. The compromise 

solutions could be the basis for negotiations, involving the decision maker’s preference 

by attribute weights. The compromise solution is a feasible solution that is the closest 

to the ideal solution and a compromise means an agreement made by mutual concession 

[28]. The main procedure of the combined fuzzy, AHP and VIKOR method is described 

below:  

Step 1: To determine the objective and to identify the pertinent evaluation attributes.  

Step 2: To convert qualitative attribute to their corresponding fuzzy number. A ranked 

value judgment on a fuzzy conversion scale is adopted in this research i.e. qualitative 

into quantitative because quantitative value is not available. By using fuzzy set theory, 

the value of the criteria can be first decided as linguistic terms, converted into 

corresponding fuzzy numbers and then converted to the crisp scores [244]. An 11-point 

scale is used in the research is shown in the Figure 2.7 and crisp score is shown in Table 

2.6. 

Step 3: To find the weights of attributes by using the analytic hierarchy process (AHP) 

method [237]. It is same as step 2 in AHP Methodology. 

Step 4: To determine the best, i.e., (mij)max and the worst, i.e., (mij)min, values of all 

attributes.  

Step 5: To calculate the values of Ei and Fi: 

         
(2.31) ( ) ( ) ( ) ( )

max max min
1

/
M

i j ij ij ij ij
j

E w m m m m
=

   = − −   ∑
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     (2.32) 

Step 6: To calculate the values of Pi:  

     (2.33) 

where Ei-max is the maximum value of Ei and Ei-min the minimum value of Ei. Fi-max is the 

maximum value of Fi and Fi-min is the minimum value of Fi. v is introduced as the weight 

of the strategy of ‘the majority of attributes’ or v is the weight of the decision making 

strategy of maximum group utility. Normally, the value of v is taken as 0.5. However, 

v can take any value from 0 to 1. 

Step 7: To arrange the alternatives in the ascending order, according to the values of Pi. 

Similarly, arrange the alternatives according to the values of Ei and Fi separately. Thus, 

three ranking lists can be obtained. The compromise ranking list for a given v is 

obtained by ranking with Pi measures. The best alternative, ranked by Pi, is the one with 

the minimum value of Pi. 

Step 8: For given attribute weights, propose a compromise solution, alternative (A (1)), 

which is the best ranked by the measure Pi-min, if the following two conditions are 

satisfied [245]: 

Condition 1: ‘Acceptable advantage’: 

P(A(2)) - P(A(l)) ≥ DQ       (2.34) 

Where A (2) is the second-best alternative in the ranking list by P; DQ = 1/ (M-1). M is 

the number of alternatives.   

Condition 2: ‘Acceptable stability in decision making’ alternative: 

A set of compromise solutions is proposed to as follows, if one of the conditions is not 

satisfied. 

 Alternatives A (1) and A (2) if only condition 2 is not satisfied 

 Alternatives A (1), A (2), ….. , A (M) if condition 1 is not satisfied; A (M) is 

determined by the relation P (A (M)) - P (A (l)) < DQ for maximum M. 

The alternative A (1) should also be the best ranked by E or/and F. 

These steps of VIKOR method are illustrated in the flow diagram (Figure 2.9) 

 

( ) ( ) ( ) ( ){ }max max min
/ | 1, 2,........,m

i j ij ij ij ijF Max of w m m m m j M   = − − =   

( ) ( )( ) ( ) ( ) ( )( )min max min min max min/ 1 /i i i i i i i i iP v E E E E v F F F F− − − − − −= − − + − − −
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Figure 2.9 Flowchart of VIKOR method for evaluation of flexibility in FMS 
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2.5.9 Adaptive Neuro-Fuzzy Inference System (ANFIS) Methodology 

Jang [31] proposed adaptive neuro-fuzzy inference system (ANFIS) to construct an 

input-output mapping based on both human knowledge (in the form of fuzzy if-then 

rules) and stipulated input-output data pairs. It is an adaptive network, a network of 

nodes and directional links. This network is associated with a learning rule - for 

example back propagation or hybrid algorithm. ANFIS can predict data using sugeno 

fuzzy inference system (FIS) to relate membership and tune it using either back 

propagation or hybrid method. The goal of ANFIS is to find a model, which will 

simulate correctly the inputs to the outputs. They are evaluated on the base of testing 

performances. Here, ANFIS work has been reviewed from the literature as Lo [246] 

described the ANFIS model to detect the tool state.  Chien and Tsai [247] applied 

network model for developing tool wear prediction models. Choudhury and Bartarya 

[248] focused on the Neural Networks (NN) and Design of Experiments (DOE) and the 

results showed that NN come ahead of the DOE in nearness of the predictions to the 

experimental values of flank wear as the average errors in the flank wear in case of NN 

are less than that obtained using DOE. Sokołowski [249] discussed selected aspects of 

fuzzy logic system implementation in machine tool and cutting process monitoring. 

Ojha and Dixit [250] used neural networks to predict the tool life. The comparison 

between neural networks and multiple regression shows the superiority of the former. 

Pal and Chakraborty [251] used back propagation neural network model to predicted 

Ra by taking main cutting force, feed force, cutting speed, feed and depth of cut as input 

parameters. They found that the model with cutting forces as additional input give better 

results. Zhang et al. [252] developed an in-process surface roughness adaptive control 

system in turning operations. Iqbal et al. [253] developed an approach based on the 

least-squares regression for estimating tool wear in machining. Iqbal et al. [254] 

developed a fuzzy expert system for parameter optimization that includes prediction of 

tool life and surface finish in hard milling process. Kumanan et al. [255] proposed two 

different hybrid intelligent techniques for the prediction of surface roughness (Ra) in 

end milling. Ho et al. [256] used an ANFIS with the hybrid taguchi-genetic learning 

algorithm to predict the work piece Ra for the end milling process. Samanta [257] 

presented a model for surface roughness in end milling using adaptive neuro-fuzzy 

inference system and genetic algorithms. Dong and Wang [258] proposed a model for 

predicting Ra for end milling process with ANFIS and leave-one-out cross-validation 
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approach. Svalina et al. [259] used an ANFIS approach for machined surface roughness 

prediction. Pousinho et al. [260] proposed a approach for electricity prices forecasting 

in a competitive market. Roy [261] designed an intelligence technique-based expert 

system using adaptive neuro-fuzzy inference system (ANFIS) for predicting tool wear 

in milling operation.  

ANFIS model has five network layers which are used to perform the following fuzzy 

inference steps: (i) input fuzzification, (ii) fuzzy set database construction, (iii) fuzzy 

rule base construction, (iv) decision making and (v) output defuzzification [32].  

 

Figure 2.10 Schematic diagram of ANFIS [262] 

Precisely the model consists five layers of adaptive network with two inputs (x and y), 

two linguistic values and output f. Basically, inference system is constructed by five 

layers (Figure 2.10) and each ANFIS layer consists of several nodes described by the 

node function. The present layers’ inputs are derived from the nodes in the previous 

layers. The rule base of ANFIS contains fuzzy IF – THEN rules of the sugeno type. For 

a first-order sugeno fuzzy inference system, the two rules may be stated as: 

Rule 1: IF x is A1 AND y is B1, THEN f is f1(x,y) 

Rule 2: IF x is A2 AND y is B2, THEN f is f2(x,y), 

where x and y are the inputs of ANFIS, Ai and Bi are the fuzzy sets and fi (x,y) is a first 

order polynomial and represents the outputs of the first order sugeno fuzzy inference 

system. The structure of ANFIS is shown in Figure 2.10 and the node function in each 

layer is described below. Svalina et al. [259] have suggested to represent the parameter 

sets that are adjustable in these nodes are presented by adaptive nodes, denoted by 

squares, whereas fixed nodes, denoted by circles, represent the parameter sets that are 

fixed in the system. 
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Layer 1: This layer contains adaptive nodes with node functions like i explained as 

below: 

Q1, i =µAi (x)    for i=1, 2        (2.35) 

Q2, i =µBi-2 (y) for i=3, 4        (2.36) 

where x and y are the input to node i, Ai and Bi are the linguistic labels such as small 

or large, µ (x) and µ (y) are the membership functions. Many sorts of the membership 

functions which are there can be used. However, a gaussian membership function has 

been chosen to represent the linguistic terms because the relationship between the 

processing time and makespan is not linear, so this function assured a smooth transition 

between 0 and 1. It can be written as follows: 

First parameter membership functions 

    (2.37) 

Second parameter membership functions 

  (2.38) 

Where ai,1, ai,2, bi,1 and bi,2 are the parameter set. The bell-shaped functions vary while 

the values of this parameter are changing. 

Layer 2: In this layer every node is a fixed node, which is marked by a circle and the 

node function has to be multiplied by input signals so that it can serve as output for 

every node. The nodes of this layer are called rule nodes. Each node computes the firing 

strength of the associated rule i.e.w1. 

Q2,i = w1=                                (2.39) 

Layer 3: Every node in this layer is also a fixed node, marked by a circle and labeled N 

to show the normalization of the firing levels. 

Q3,i =  =   for i=1, 2        (2.40) 
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Layer 4: Every node i in this layer is an adaptive node with a node function and marked 

by a square:  

Q4, i  =  for i=1, 2           (2.41) 

Here f1 and f2 are the fuzzy IF-THEN rules as follows:  

Rule 1: IF x is A1 AND y is B1, THEN f1 is =p1x+q1y+r1 

 Rule 2: IF x is A2 AND y is B2, THEN f2 is= p2x+q2y+r2, 

Where  is normalized firing strength from layer 3 and [pi, qi, ri] is the parameter set 

of this node and marked as the consequent parameters. 

Layer 5: One fixed node of this layer is marked by a circle. The node has to compute 

the overall output as the summation of all incoming signals: 

Q5, i =fout =  = overall output.                       (2.42) 

The first layer and the fourth layer are the two adaptive layers with square nodes in this 

ANFIS architecture. In the first layer, there are two modifiable parameters known as 

premise parameters [ai, bi] which relates to the input membership functions. In the 

fourth layer, there are also three modifiable parameters known as consequent 

parameters [pi, qi, ri] pertaining to the first-order polynomial.  

In this research, the various input variables are trained and tested by ANFIS method 

and the performances of models for deduction of surface roughness with unmanned 

production system are compared and evaluated based on testing performances. Flow 

diagram of ANFIS shown in Figure 2.11.   

Implementation of ANFIS: 

Step 1: To define the architecture of ANFIS model 

Step 2: To give input training data into the ANFIS model 

Step 3: To set the input and output parameters and membership function. 

Step 4: To define the ANFIS structure for membership function. 

Step 5: To trained the ANFIS model 

Step 6: To give input testing data into the ANFIS model 

Step 7: To test the ANFIS model 

iiw f×

iw

iiw f×∑
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Step 8: To find the test output of the ANFIS model 

Step 9: To plot regression analysis between output and actual 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Flow diagram of ANFIS model 
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2.5.10 NEH Algorithm 

Nawaz et al. [263] proposed a Nawaz, Enscor and Ham (NEH) algorithm to 

construct a jobs sequence in an iterative manner.  

NEH heuristic has been reviewed from the literature as Taillard [264] compared the 

NEH heuristic with taboo search algorithm and found that NEH results are good. Zheng 

and Wang [265] found that NEH heuristic is an effective heuristic for flow shop 

scheduling. Kalczynski and Kamburowski [266] used NEH heuristic for minimizing 

the makespan in permutation flow shops. Kalczynski and Kamburowski [267] used 

NEH heuristic to minimize makespan in permutation flow shops. Dong et al. [268] also 

used NEH heuristic to minimize makespan in the permutation flow shops. Yagmahan 

and Yenisey [269] used NEH heuristic with ant colony optimization for multi-objective 

flow shop scheduling problem. Shafaei et al. [262] used NEH heuristic with an adaptive 

neuro fuzzy inference system for estimating the makespan. 

An overview of the NEH algorithm can be stated as follows. 

Step l. To calculate total process times for each job i  

 
      (2.43) 

where ti,j is the process time of job i on machine j. 

Step 2.  To arrange the jobs according to descending order of Ti.  

Step 3. The two jobs are picked from the first and second position of the list of step 

2 and the best sequence is found for these two jobs by calculating makespan for the 

two possible sequences. The relative positions of these two jobs should remain same 

with respect to each other in  the remaining steps of the algorithm. Set i = 3. 

Step 4. Next the job is picked in the ith position of the list generated in Step 2 and   the 

best sequence is found by placing it at all possible i positions in the partial sequence 

found in the previous step without changing the relative positions to each other of the 

already assigned jobs. The number of enumerations at this step equals i. 

Step 5.  If n = i, then STOP, otherwise set i = i+1 and go to Step 4. 
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2.5.11 Genetic algorithm (GA) 

GA is one of the most applicable soft computing or metaheuristics technique 

applied in research work. It is conceptually a genetic representation of solution for 

a well-defined problem. This approach is a class of general purpose search methods 

adjoining elements of directed and stochastic search which can make an appropriate 

balance between exploration and exploitation of search space. In this approach 

accumulated information is utilized by the selection mechanism and new region of 

search space are explored through genetic operators.  It is like other approach start 

with creation of initial population with different type of solution and classified with 

respect to their fitness. Each individual is a potential solution and it is further 

evaluated by their fitness value. Flow chart of genetic algorithm shown in Figure 

2.12. The summary the GA work of the researchers by using different ways is 

discussed as below. 

Onwubolu and Kumalo [270] had done the optimization of multipass turning 

operations with genetic algorithms. Suresh et al. [271] used genetic algorithmic 

approach for optimization of surface roughness prediction model. Wang et al. [272] 

defined optimal selection of cutting conditions and cutting tools in multipass 

turning operations by using genetic algorithms. Cus and Balic [273] optimized the 

cutting processes by GA approach. Reddy and Rao [274] selected optimum tool 

geometry and cutting conditions for a surface roughness prediction model by using 

genetic algorithms for end milling. Sardinas et al. [275] used genetic algorithm for 

multi-objective optimization of cutting parameters in turning processes. Singh and 

Venkateswara Rao [276] optimized the tool geometry and cutting parameters for 

hard turning by GA. Kilickap et al. [277] optimized the drilling parameters on 

surface roughness in drilling of AISI 1045 using response surface methodology and 

genetic algorithm. Bhushan et al. [278] used GA approach for optimization of 

surface roughness parameters in machining of Al alloy SiC particle composite. 

Ahilan et al. [279] developed the neural network models for prediction of 

machining parameters in CNC turning process and optimized by GA. Kant and 

Sangwan [280] predicted and optimization of machining parameters for minimizing 

power consumption and surface roughness in machining by RSM. Sangwan et al. 

[281] optimized the machining parameters to minimize surface roughness using 

integrated ANN-GA approach. 
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Figure 2.12 Flow chart of Genetic Algorithm 

GA is a search algorithm act on the principle of the natural selection and the natural 

genetics selection. There are lot of selection methods. The reproduction, crossover 

and mutation are the three basic operation of GA. In classical genetic algorithm, 

the cross over operator acts as the principal operator and the achievement of a 

genetic backbone operator. Genetic operator executes a random search and cannot 

promise to yield improved off springs. There are many empirical studies on a 

comparison between cross over and mutation. It is well known fact that mutation 

can sometime play very significant role than crossover. Crossover is basically 

blending of chromosomes from the parents and produce new chromosomes for the 

offspring. Randomly two strings selected and then decided whether to crossover 
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using a parameter called crossover probability. The efficiency of the genetic 

algorithm is entirely governed by population size, number of generations, crossover 

rate and mutation rate [282-284]. It is governed by the principle of Darwin’s theory. 

Genetic algorithms works with a set of individuals, representing possible solutions of 

the task. The selection principle is applied by using a criterion, giving an evaluation for 

the individual with respect to the desired solution. The best-suited individuals create 

the next generation. It optimizes with both continuous and discrete variables efficiently. 

It doesn’t require any derivative information. It searches from a wide sampling of the 

cost surface simultaneously. It handles a large no. of variables at a time. It optimizes 

variables with extremely complex cost surfaces. It provides a list of optimum variables, 

not just a single solution. Genetic algorithm has following steps  

1. Generate initial population - in most of the algorithms the first generation is randomly 

generated, by selecting the genes of the chromosomes among the allowed alphabet for 

the gene. Because of the easier computational procedure it is accepted that all 

populations have the same number (N) of individuals.  

2. Evaluation of function - calculate the values of the function that we want to minimize 

or maximizes. The fitness is evaluated based on the chromosomes. 

3. Check for termination of the algorithm – check the condition for termination of 

algorithm. As in the most optimization algorithms, it is possible to stop the genetic 

optimization by:  

• Value of the function: the value of the function of the best individual is within defined 

range around a set value.  

• Maximal number of iterations: this is the most widely used stopping criteria. It 

guarantees that the algorithms will give some results within some time, whenever it has 

reached the extreme or not.  

• Stall generation: if within initially set number of iterations (generations) there is no 

improvement of the value of the fitness function of the best individual the algorithms 

stops.  

4. Selection – between all individuals in the current population are chose those, who 

will continue and by means of crossover and mutation will produce offspring 

population. At this stage elitism could be used – the best n individuals are directly 

transferred to the next generation. The elitism guarantees, that the value of the 

optimization function cannot get worst (once the extreme is reached it would be kept).  
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5. Crossover – the individuals chosen by selection recombine with each other and new 

individuals will be created. The aim is to get offspring individuals that inherit the best 

possible combination of the characteristics (genes) of their parents.  

6. Mutation – by means of random change of some of the genes, it is guaranteed that 

even if none of the individuals contain the necessary gene value.  

7. New generation – the elite individuals chosen from the selection are combined with 

those who passed the crossover and mutation and form the next generation. It works 

smoothly with both numerical and experimental data.  

Implementation steps of the GA are summarized below: 

Step 1: Initialize the population and that population is known as chromosomes. 

Step 2: A loop is formed to generate new population. The following steps are 

repeated until population is completed.  

a) Evaluation  

b) Selection 

c) Crossover 

d) Accepting 

Step 3: Repeat the step 2 till the termination criterion is met. 

2.5.12 Teaching-Learning Based Optimization (TLBO) Methodology 

Teaching-learning based optimization (TLBO) algorithm is proposed by Rao et al. 

[33] which is a teaching-learning process based on the effect of influence of a 

teacher on the output of learners in a class. The algorithm copies teaching-learning 

ability of teacher and learners in a classroom. In TLBO algorithm, population is the 

group of learners, different design variables are different subjects offered to the 

learners and analogous to the ‘fitness’ value of the optimization problem are 

learners’ results. In the entire population, the best solution is considered as the 

teacher. The summary the TLBO work of the researchers by using different ways 

is discussed as below.  

Rao and Kalyankar [285] identified TLBO for the process parameter optimization 

in this work are electrochemical machining process and electrochemical discharge 

machining process. Niknam et al. [286] proposed a new multi-objective 

optimization algorithm based on modified teaching–learning-based optimization 
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algorithm in order to solve the optimal location of automatic voltage regulators  in 

distribution systems at presence of distributed generators. Rao and Kalyankar [287] 

proposed TLBO for large scale non-linear optimization problems for finding the 

global solutions. Rao and Kalyankar [287] used TLBO as a parameter optimization 

of machining processes. Singh et al. [288] discussed the application of TLBO 

algorithm for optimal coordination of DOCR relays in a looped power system. Rao 

and Kalyankar [289] used a modified teaching-learning-based optimization 

algorithm for multi-objective optimization of heat exchangers. Rao and Kalyankar 

[290] optimized parameter of modern machining processes by using teaching–

learning-based optimization algorithm. Pawar and Rao [291]  optimized parameter 

of multi-pass turning process by using teaching–learning-based optimization 

algorithm. Pawar and Rao [291] also used teaching–learning-based optimization 

algorithm for parameter optimization of machining processes. Baykasoğlu et al. 

[292] have tested the performance of TLBO algorithm on combinatorial problems 

like as flow shop and job shop scheduling cases. Rao and More [293] used TLBO 

algorithm for optimal design of the heat pipe. Camp and Farshchin [294] used 

TLBO method for engineering optimization problems for design of space trusses.  

Lin et al. [295] have used TLBO algorithm for scheduling in turning processes for 

minimizing makespan and carbon footprint. Rao et al. [296] optimized the thermal 

performance of a smooth flat-plate solar air heater by using teaching–learning-

based optimization algorithm. Rao and Waghmare [297] optimized the design of 

robot grippers by using teaching-learning-based optimization algorithm. Dede and 

Ayvaz [298] concluded that the TLBO algorithm can be effective for combined size 

and shape optimization of the structures.  

The working of TLBO is divided into two parts: ‘Teacher phase’ and ‘Learner 

phase’. Working of both the phases is explained below [290]. 

Teacher Phase: 

Teacher phase is the first part of the algorithm. There learners learn through the 

teacher. Here a teacher tries to increase the mean result of the classroom from any 

value M1 to his or her level (i.e., TA). But practically, it is not possible, that a teacher 

can move the mean of the classroom M1 to any other value M2 which is better than 

M1 depending on his or her capability. Consider Mj to be the mean and Ti to be the 

teacher at any iteration i. Now Ti will do the efforts to improve existing mean Mj 
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to get the new mean will be designated as Mnew and the difference between the 

existing mean and new mean is given by 

    (2.44) 

where Tf is the teaching factor, which decides the value of mean to be changed and 

ri is the random number in the range [0, 1]. Value of Tf can be either 1 or 2, which 

is a heuristic step and it is decided randomly with equal probability as 

       (2.45) 

During the algorithm the teaching factor is generated randomly in the range of 1–

2. 1 corresponds to no increase in the knowledge level and 2 correspond to complete 

transfer of knowledge. The values between 1 and 2 show the amount of transfer 

level of knowledge. 

The learners’ capabilities are responsible for the transfer level of knowledge. 

Although an attempt is made by considering the values of Tf in between 1 and 2 in 

the present work but no improvement has been observed in the results. Hence to 

simplify the algorithm, the teaching factor is suggested to take either 1 or 2 

depending on the rounding up criteria. 

Based on this Difference Mean, the existing solution is updated according to the 

following expression: 

      (2.46) 

Learner Phase: 

In the second part of the algorithm, learners increase their knowledge by interacting 

among themselves. 

A learner learns new things from the other learner who has more knowledge than 

him or her. Mathematically, the learning phenomenon of this phase is expressed 

below. 

At any iteration i, considering two different learners Xi and Xj, where i ≠j, 

      (2.47) 

( )_Mean i i new f jDifference r M T M= −

( ){ }1 0,1 2 1fT round rand= + −  

, , iM_ eannew i old iX X Differenc= +

( ) ( ) ( ),i ,new old i i i j i jX X r X X if f X f X= + − <
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    (2.48) 

Accepted Xnew if it gives better function value. Flow chart of TLBO algorithm 

shown in Figure 2.13.Implementation steps of the TLBO are summarized as given 

below [33]. 

Steps in the TLBO 

The optimization methodology based on TLBO consists of following steps: 

Step 1:  To initialize the population (i.e. n=number of learners’) and design 

variables of the optimization problem (i.e. number of subjects offered to the learner) 

with the termination criteria (i.e., number of generation) and evaluate them. 

Step 2: In teacher phase, first step is to calculate mean of each decision variables 

(z1, z2...) of the optimization problem and find out mean row vector (i.e. M = [z1, 

z2...]). The new mean (Mnew) is the best solution (i.e. min (F1, F2…) of the iteration 

and will act as a teacher.  

Step 3: To evaluate the difference between the current mean result and best mean 

result according to equation (2.44) by utilizing the teaching factor (Tf). 

Step 4: To update the learners’ knowledge with the help of teacher’s knowledge 

according to equation (2.46). 

Step 5: To update the learners’ knowledge by utilizing the knowledge of some other 

learner according to equations (2.47) and (2.48). In learner phase, choose any two 

learners (data sets) and calculate its function values. Based on their function values 

the new data set (Xnew) is calculated.  

Accepted Xnew if it gives better function value otherwise not.  

Step 6: Repeat the procedure from step 2 to 5 till the termination criterion is met.  

( ) ( ) ( ),i ,new old i i j i j iX X r X X if f X f X= + − <
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Figure 2.13 Flow diagram of TLBO [294] 
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2.6 CONCLUSION 

The manufacturers are aspired to become more competitive, so they adopt FMS. This 

system is integrated with automated material handling systems, robots, numerically 

controlled machine tools and automated inspection stations. 

FMS offer high capital utilization, reduced labor costs, reduce work-in-process 

inventories and shorter lead times etc. Major benefits of this systems that it is flexible 

and more responsive to changes in production requirements and its effect that 

productivity increased. 

Manufacturing systems should be truly flexible, being able to react dynamically to the 

changing demands placed upon them and full ability to create a capability to design and 

implement such systems quickly.  

It is also found from the cause effect diagram that performance of FMS is affected by 

three factors i.e. productivity, flexibility and quality. Productivity of FMS is affected 

by four factors i.e. machine, quality, flexibility and people. Flexibility of FMS is 

affected by main four factors i.e. production flexibility, product flexibility, machine 

flexibility and volume flexibility.  

It is further noticed that fifteen variables affect performance of FMS, twenty variables 

affect productivity of FMS and fifteen variables affect flexibility of FMS. Fifteen 

flexibility are considered for the FMS. 

In this research, some issues of constraints especially in FMS are discussed. These 

issues are related to machine tool, tool management, material handling i.e. AGV, robot 

and fixtures. Constraints may be limited to machine tool range to hold different parts 

and cutting tools, fix range of handling the parts by robots, fixed path layout by AGV 

and the rigidity of fixtures.  By paying proper attention on these constraints, a 

manufacturing system will be flexible and productivity and performance of 

manufacturing system will be increased. If the manufacturing firms to adopt and 

implement the FMSs then study of tool management and material handling system is 

mandatory. 

The different methodologies are discussed in detail to achieve research objectives.  
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CHAPTER III 

QUESTIONNAIRE SURVEY 

 

3.1 INTRODUCTION 

To examine the suitability and to identify some critical issues of FMSs in the context 

of Indian industries, a questionnaire based survey was conducted. The findings and 

approach of the questionnaire based survey are presented in this chapter. The key 

observations from this survey have been reported and discussed in this chapter. 

3.2 QUESTIONNAIRE DEVELOPMENT 

The questionnaire-based survey was designed   keeping   in view the available   

literature   and conferring with the domain experts from academia and industries.  The 

survey was conducted on FMSs performance, productivity and flexibility affecting 

variables.   As the  respondents  are not  so enthusiastic to such surveys   and   showed   

reluctance   to   spare   time   for   such   activity,   the questionnaire was designed  with  

care  so that  responses  can be given  with minimum  effort  and time. The questionnaire 

was developed on a seven point Likert scale.  The questionnaire   was divided into two 

sections. First section dealt with the company profile while the second section dealt 

with variables which affect the performance, productivity and flexibility of FMS. 

3.3 QUESTIONNAIRE ADMINISTRATION 

The different aspects of the questionnaire   administration   have been discussed in the 

following sections: 

3.3.1 Target Industries for Questionnaire Administration 

The questionnaire was administrated Indian manufacturing industries. Mainly 

automotive industries were focused.  The companies selected for the survey in this 

sector included automobile original equipment manufacturers (OEMs), tier one (direct 

suppliers to OEMs) and tier two (key suppliers to tier one suppliers, without supplying 

a product directly to OEM companies) manufacturing industries.   
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3.3.2 Questionnaire Administration 

The questionnaire was administrated to Indian manufacturing industries. In total 480 

questionnaires were sent to companies for the response. The questionnaire used a 

seven point Likert scale, ranging from 1 representing strong disagreement, 2 

representing disagreement, 3 representing slight disagreement, 4 representing 

neither disagreement nor agreement, 5 representing slight agreement, 6 representing 

agreement, 7 representing strong agreement. 7 representing strong agreement. A 

neutral response, ‘neither disagreement nor agreement’, was adopted to reduce 

uninformed response, since it was assured that respondents need not feel compelled 

to answer every questionnaire item. 

3.4 QUESTIONNAIRE SURVEY RESPONSE AND RESPONDENTS PROFILE 

Total 480 questionnaires were sent to different industries but 340 questionnaires   

were received. Out of the 340 responses, 319 questionnaires were usable, resulting 

in a 66.46 % response rate, which is sufficient for a survey of this type [299]. 

Table 3.1 Data of the responding companies 

Sr. No. Description of data Range Number of firms 

1 Number of employees Less than 100 05 

  101-500 25 

  501-1000 60 

  1001-3000 25 

  More than 3000 10 

2 Turnover (US$ million) Less than 10 10 

  10-20 45 

  20-100 40 

  100-200 20 

  More than 200 10 

 

3.5 OBSERVATION FROM THE SURVEY 

It is highly crucial to understand the effect of the FMSs in Indian industrial environment 

in terms of performance, productivity and flexibility measurement.  For this purpose, 

the questionnaire based survey of the Indian industries has been conducted to assess the 

variables which affect the performance, productivity and flexibility of FMSs in Indian 
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scenario.  The various important variables were emphasized in this survey, which affect 

FMSs. The survey results have been presented in the following sections: 

3.5.1 Related to Performance Variables of FMS 

Automobile manufacturing industries want to focus on the performance of the 

company. So, they are interested in knowing on which variables they should focus to 

improve the performance of the firms. Some performance variables were discussed with 

them and found that automation (mean score 6.05), use of automated material handling 

devices (mean score 6.02) and effect of tool life (mean score 6.00) are the dominant 

variables which affect the performance of FMS. Other variables mean score is shown 

in Figure 3.1 and Table 3.2. 

 

Figure 3.1 Variables affecting the performance in FMS 
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Table 3.2 Rank and mean score of variables affecting the performance in FMS 

Sr. No. Variables Mean Score Rank 

1 Automation 6.05 1 

2 Use of automated material handling devices 6.02 2 

3 Effect of tool life 6.00 3 

4 Throughput time 5.98 4 

5 Equipment utilization 5.94 5 

6 Rework percentage 5.91 6 

7 Ability of manufacturing of variety of product 5.91 6 

8 Scrap percentage 5.86 8 

9 Reduced work in process inventory 5.81 9 

10 Setup time 5.80 10 

11 Unit manufacturing cost 5.74 11 

12 Manufacturing lead time 5.73 12 

13 Set up cost 5.67 13 

14 Capacity to handle new product 5.42 14 

15 Unit labor cost 5.30 15 

 

3.5.2 Related to productivity variables of FMS 

Every manufacturing industry wants to increase its productivity. So, industries are 

interested to focus on such variables which improve the productivity of the firms. Some 

productivity variables were discussed with them and found that use of automated 

material handling devices (mean score 5.84), financial incentive (mean score 5.82), 

effect of tool life (mean score 5.81) and automation (mean score 5.81) are the dominant 



93 
 

variables which affect the productivity of FMS. Other variables mean score is shown 

in Figure 3.2 and Table 3.3. 

 

 
 

Figure 3.2 Variables affecting the productivity in FMS 
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Table 3.3 Rank and mean score of variables affecting the productivity in FMS 

Sr. No. Variables Mean Score Rank 

1 Use of automated material handling devices 5.84 1 

2 Financial incentive  5.82 2 

3 Effect of tool life  5.81 3 

4  Automation 5.81 3 

5 Training 5.81 3 

6 Reduction in rework percentage  5.77 6 

7 Trained worker 5.75 7 

8 Reduction in scrap percentage 5.73 8 

9 Customer satisfaction 5.72 9 

10  Reduction of rejection  5.71 10 

11 Reduction in material flow 5.64 11 

12 Capacity to handle new product 5.6 12 

13 Set up cost 5.52 13 

14 Manufacturing lead time and setup time 5.44 14 

15 Unit manufacturing cost 5.43 15 

16 Unit labor cost 5.42 16 

17 Reduced work in process inventory 5.42 16 

18 Equipment utilization 5.34 18 

19 Ability of manufacturing of variety of product  5.33 19 

20 Throughput time 5.2 20 
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3.5.3 Related to Flexibility Variables of FMS 

Flexibility is one of the main requirement to enhance the competitiveness of 

organizations. Flexibility in the manufacturing system enables to cope with the 

sudden demands of market. So, some flexibility variables were discussed with them 

and found that flexible fixturing (mean score 5.84), automation (mean score 5.82), use 

of automated material handling devices (mean score 5.81) and use of reconfigurable 

machine tool (mean score 5.81) are the dominant variables which affect the flexibility 

of FMS. Other variables mean score is shown in Figure 3.3 and Table 3.4. 

 

 

Figure 3.3 Variables affecting the flexibility in FMS 
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Table 3.4 Rank and mean score of variables affecting the flexibility in FMS 

Sr. No. Variables Mean Score Rank 

1 Flexible fixturing 6.8 1 

2 Automation 6.05 2 

3 Use of automated material handling devices 5.9 3 

4 Use of reconfigurable machine tool 5.7 4 

5 Ability to manufacture a variety of product 5.4 5 

6 Capacity to handle new product 5.3 6 

7 Flexibility in production 5.1 7 

8 Combination of operation 5 8 

9 
Manufacturing lead time and set up time 

reduction 
4.8 9 

10 Reduced WIP inventories 4.7 10 

11 Increase machine utilization 4.5 11 

12 Reduction in scrap 4.4 12 

13 Reduction in material flow 4.3 13 

14 Quality consciousness 4.1 14 

15 Speed of response 4 15 
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3.6 CONCLUSION 

The objective of this questionnaire based survey was to know about the mindset of the 

Indian and Japanese person’s. In survey, questionnaire was filled by Indian and 

Japanese persons. Variables affecting the performance, productivity and flexibility of 

the FMS are included in the questionnaire. The findings of this survey found the 

inclination of Indian industries towards FMS.  

After being surveyed the first three ranking variables which affect performance are 

automation, use of automated material handling devices and effect of tool life. The first 

three ranking variables which affect productivity are use of automated material 

handling devices, financial incentive, effect of tool life, automation and training. The 

first three ranking variables which affect flexibility are flexible fixturing, automation 

and use of automated material handling devices. 

So, the variables like automation, use of automated material handling devices and effect 

of tool life are the common variables which affect performance, productivity and 

flexibility in FMS. 

The variables like flexible fixturing, use of automated material handling devices and 

automation are the main variables in FMS. 
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CHAPTER IV 

MODELING AND ANALYSIS OF PERFORMANCE 

VARIABLES OF FMS 

 

4.1 INTRODUCTION  

High expectations of present day customers have become very critical for the 

manufacturing industries. They need to give prominence to improve the performance 

of FMS to meet the challenges of today’s volatile market [129]. FMSs have been 

developed with the hope that they will be able to tackle new challenges like cost, 

quality, improved delivery speed and more flexibility in their operations and to satisfy 

different market segments. 

An FMS consists of innumerable programmable and computerized machine tools 

connected by an automatic material handling system like robots and automatic guided 

vehicles (AGVs) and automatic storage and retrieval system (AS/RS) that can process 

simultaneously medium-sized volumes of the different parts [1]. In these systems, 

machines and material handling systems   are controlled   by a central computer system 

[199]. The basic objective of the flexible manufacturing concept is to achieve the 

efficiency and utilization levels of mass production, while retaining the flexibility of 

manually operated job shops. The individual machines are quite versatile and capable 

of performing with many different types of operations [300]. Flexibility in 

manufacturing has been identified as one of the key factors to improve the performance 

of FMS. A significant challenge for many manufacturers is to achieve flexibility in 

addition to achieving productivity and quality [301]. FMS is crucial for modern 

manufacturing to enhance productivity involved with high product proliferation [302].  

Productivity is a key factor in a FMS performance and to improve profitability and the 

wage earning capacity of employees. Li et al. [303] discussed that a high level of quality 

leads to high level of performance. FMSs promise to provide quality and economies of  

 

From this chapter the following paper has been published. 

V. Jain and T. Raj, "Modeling and analysis of FMS performance variables by ISM, SEM and 

GTMA approach," International Journal of Production Economics, vol. 171, pp. 84-96, 2016. 
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scope - the ability to achieve productivity and flexibility simultaneously and also to 

achieve economies of scope by reducing the time and cost of product variety [301]. 

Manufacturing firms are under constant and intense pressure to improve their 

operations continuously and efficiently by enhancing quality, productivity and 

flexibility. So, performance of manufacturing system can be increased by increasing 

the quality, productivity and flexibility of a manufacturing organization.  

The main objectives of this chapter are as follows:  

• To identify the variables which affect the performance of FMS  from the 

literature 

• To establish relationship among these variables by using ISM  

• To identify the factors/dimensions which affect the performance  of FMS by  

exploratory factor analysis through SPSS  

• To confirm the factor structure of the same using confirmatory factor analysis 

with AMOS 

• Evaluation of intensity of performance variables of FMS by GTMA. 

On the basis of the exhaustive literature review and discussions with the industry 

experts and the academia, 15 variables were identified. These variables are given below 

with their references. 

1. Unit manufacturing cost [36-38] 

2. Unit labor cost [40-42]  

3. Manufacturing lead time [5, 304, 305] 

4. Effect of tool life [44-46] 

5. Throughput time [45, 47, 48] 

6. Set up cost [40, 49, 50] 

7. Scrap percentage [51-53] 

8. Rework percentage [52, 53] 

9. Setup time [40, 49, 51] 

10. Automation [54-57] 

11. Equipment utilization [58-60] 

12. Ability of manufacturing of variety of product [61-63] 

13. Capacity to handle new product [64-66] 

14. Use of automated material handling devices [60, 68, 69] 
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15. Reduced work in process inventory [70-73] 

After identification of variables affecting performance of FMS, an ISM model is 

prepared which is discussed in the following sections: 

4.2 ISM MODEL FOR PERFORMANCE VARIABLES OF FMS 

In this section, the development of the model using ISM is described below. 

4.2.1 Development of Structural Self-Interaction Matrix (SSIM) 

ISM methodology suggests the role of experts (both from industry and academia) 

opinions in developing the contextual relationship between the variables.  The 

following four symbols have been used to denote the direction of the relationship 

between two variables (i and j): 

V is used for the relation from variable i to j (i.e. if variable i reach to variable j) 

A is used for the relation from variable j to i (i.e. if variable j reach to variable i) 

X is used for both direction relations (i.e. if variable i and j reach to each other) 

O is used for no relation between two variables (i.e. if variable i and j are unrelated). 

Based on the contextual relationship, the SSIM is developed and it is presented in Table 

4.1.  

4.2.2 Reachability Matrix (RM) 

The reachability matrix (RM) is obtained from SSIM. The RM indicates the relationship 

between variables in the binary form. The various relationships between variables 

depicted by symbols V, A, X and O used earlier in SSIM are replaced by binary digits 

of 0 and 1 is called initial reachability matrix. The following rules are used to substitute 

V, A, X and O of SSIM to get RM: 

• if the cell (i, j) is assigned with symbol V in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry becomes 0 in the initial RM 

• if the cell (i, j) is assigned with symbol A in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry becomes 1 in the initial RM 

• if the cell (i, j) is assigned with symbol X in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry also becomes 1 in the initial RM 

• if the cell (i, j) is assigned with symbol O in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry also becomes 0 in the initial RM. 
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Table 4.1 Structural self-interactive matrix 

Variables 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 A A O O A O A A A A A A A A 

2 A A O O O O O A A O A A A  

3 X A O O A A A A A O X A   

4 O O V V V A O V V O V    

5 A A V V V A A A A O     

6 O O O O O O O O O      

7 O A O O V A O A       

8 V O V V V A V        

9 V A V V V A         

10 V V V V V          

11 V A O O           

12 O A V            

13 A A             

14 O              

Following these rules, the initial reachability matrix is shown in Table 4.2. The final 

RM is obtained by incorporating the transitivity. Final RM is shown in Table 4.3 

wherein transitivity is marked as 1*.      

4.2.3 Level Partitioning the RM 

Once the reachability matrix has been created, it must be processed to extract the 

digraph (structural model). Warfield [126] has presented a series of partitions which are 

induced by the reachability matrix on the set and subset of different elements. From 

these partitions, one can identify many properties of the structural model [306]. Based 

on the suggestions of Warfield [126] and Farris and Sage [306], the reachability set and 

antecedent set for each variable are found from the final reachability matrix. The 

reachability set consists of the variable (i) itself and the other variable which are 

reachable from that particular variable (i). For every column which contains 1 in the 

row of considered variable (i), the variable that column represents is included in the 

reachability set. Similarly, the antecedent set consists of the variable (i) itself and the 

other variables 
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Table 4.2 Initial reachability matrix 

Variables  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

     1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

     2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

     3 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 

     4 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 

     5 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 

     6 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

     7 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 

     8 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 

     9 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 

    10 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 

    11 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 

    12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

    13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

    14 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 

    15 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 

which may reach the variable (i). For every row which contains 1 in the column of 

considered variable (i), the variable that row represents is included in the antecedent 

set. After finding the reachability set and antecedent set for each variable, the 

intersection for these sets is derived for all the variables and levels of different variables 

are determined. 

The top level variables are those variables which will not reach the other variables 

above their own level in the hierarchy. For this reason, the reachability set for a top 

level variable (i) will consist of that variable (i) itself and all other variables within the 

same level which this variable (i) may reach, i.e. components of a strongly connected 

subset. Similarly, the antecedent set for a top level variable (i) will consist of that 

variable (i) itself and all other variables which may reach it from lower levels and any 

variable of a strongly connected subset involving variable (i) in the top level. As a 

result, the intersection of the reachability set and the antecedent set will be the same as 

the reachability set [306]. Once the top level variable is identified, it is removed from 

consideration and other top level variables of the remaining sub graph are found. This 
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procedure is continued till all levels of the structure are identified. These identified 

levels help in the development of digraph and the final model. Top level variable is 

positioned at the top of digraph and so on. 

Table 4.3 Final reachability matrix 

* entries are included to incorporate transitivity. 

In the present case, the 15 variables, along with their reachability set, antecedent set, 

intersection set and levels are presented in Tables 4.4 to 4.10. Level identification 

process of these variables are completed in seven iterations as shown in Tables 4.4 to 

4.10.   

4.2.4 Development of the Conical Matrix 

A conical matrix is developed by clubbing together factors in the same level, across 

rows and columns of the final RM as shown in Table 4.11.        

 

 

Variables  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

     1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

     2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

     3 1 1 1 0 1 0 0 0 0 0 1* 1* 1* 0 1 

     4 1 1 1 1 1 0 1 1 1* 0 1 1 1 0 1* 

     5 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1* 

     6 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

     7 1 1 1 0 1 0 1 0 0 0 1 0 1* 0 1* 

     8 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 

     9 1 1* 1 0 1 0 0 0 1 0 1 1 1 0 1 

    10 1* 1* 1 1 1 0 1 1 1 1 1 1 1 1 1 

    11 1 1* 1 0 1* 0 0 0 0 0 1 0 1* 0 1 

    12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

    13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

    14 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1* 

    15 1 1 1 0 1 0 0 0 0 0 1* 1* 1 0 1 
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Table 4.4 Iteration 1 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

1 1 
1,2,3,4,5,6,7,8,9,10,11, 

14,15 
1 I 

2 1,2 
2,3,4,5,7,8,9,10,11,14, 

15 
2  

3 1,2,3,5,11,12,13,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

4 
1,2,3,4,5,7,8,9,11,12,13, 

15 
4,10 4  

5 1,2,3,5,11,12,13,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

6 1,6 6 6  

7 1,2,3,5,7,11,13,15 4,7,8,10,14 7  

8 1,2,3,5,7,8,9,11,12,13,15 4,8,10 8  

9 1,2,3,5,9,11,12,13,15 4,8,9,10,14 9  

10 
1,2,3,4,5,7,8,9,10,11,12, 

13,14, 15 
10 10  

11 1,2,3,5,11,13,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

12 12,13 3,4,5,8,9,10,12,14,15 12  

13 13 
3,4,5,7,8,9,10,11,12, 

13,14, 15 
13 I 

14 1,2,3,5,7,9,11,12,13,14,15 10,14 14  

15 1,2,3,5,11,12,13,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  
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Table 4.5 Iteration 2 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

2 2 
2,3,4,5,7,8,9,10,11,14, 

15 
2 II 

3 2,3,5,11,12,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

4 2,3,4,5,7,8,9,11,12,15 4,10 4  

5 2,3,5,11,12,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

6 6 6 6 II 

7 2,3,5,7,11,15 4,7,8,10,14 7  

8 2,3,5,7,8,9,11,12,15 4,8,10 8  

9 2,3,5,9,11,12,15 4,8,9,10,14 9  

10 2,3,4,5,7,8,9,10,11,12,14,15 10 10  

11 2,3,5,11,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  

12 12 3,4,5,8,9,10,12,14,15 12 II 

14 2,3,5,7,9,11,12,14,15 10,14 14  

15 2,3,5,11,12,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15  
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Table 4.6 Iteration 3 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

3 3,5,11,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15 III 

4 3,4,5,7,8,9,11,15 4,10 4  

5 3,5,11,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15 III 

7 3,5,7,11,15 4,7,8,10,14 7  

8 3,5,7,8,9,11,15 4,8,10 8  

9 3,5,9,11,15 4,8,9,10,14 9  

10 3,4,5,7,8,9,10,11,14,15 10 10  

11 3,5,11,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15 III 

14 3,5,7,9,11,14,15 10,14 14  

15 3,5,11,15 3,4,5,7,8,9,10,11,14,15 3,5,11,15 III 

 

Table 4.7 Iteration 4 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

4 4,7,8,9 4,10 4  

7 7 4,7,8,10,14 7 IV 

8 7,8,9 4,8,10 8  

9 9 4,8,9,10,14 9 IV 

10 4,7,8,9,10,14 10 10  

14 7,9,14 10,14 14  
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Table 4.8 Iteration 5 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

4 4,8 4,10 4  

8 8 4,8,10 8 V 

10 4,8,10,14 10 10  

14 14 10,14 14 V 

Table 4.9 Iteration 6 

No. Reachability set Antecedent set 
Intersection 

set 
Level 

4 4 4,10 4 VI 

10 4,10 10 10  

Table 4.10 Iteration 7 

Variable 

No. 
Reachability set Antecedent set 

Intersection 

set 
Level 

10 10 10 10 VII 

 

4.2.5 Development of ISM Model 

Based on the conical matrix, an initial digraph, including transitivity links is obtained. 

This is generated by nodes and lines of the edges. After removing the indirect links, a 

final digraph is developed. Next, the digraph is converted into an ISM model by 

replacing nodes of the elements with statements as shown in Figure 4.1. 

4.2.6 Check for Conceptual Inconsistency 

Conceptual inconsistency is checked by identifying and removing the intransitivity in 

the model. 
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Table 4.11 Conical matrix 

4.2.7 MICMAC Analysis 

Matrice d'Impacts croises-multipication applique an classment (cross-impact matrix 

multiplication applied to classification) is abbreviated as MICMAC. The main purpose 

of MICMAC analysis is to analyze the drive power and dependence power of variables. 

The variables are separated into four clusters [307].  

The first cluster consists of 'autonomous variables' which have weak drive power and 

weak dependence. They are relatively disconnected from the system, with which they 

have few links, which may be very strong. The second cluster consists of 'dependent 

variables' which have weak drive power but strong dependence power. The third cluster 

includes 'linkage variables' which have strong drive power as well as strong 

dependence. They are also unstable. Any action on them will have an effect on others 

Variables 1 13 2 6 12 3 5 11 15 9 7 8 14 4 10 
Drive 

Power 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 

6 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 

12 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 

3 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 8 

5 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 8 

11 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 7 

15 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 8 

9 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 9 

7 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 8 

8 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 11 

14 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 11 

4 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 12 

10 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 14 

Depend-

ence 

Power 

13 12 11 1 9 10 10 10 10 5 5 3 2 2 1  
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and also a feedback effect on themselves. Fourth cluster has the 'independent variables' 

having strong drive power but weak dependence power. It is generally observed that a 

variable with a very strong drive power called the 'key variable' falls into the category 

of independent variables. The drive power and dependence power of variables is shown 

in Table 4.11. Thereafter, the drive power and dependence power diagram is depicted 

as shown in Figure 4.2. As an example, it is observed from Table 4.11 that variable 10 

has a drive power of 14 and dependence power of 1, hence in Figure 4.2, it is positioned 

in a space which corresponds to drive power of 14 and dependence of 1, i.e. in the fourth 

cluster. Now, its position in the fourth cluster shows that it is an independent variable. 

Likewise, all the components are positioned in places corresponding to their driving 

power and dependence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 ISM model showing the levels of FMS performance variables 
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Driving Power 

15                

14 10   IV        III    

13                

12  4              

11  14 8             

10                

9     9           

8     7     3,5,15      

7          11      

6                

5                

4    I        II    

3                

2 6        12  2     

1            13 1   

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Dependence Power 

 Figure 4.2 Clusters of performance variables in FMS 

4.3 MODEL ANALYSES BY SEM 

 Data analysis proceeds in two steps. First the EFA is used to identify the underlying 

dimensions of performance variables in FMS. Next, CFA to confirm the factor structure 

of the performance dimensions in FMS. 

4.3.1 Exploratory Factor Analysis (EFA) 

In the first stage an EFA was performed on sample size (i.e. n = 290) using the 15-

variables related to the performance variables in FMS. An EFA was performed on the 

15 items of the performance variables in FMS using the principal component analysis 

with varimax rotation [163]. The criteria used for factor extraction is the eigenvalue 

should be greater than one; variance should be 50-75% explained; retaining the factors 

above the elbow in scree test as shown in Figure 4.3; and at least three items per factor 

with significant factor loading i.e. > 0.30. The results of the EFA are shown in Table 

4.12. Three factors were extracted that have eigenvalue greater than one, accounting 

Independent 
variables 

Linkage 
variables 

Autonomous 
variables 

Dependent 
variables 
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for 69.225 percent of the total variance explained and above the elbow of scree plot. 

From Table 4.12, all 15 items loaded properly on the factors so, all items were taken. 

Also, based on the cronbach’s alpha criteria, all items were taken. Factor loadings 

greater than 0.50 were retained for further analysis. Reliability of the factors was 

estimated using the cronbach’s alpha. A cronbach’s alpha value of greater than or equal 

to 0.7 is considered acceptable for the factor to be reliable [308]. All the factors had a 

satisfactory value of cronbach’s alpha. Hence the factors are reliable.   

  

Figure 4.3 Scree Plot 

4.3.2 Confirmatory Factor Analysis (CFA) 

After identifying three clear factors through EFA, the next phase is to confirm the factor 

structure on same sample size. SEM using AMOS was used to perform the CFA. CFA 

revealed that the measurement items loaded in accordance with the pattern revealed in 

the EFA. 

 Model fit 

The measurement model indicated an acceptable model fit of the data  

CMIN (χ2) =185. 888, df = 81, p =.000; CMIN/DF (χ 2/ DF) = 2.295 (< 5); CFI =0.964; 

TLI = 0.953; IFI = 0.964; NFI = 0.938; RFI=0. 920; GFI=0. 913; and RMSEA = 0.07 

[309]. 

In addition, all the indicators loaded significantly on the latent constructs. The values 

of the fit indices indicate a reasonable fit of the measurement model with data [310].  
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Table 4.12 Extraction Method: Principal Component Analysis, Rotation Method: 
Varimax with Kaiser Normalization with Reliability Statistics (EFA result) 

 

In short the measurement model conforms to the three factor structure of the 

performance evaluation of FMS. Path diagram of CFA is shown in Figure 4.4. 

 Reliability of the performance variables of FMS 

The cronbach’s alpha for the performance variables of FMS was 0.919 which is 

acceptable and shows that the variables are reliable. Further evidence of the reliability 

of the scale is provided in Table 4.13, which shows the composite reliability (CR) and 

average variance extracted (AVE) scores of the different factors obtained [308, 311]. 

CR of all the latent variables is greater than the acceptable limit of 0.70 [312]. The AVE 

for all the factors is greater than 0.5, which is acceptable [311]. This shows the internal 

consistency of the variables used in the study. 

Sr. 

No. 
Dimensions Variables/Items 

Factor 

loading 

Cronbach’s 

alpha 

1 Quality 

Effect of tool life 

Scrap percentage 

Rework percentage 

Automation 

.889 

.873 

.840 

.897 

.932 

2 Productivity 

Unit manufacturing cost 

Unit labor cost 

Manufacturing lead time 

Throughput time 

Set up cost 

Setup time 

.803 

.795 

.684 

.675 

.635 

.524 

.858 

3 Flexibility 

Equipment utilization 

Ability to manufacture a variety  

of product 

Capacity to handle new product 

Use of automated material handling 

devices 

Reduced work in process  inventory 

.706 

.725 

.749 

.799 

.787 

.875 
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Figure 4.4 Path diagram of SEM 
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Table 4.13 Confirmatory factor analysis results 

 Construct validity 

Construct validity is the extent to which a set of measured variables actually reflects 

the latent construct they are designed to measure [308]. Construct validity was 

established in this study by establishing the face validity, convergent validity and 

discriminant validity. Face validity was established by adopting the measurement items 

used in the study of the existing literature and adapting the same to the present research 

context. 

Convergent validity was assessed by examining the factor loadings and average 

variance extracted of the constructs as suggested by [311]. All the indicators had 

significant loadings onto the respective latent constructs (p < 0.001) with values varying 

between 0.539 and 0.964 (Table 4.13). In addition, AVE for each construct is greater 

Sr. 
No. Dimensions Variables/Items Standardized 

estimate 

p-value               
(* 

significant 
at p < 
0.001) 

AVE CR 

1 Quality 

Automation 

Scrap percentage 

Effect of tool life 

Rework percentage 

0.911 

0.888 

0.902 

0.836 

* 

* 

* 

* 

0.78 0.94 

2 Productivity 

Unit labor cost 

Unit manufacturing cost 

Manufacturing lead time 

Setup time 

Throughput time 

Set up cost 

0.945 

0.964 

0.639 

0.693 

0.539 

0.566 

* 

* 

* 

* 

* 

* 

0.55 0.88 

3 Flexibility 

Equipment utilization 

Ability to manufacture a 

variety of product 

Capacity to handle new 

product 

Use of automated 

material handling devices 

Reduced work in process 

inventory 

0.751 

0.773 

 

0.71 

 

0.87 

 

0.803 

* 

* 

 

* 

 

* 

 

* 

0.61 0.89 
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than or equal to 0.50 which further supports the convergent validity of the constructs. 

Fornell and Larcker [311] stated that discriminant validity can be measured by 

comparing the AVE with the corresponding inter-construct squared correlation 

estimates. From Table 4.14 it can be inferred that the AVE values of all the factors i.e. 

quality, productivity and flexibility are greater than the squared inter-construct 

correlations which supports the discriminant validity of the constructs. The AVE values 

of all the performance factors are greater than the squared inter-construct correlations, 

which supports the discriminant validity of the constructs. Therefore, the measurement 

model reflects good construct validity and desirable psychometric properties. So, three 

factors which affect the performance of FMS variables are shown in Figure 4.5. 

Table 4.14 Discriminant validity 

 Quality Productivity Flexibility 

Quality 0.78   

Productivity 0.247 0.55  

Flexibility 0.224 0.521 0.61 

Note: Diagonal elements in the correlation matrix of constructs are the AVE values and 

off diagonal are the squared inter construct correlations; for discriminant validity to be 

present the diagonal elements should be greater than the off diagonal. 

 

Figure 4.5 FMS performance factor 

FMS  performance factor

Flexibility

Productivity Quality
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On the basis of these fifteen variable, three factors are extracted i.e. quality, productivity 

and flexibility [92, 313]. 

1. Quality factors include the effect of tool life, scrap percentage, rework percentage 

and automation variables. In a manufacturing system, the tool life is governed mainly 

by the input parameters like speed, feed, depth of cut and cutting forces which 

influences the accuracy and finish of the machined surface. Generally, tool life 

influences productivity of the manufacturing system and dimensional accuracy. While 

surface finish directly affect the performance of the manufacturing system. Scrap 

percentage is automatically reduced when surface finish will be accurate and 

simultaneously rework percentage will also be reduced. Automation reduces the human 

efforts and introduces some flexibility in the manufacturing system. The high level of 

automation in an FMS allows it to operate for extended periods of time without human 

attention. So, finally improve the quality of a system. 

2. Productivity factors include the variables like unit manufacturing cost, unit labour 

cost, manufacturing lead time, throughput time, set up cost and setup time. Productivity 

indicates the efficiency of converting inputs (resources) to outputs. Unit manufacturing 

cost will be lower than profit of the manufacturing organization will be higher. 

Increases in labor productivity indicate that a manufacturing organization's workforce 

is becoming more efficient. The ability of a manufacturing firm to deliver a product to 

the customer in shortest possible time where time is referred to manufacturing lead 

time. It is closely correlated with reduced WIP. Because different parts are processed 

together rather than separately in batches, WIP is less than in a batch production mode. 

This means faster customer deliveries. Reduction in set-up time and subsequently in 

manufacturing lead time enables the production system to produce variety of parts at 

faster rate. FMS generally employs CNC/NC machines which have automatic tool 

interchange capabilities that reduce the set-up time.  

3. Flexibility factors include the equipment utilization, ability to manufacture a variety 

of product, capacity to handle new product, use of automated material handling devices 

and reduced work in process inventory. FMSs achieve a higher average utilization than 

machine in a conventional batch production machine shop. It should be possible to 

approach 80–90% asset utilization by implementing FMS technology. Higher machine 

utilization has been achieved because of reduced set-up times, efficiently handled parts 
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and simultaneously produced several parts. With higher utilization of machine and 

flexible automated system, capable of producing a variety of parts (or productions) with 

virtually no time lost for changeovers from one part style to the next. There is no lost 

production time while reprogramming the system and altering the physical set-up 

(tooling, fixtures and machine setting). Flexibility of a particular manufacturing system 

would be more if it is capable of handling more number of new and unexpected 

products.  

Material handling systems provide a key integrating function within a manufacturing 

system. Industrial robots and AGVs are used to pick and place materials from or on to 

the conveyors, loading and unloading the materials from machines. Use of automated 

material handling devices affect lead time, WIP, inventory levels and the overall 

operating efficiency of a facility [314-316]. 

4.4 EVALUATION OF INTENSITY OF VARIABLES AFFECTING 

PERFORMANCE 

Analysis of variable is done by graph theory matrix approach as given below: 

1. After identifying three clear factors through EFA (principal components analysis) 

and confirming this model by CFA, a digraph is developed for these three factors, as 

shown in Figure 4.6. 

2. The digraphs for each category of factors (Figures 4.7–4.9) are developed 

considering the variables that affect the particular category of factors. The nodes in the 

digraph represent the variables and their mutual interaction is described by different 

edges.  

3. The inheritance of variables and their interdependencies is discussed with the experts 

as per Tables 2.2 and 2.3 and the FMS performance’ matrix for each category is written 

as:  

11 12 13 14

11

12*
1

13

14

           variable
             9   4    4    4
             0   8    0    0
            0   4    9    5
            0   3    0    8

F F F F
F
F

P
F
F

 
 
 =
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21 22 23 24 25 26

21

22

23*
2

          variable

8    4 0    0    0   0            
0   9 0    3    4   3            
0   4 8    4    4   0            
0   4 4    8    4   0            

4 30 4 9 0
          

0 0 0 804

F F F F F F

F
F
F

P

 
 
 
 

=  
 
 
  
 

24

25

26

           

F
F
F

 

31 32 33 34 35

31

32
*

3 33

34

35

          variable
           8    3    3    0   4
           0   8    3    0   3
           0   4    8    0   0
           4   4    2    9   4
           0   0    0    0   8

F F F F F
F
F

P F
F
F

 
 
 
 =
 
 
 
 

 

4. In the present work, the value of the permanent function for each category is 

calculated by a computer program which is developed in C++ language. The value of 

permanent function for each category is as follows: 

 Per *
1P = 5184, Per *

2P = 1015808, Per *
3P = 43776 

The FMS performance’ matrix at the system level is prepared as per equation 2.3. In 

this matrix, the values of the diagonal elements are selected from the sub-system level:  

 F1 = Per *
1P = 5184; F2 = Per *

2P = 1015808; F3 = Per *
3P = 43776 

1 2 3

1
*

2

3

                                     Factor
5184   5    4             
 3   1015808    3             
 3   5    43776            

F F F
F

P F
F

 
 =  
 
   

5. Value of permanent function of the system is evaluated. The value of Per P* at the 

system level of above matrix is 2.3 × 1014, which indicates the FMS performance index 

for the variables considered. It is suggested to find hypothetical best and hypothetical 

worst value of the FMS performance index. The FMS performance index is at its best 

when the inheritance of all its factors is at its best. Since, inheritance of factors has been 

evaluated considering variables and applying graph theoretic approach at the subsystem 

level, it is evident that the FMS performance index is at its best when the inheritance of 

variables is at its best. At the subsystem level, maximum value of per *
1P is obtained  
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Figure 4.6. Digraph for factors 

 

 

 

 

Figure 4.7 Digraph for quality 

 

 

 

 

 

  

Figure 4.8 Digraph for productivity 

  

 

 

 

 

 

 Figure 4.9 Digraph for flexibility 
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when inheritance of all the sub-factors are maximized, i.e., value taken from Table 2.2 

is 10. Therefore, FMS performance’ matrix for this category is rewritten as: 

11 12 13 14

11

12*
1

13

14

                 variable
             10   4    4    4
             0   10    0    0
            0   4    10    5
            0   3    0    10

F F F F
F
F

P
F
F

 
 
 =
 
 
 

 

The maximum value of per *
1P for the first category is 10000. 

Similarly, the FMS performance index is at its worst when the inheritance of all its 

factors and variables is at its worst. This is the case when inheritance of the entire 

variables is minimum, i.e. value taken from Table 2.3 is 1. Thus, FMS performance 

matrix for this category is rewritten as: 

11 12 13 14

11

12*
1

13

14

            variable
             1   4    4    4
             0   1    0    0
            0   4    1    5
            0   3    0    1

F F F F
F
F

P
F
F

 
 
 =
 
 
 

 

The minimum value of per *
1P for the first category is 1. Similarly, maximum and 

minimum values for each subsystem are evaluated and different values of permanent of 

subsystem matrices are summarized in Table 4.15. The maximum value of the FMS 

performance index at system level is measured by considering maximum values of all 

subsystems and minimum value of the FMS performance index at system level is 

measured by considering minimum values of all subsystems. The value of per P 

indicates the value of the FMS performance index. Thus, the maximum and minimum 

value of FMS performance index indicates the scope within which it can change. 

Experts can use this range to decide a threshold value for performance in FMS.  
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Table 4.15 The maximum and minimum values of the permanent function 

Permanent function at the 

Subsystem/system level 
Maximum value Minimum value Current value 

Per *
1P  10000 1 5184 

Per *
2P  2344640 3461 1015808 

Per *
3P  112000 13 43776 

Per *P  2 x 1015 86840 2.3x1014 

 

4.5 RESULT AND DISCUSSION 

This research has provided an insight into the modelling and analysis of performance 

variables of the flexible manufacturing system (FMS). Productivity, quality and 

flexibility are critical measures of manufacturing performance. Productivity indicates 

the efficiency of converting inputs (resources) to outputs. Quality refers to the degree 

of excellence in making products. Flexibility measures the adaptability to various 

changes in manufacturing environments [92]. The ISM model developed in this 

research provides the managers with an opportunity to understand the driving and the 

dependence power of the variables. The managerial implications as emerging from this 

study are as follows. 

The driving and dependence power (Figure 4.2) indicates that there is one autonomous 

performance variable i.e. set up cost (6) in FMS. Autonomous variables are weak 

drivers and weak dependents and do not have much influence on the system. The 

autonomous variable in this study indicates that the considered variables do not have 

much influence on the performance in FMS and management should pay attention to 

all the other variables. Dependent variables are unit manufacturing cost (1), unit labor 

cost (2), equipment utilization (11), ability of manufacturing of a variety of product 

(12) and capacity to handle new product (13). These variables are weak drivers and 

depend strongly on one another. The management should therefore accord high priority 

in tackling these variables. Besides tackling these variables, management should also 

understand the dependence of these variables on other levels in the ISM. Linkage 

variables are manufacturing lead time (3), throughput time (5) and reduced work in 

process inventory (15). These variables have strong drive power as well as strong 
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dependence power. So, they are unstable.  Independent variables are the effect of tool 

life (4), rework percentage (8), setup time (9), scrap percentage (7), automation (10) 

and use of automated material handling devices (14). Independent variables have strong 

driving power and less dependent power. Hence, these are strong drivers and may be 

treated as the root causes of all the variables. These variables may be treated as the 'key 

variables ' in FMS.  

Three factors were extracted that have eigenvalue greater than one, accounting for 

69.225 percent of the total variance explained and above the elbow of scree plot. All 15 

items loaded properly on the factors so, all items were taken. Also, based on the 

cronbach’s alpha criteria, all items were taken. Factor loadings greater than 0.50 were 

retained for further analysis. Reliability of the factors was estimated using the 

cronbach’s alpha. From EFA, using SPSS, three factors were extracted in analysis; 

quality, productivity and flexibility. Structural equation modelling (SEM) using AMOS 

was used to perform the first order three factor structure. The measurement model 

indicated an acceptable model fit of the data (CMIN (χ2) =185.888, df = 81, p =.000; 

CMIN/DF (χ 2/ DF) = 2.295 (< 5); CFI =0.964; TLI = 0.953; IFI = 0.964; NFI = 0.938; 

RFI=0.920; GFI=0.913; and RMSEA = 0.07).  The cronbach’s alpha for the 

performance variables of FMS was 0.919 which is acceptable and shows that the 

variables are reliable. Composite reliability (CR) of all the latent variables is greater 

than the acceptable limit of 0.70. The average-variance extracted for all the factors is 

greater than 0.5, which is acceptable. AVE values of all the factors i.e. quality, 

productivity and flexibility are greater than the squared inter-construct correlations 

which supports the discriminant validity of the constructs. Further, there is also a need 

to quantify the performance variables so that the management can understand the 

contribution of various performance variables of FMS and whether their efforts to 

increase the performance of FMS. This dynamic behavior of various performance 

variables of FMS can be quantified with the help of graph theory and matrix approach. 

Thus an index that would quantify the performance variables of FMS would be 

developed by extending the graph theory in the domain of performance variables of 

FMS. 
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4.6 CONCLUSION 

As a conclusion of this research study, an attempt has been made to identify the 

performance variables of FMS environment and as given below: 

1. A logical procedure based on methodology as ISM, SEM and GTMA together 

is suggested which helps to focus on performance of flexible manufacturing 

system. 

2. There are three factors like quality, productivity and flexibility which affect 

performance of FMS. 

3. The SEM analysis confirm the relationships between variables. Direct as well 

as indirect relationship between variables can be specified and estimated. 

4. The proposed FMS performance index evaluates and ranks the performance 

variables with their factors. 
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CHAPTER V 

MODELING AND ANALYSIS OF PRODUCTIVITY 

VARIABLES OF FMS 

 

5.1 INTRODUCTION  

Productivity is one of the most common measures of an organization’s competitiveness. 

It has often been cited as a key factor in industrial performance and actions to increase 

it are said to improve profitability and the wage earning capacity of employees [317]. 

The concept of productivity is generally defined as the relation between output and 

input. Productivity is the ratio of output to input for a specific production situation. 

Rising productivity implies either more output is produced with the same amount of 

inputs, or that fewer inputs are required to produce the same level of output [318]. 

Improving productivity is seen as a key issue for survival and success in the long term 

of a manufacturing system. To enhance productivity, the organization may either 

consider reducing inputs while keeping outputs constant, or increasing output while 

keeping inputs constant [83]. Productivity is considered as one of the basic variables 

governing economic production activities [319]. At the same time, productivity is also 

seen as one of the most vital factors affecting a manufacturing company’s 

competitiveness.  

According to Tangen [319], the organization can either consider one of the followings 

to increase productivity levels: 

• Increase output and input, but the increase in input is proportionally less than the 

increase in output 

• Increase output while keeping the input constant 

• Increase output while reducing input 

• Keep output constant while decreasing input 

• Decrease output and input, but the decrease in input is proportionally more than the 

decrease in output. 

 

From this chapter the following paper has been published. 

V. Jain and T. Raj, "Modelling and analysis of FMS productivity variables by ISM, SEM and 

GTMA approach," Frontiers of Mechanical Engineering, vol. 9, pp. 218-232, 2014. 
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There are a number of variables that can be used to represent productivity. FMSs have 

been developed with the hope that they will be able to tackle new challenges like cost, 

quality, improve delivery speed and productivity and to operate to be more flexible in 

their operations and to satisfy different market segments. An  FMS  can be  defined  as  

general-purpose   manufacturing  machines,  coupled with  material-handling  systems   

and   have the capabilities   to   perform  different  types   of   operations.  In   these   

systems, machines and material handling systems are controlled  by a central computer 

system [320]. Flexibility in manufacturing has been identified as one of the key factors 

to improve the performance of FMS. A significant challenge for many manufacturers 

is to achieve flexibility in addition to achieving productivity and quality [301]. FMS is 

crucial for modern manufacturing to enhance productivity involved with high product 

proliferation [302]. A high level of quality leads to high level of performance [303]. 

FMS promise to provide quality and economies of scope - the ability to achieve 

productivity and flexibility simultaneously and also to achieve economies of scope by 

reducing the time and cost of product variety [301]. Therefore, manufacturing firms are 

under constant and intense pressure to improve their operations continuously and 

efficiently by enhancing productivity to increase performance of the system.  

The main objectives of this chapter are as follows:  

• To identify the variables which affect the productivity of FMS  from the literature 

• To establish relationship among these variables by using ISM  

• To identify the factors/dimensions which affect the productivity  of FMS by  

exploratory factor analysis through SPSS   

• To confirm the factor structure (first order four factors) of the same using 

confirmatory factor analysis with AMOS  

• Evaluation of intensity of productivity variables of FMS by GTMA. 

On the basis of the exhaustive literature review and discussions with the industry 

experts and the academia, twenty variables have been identified which are as mentioned 

below: 

1. Training [74, 75] 

2. Financial incentive [76] 

3. Unit labor cost [40, 41]  

4. Effect of tool life [44, 45] 
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5. Customer satisfaction [78, 79] 

6. Reduction in scrap percentage [52, 53] 

7. Reduction in rework percentage [52, 53] 

8. Reduction of rejection [81, 82] 

9. Equipment utilization [58, 59] 

10. Trained worker[84-86] 

11. Manufacturing lead time and setup time [304, 305] 

12. Unit manufacturing cost [37, 38] 

13. Throughput time [45, 48] 

14. Set up cost [40, 49] 

15. Automation [55, 56] 

16. Use of automated material handling devices [68, 69] 

17. Reduction in material flow [321, 322] 

18. Reduced work in process inventory [71, 73] 

19. Capacity to handle new product[64, 65] 

20. Ability of manufacturing of variety of product [61, 62] 

 

After identification of variables affecting productivity of FMS, an ISM model is 

prepared which is discussed in the following sections: 

5.2 ISM MODEL FOR PRODUCTIVITY VARIABLES OF FMS 

In this section, the development of the model using ISM is described below. 

5.2.1 Development of Structural Self-Interaction Matrix (SSIM) 

ISM methodology suggests the role of expert (both from industry and academia) 

opinions in developing the contextual relationship between the variables.  The 

following four symbols have been used to denote the direction of the relationship 

between two variables (i and j): 

V is used for the relation from variable i to j (i.e. if variable i reach to variable j) 

A is used for the relation from variable j to i (i.e. if variable j reach to variable i) 

X is used for both direction relations (i.e. if variable i and j reach to each other) 

O is used for no relation between two variables (i.e. if variable i and j are unrelated).  
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Based on the contextual relationship, the SSIM is developed and it is presented in Table 

5.1.  

5.2.2 Reachability Matrix (RM) 

The RM is obtained from SSIM. The RM indicates the relationship between variables 

in the binary form. The various relationships between variables depicted by symbols V, 

A, X and O used earlier in SSIM are replaced by binary digits of 0 and 1 is called initial 

reachability matrix. The following rules are used to substitute V, A, X and O of SSIM 

to get RM: 

• if the cell (i, j) is assigned with symbol V in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry becomes 0 in the initial RM 

• if the cell (i, j) is assigned with symbol A in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry becomes 1 in the initial RM 

• if the cell (i, j) is assigned with symbol X in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry also becomes 1 in the initial RM 

• if the cell (i, j) is assigned with symbol O in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry also becomes 0 in the initial RM. 

Following these rules, the initial reachability matrix is shown in Table 5.2. The final 

RM is obtained by incorporating the transitivity. Final RM is shown in Table 5.3 

wherein transitivity is marked as 1*.   

5.2.3 Level Partitioning the RM 

From the final reachability matrix, the reachability and the antecedent set for each 

variable can be found [17, 126]. The matrix is partitioned by assessing the reachability 

and antecedent set for each variable. This procedure is completed in seven iterations, 

summarized in Table 5.4.  

5.2.4 Development of the Conical Matrix 

A conical matrix is developed by clubbing together variables in the same level, across 

rows and columns of the final RM as shown in Table 5.5.        

5.2.5 Development of ISM Model 

Based on the conical matrix, an initial digraph, including transitivity links is obtained. 

This is generated by nodes and lines of the edges. After removing the indirect links, a 
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final digraph is developed. Next, the digraph is converted into an ISM model by 

replacing nodes of the elements with statements as shown in Figure 5.1.  

5.2.6 Check for Conceptual Inconsistency 

Conceptual inconsistency is checked by identifying and removing the intransitivity in 

the model. 

5.2.7 MICMAC Analysis 

Matrice d'Impacts croises-multipication applique an classment (cross-impact matrix 

multiplication applied to classification) is abbreviated as MICMAC. The main purpose 

of MICMAC analysis is to analyze the drive power and dependence power of variables. 

The variables are separated into four clusters [307]. The first cluster consists of 

'autonomous variables' which have weak drive power and weak dependence. They are 

relatively disconnected from the system, with which they have few links, which may 

be very strong. The second cluster consists of 'dependent variables' which have weak 

drive power but strong dependence power. The third cluster includes 'linkage variables' 

which have strong drive power as well as strong dependence. They are also unstable. 

Any action on them will have an effect on others and also a feedback effect on 

themselves. Fourth cluster has the 'independent variables' having strong drive power 

but weak dependence power. It is generally observed that a factor with a very strong 

drive power called the 'key variable' falls into the category of independent variables. 

The drive power and dependence power of variables is shown in Table 5.5. Thereafter, 

the drive power and dependence power diagram is depicted as shown in Figure 5.2. As 

an example, it is observed from Table 5.5 that variable 1 has a drive power of 19 and 

dependence power of 1, hence in Figure 5.2, it is positioned in a space which 

corresponds to drive power of 19 and dependence of 1, i.e. in the fourth cluster. Now, 

its position in the fourth cluster shows that it is an independent variable. Likewise, all 

the components are positioned in places corresponding to their driving power and 

dependence. 
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Table 5.1 Structural self-interactive matrix 

Variables 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6  5 4 3 2 
1 V V O O O V O V V V V V V V V V V V O 
2 O O O O O O O O O O O V O O O O O O V 
3 O O O O O O O O O O O O O O O O O O  
4 V V V V O O O V V V A V V V V V    
5 O O O O O O O O O O O O O O O     
6 A A V V O A O V V O A A A A      
7 O O V V O A O V V O A A A       
8 O O V V O A O V V V A O        
9 A A A A A A V O V A A         
10 V V V V O V O V V V          
11 V V V V A A O V V           
12 O O O O O A A O            
13 O O A A A A O             
14 O O O O O O              
15 V V V V X               
16 V V V V                
17 A A A                 
18 A A                  
19 X                   
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Table 5.2 Initial reachability matrix 

 

    Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 
2 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 
7 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 
8 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 
9 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 
10 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 
11 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 
15 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 
16 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 
17 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
18 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 
19 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 
20 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 



132 
 

Table 5.3 Final reachability matrix 

* entries are included to incorporate transitivity. 

    Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1* 1 1* 1* 1* 1 1 
2 0 1 1 0 0 0 0 0 0 1 0 0 1* 0 1* 0 1* 1* 1* 1* 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 1 1 1 1 1 1 0 1 1 1 1* 0 0 1 1 1 1 
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 
7 0 0 0 0 0 1 1 1 1 0 1 1 1 1* 0 0 1 1 1* 1* 
8 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1* 1* 
9 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 
10 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1* 1 1 1 1 
11 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 
15 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 
16 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 
17 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
18 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 
19 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 
20 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 
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Table 5.4 Iterations (Level of Variable) 

No. Variables Name Reachability 
set 

Antecedent set Intersection 
set 

Level 

3 Unit labor cost 3 1,2,3 3 I 

5 Customer satisfaction 5 1,4,5 5 I 

12 Unit manufacturing cost 12 1,4,6,7,8,9,10,11,12,14,15 12 I 

13 Throughput time 13 1,2,4,6,7,8,10,11,13,15,16,17,18 13 I 

14 Set up cost 9,14 1,4,7,9,14 9,14 II 

17 Reduction in material flow 17 1,2,4,6,7,8,10,11,15,16,17,18,19,20   17 III 

18 Reduced work in process inventory 18 1,2,4,6,7,8,10,11,15,16,18,19,20 18 IV 

6 Reduction in scrap percentage 6 1,4,6,7,8,10,15,19,20 6 V 

19 Capacity to handle new product 19,20 1,2,4,7,8,10,11,15,16,19,20 19,20 VI 

20 Ability to manufacture a variety of product 19,20 1,2,4,7,8,10,11,15,16,19,20 1920 VI 

11 Manufacturing lead time and setup time 11 1,4,7,8,10,11,15,16 11 VII 

7 Reduction in rework percentage 7,8 1,4,7,8,10,11,15 7,8 VIII 

8 Reduction of rejection 7,8 1,4,7,8,10,11,15 7,8 VIII 

16 Use of automated material handling devices  15,16 1,10,15,16 15,16 VIII 

4 Effect of tool life 4 1,4,10 4 IX 

10 Trained worker 10 1,10 10 X 

1 Training 1 1 1 XI 

2 Financial incentive 2 2 2 XI 
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 Figure 5.1 ISM model showing the levels of FMS productivity variables 
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Table 5.5 Conical matrix 

Variables 3 5 12 13 9 14 17 18 6 19 20 11 7 8 15 16 4 10 1 2 Drive 
Power 

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
9 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 
14 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
17 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
18 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 
6 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 5 
19 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 6 
20 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 6 
11 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 8 
7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 12 
8 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 10 
15 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 12 
16 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 9 
4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 14 
10 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 15 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 19 
2 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 9 

Dependence 
Power 

3 3 11 13 12 5 14 13 10 11 11 8 6 6 5 4 3 3 1 1  
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Driving power 

 Dependence power 

 

Figure 5.2 Clusters of variables affecting the productivity in FMS
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5.3 MODEL ANALYSES BY SEM 

 Data analysis proceeds in two steps. First the EFA is used to identify the underlying 

dimensions of productivity variables in FMS. Next, CFA to confirm the factor structure 

of the productivity dimensions in FMS. 

5.3.1 Exploratory Factor Analysis (EFA) 

In the first stage an EFA was performed on sample size (i.e. n = 319) using the 20-

variables related to the productivity variables in FMS. An EFA was performed on the 

20 items of the productivity variables in FMS using the principal component analysis 

with varimax rotation [163]. The criteria used for factor extraction is the eigenvalue 

should be greater than one and at least three items per factor with significant factor 

loading i.e. > 0.30. The results of the EFA are shown in Table 5.6. 

Four factors were extracted that have eigenvalue greater than and significant factor 

loading i.e. > 0.30 with three items per factor. From Table 5.6, All 20 items loaded 

properly on the factors, so, all items were taken. Also, based on the cronbach’s alpha 

criteria, all items were taken. Factor loadings greater than 0.50 were retained for further 

analysis. Reliability of the factors was estimated using the cronbach’s alpha. A 

cronbach’s alpha value of greater than or equal to 0.7 is considered acceptable for the 

factor to be reliable [308]. All the factors had a satisfactory value of cronbach’s alpha. 

Hence the factors are reliable.  

5.3.2 Confirmatory Factor Analysis (CFA) 

After identifying four clear factors through EFA, the next phase is to confirm the factor 

structure on same sample size. SEM using AMOS was used to perform the CFA. CFA 

revealed that the measurement items loaded in accordance with the pattern revealed in 

the EFA. 

 Model fit 

The measurement model indicated an acceptable model fit of the data CMIN (χ2) =397. 

350, df = 159, p =.000; CMIN/DF (χ 2/ DF) = 2.499 (< 5); CFI =0. 964; TLI = 0.957; 

IFI = 0.964; NFI = 0.941; RFI=0.930; GFI= 0.890; RMR= 0.05 and RMSEA = 0.069 

[309]. In addition, all the indicators loaded significantly on the latent constructs. The 

values of the fit indices indicate a reasonable fit of the measurement model with data 

[310]. In short the measurement model conforms to the four factor structure of the 

productivity evaluation of FMS. Path diagram of CFA is shown in Figure 5.3.  
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Table 5.6 Extraction Method: Principal Component Analysis, Rotation Method: 
Varimax with Kaiser Normalization with Reliability Statistics (EFA result) 

 Reliability of the productivity variables of FMS 

The cronbach’s alpha for the productivity variables of FMS was 0.954 which is 

acceptable and shows that the variables are reliable. Further evidence of the reliability 

of the scale is provided in Table 5.7, which shows the composite reliability (CR) and 

average variance extracted (AVE) scores of the different factors obtained [308, 311]. 

CR of all the latent variables is greater than the acceptable limit of 0.70 [312]. The AVE 

for all the factors is greater than 0.5, which is acceptable [311]. This shows the internal 

consistency of the variables used in the study.  

Sr. 
No. Dimensions Variables/Items 

Factor 
loading 

Cronbach’s 
alpha 

1 People 
Training 

Financial incentive 
Unit labor cost 

.849 

.854 

.851 
.909 

2 Quality 

Effect of tool life 
Customer satisfaction 

Reduction in scrap percentage 
Reduction in rework percentage 

Reduction of rejection 

.856 

.808 

.821 

.842 

.789 

.953 
 
 

3 Machine 

Equipment utilization 
Trained worker 

Manufacturing lead time and setup 
time 

Unit manufacturing cost 
Throughput time 

Set up cost 

.803 

.851 

.834 

.780 

.754 

.640 

.942 

4 Flexibility 

Automation 
Use of automated material handling 

devices 
Reduction in material flow 

Reduced work in process inventory 
Capacity to handle new product 

Ability to manufacture a variety of 
product 

.848 

.845 
 

.830 

.839 

.764 

.818 

.937 



139 
 

Figure 5.3 Path diagram of SEM 

 Construct validity 

Construct validity is the extent to which a set of measured variables actually reflects 

the latent construct they are designed to measure [308]. Construct validity was 

established in this study by establishing the face validity, convergent validity and 

discriminant validity. Face validity was established by adopting the measurement items 

used in the study of the existing literature and adapting the same to the present research 

context. 

Convergent validity was assessed by examining the factor loadings and average 

variance extracted of the constructs as suggested by [311]. All the indicators had 

significant loadings onto the respective latent constructs (p < 0.001) with values varying 
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between 0.725 and 0.948 (Table 5.7). In addition, AVE for each construct is greater 

than or equal to 0.50, which further supports the convergent validity of the constructs. 

Fornell and Larcker [311] states that discriminant validity can be measured by 

comparing the AVE with the corresponding inter-construct squared correlation 

estimates. From Table 5.8 it can be inferred that the AVE values of all the factors i.e. 

people, quality, machine and flexibility are greater than the squared inter-construct 

correlations which supports the discriminant validity of the constructs. The AVE values 

of all the productivity factors are greater than the squared inter-construct correlations, 

which supports the discriminant validity of the constructs. Therefore, the measurement 

model reflects good construct validity and desirable psychometric properties. 

Table 5.8 Discriminant Validity 

 People Quality Machine Flexibility 

People 0.78    

Quality 0.270 0.80   

Machine 0.325 0.454 0.72  

Flexibility 0.225 0.270 0.297 0.73 

Note: Diagonal elements in the correlation matrix of constructs are the AVE values 
and off diagonal are the squared inter construct correlations; for discriminant validity 
to be present the diagonal elements should be greater than the off diagonal. 
 

5.4 EVALUATION OF INTENSITY OF VARIABLES AFFECTING 

PRODUCTIVITY 

Analysis of variable is done by graph theory matrix approach as given below: 

1. After identifying four clear factors through EFA (principal components analysis) 

and confirming this model by CFA, A digraph is developed for these four factors, 

as shown in Figure 5.4. 

2. The digraphs for each category of factors are developed considering the variables 

that affect the particular category of factors. The nodes in the digraph represent the 

variables and their mutual interaction is described by different edges. 
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 Table 5.7 Confirmatory Factor Analysis Results 

Sr. 
No. Dimensions Variables/Items Standardized 

estimate 

p-value  (* 
significant at p < 

0.001) 
AVE CR 

1 People 
Training 

Financial incentive 
Unit labor cost 

0.894 
0.945 
0.803 

* 
* 
* 

0.78 0.91 

2 Quality 

Effect of tool life 
Customer satisfaction 

Reduction in scrap percentage 
Reduction in rework percentage 

Reduction of rejection 

0.939 
0.883 
0.916 
0.886 
0.841 

* 
* 
* 
* 
* 

0.80 0.95 

3 Machine 

Equipment utilization 
Trained worker 

Manufacturing lead time and setup time 
Unit manufacturing cost 

Throughput time 
Set up cost 

0.881 
0.948 
0.911 
0.885 
0.727 
0.723 

* 
* 
* 
* 
* 
* 

0.72 0.94 

4 Flexibility 

Automation 
Use of automated material handling devices 

Reduction in material flow 
Reduced work in process inventory 

Capacity to handle new product 
Ability to manufacture a variety of product 

0.907 
0.906 
0.880 
0.865 
0.827 
0.725 

* 
* 
* 
* 
* 
* 

0.73 0.94 
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Figure 5.4 Digraph for Factors 
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4. In the present work, the value of the permanent function for each category is 

calculated by a computer program which is developed in C++ language. The value of 

permanent function for each category is as follows: 

Per *
1P = 888, Per *

2P = 128676, Per *
3P = 629856, Per *

4P = 634644 

The FMS productivity’ matrix at the system level is prepared as per equation (2.3). In 

this matrix, the values of the diagonal elements are selected from the sub-system level:  

F1 = Per *
1P = 888; F2 = Per *

2P = 128676; F3 = Per *
3P = 629856; F4 = Per *

4P = 634644 

1 2 3 4

*

4

1

2

3

                          variable
      888  4  4   4
        3 128676  4   4
        1  3 629856   4
        1  4  4 634644

F F F F
F
F

P
F
F

 
 
 =
 
 
   

5. Value of permanent function of the system is evaluated. The value of Per P* at the 

system level of above matrix is 45.67 × 1018, which indicates the FMS productivity 

index for the variables considered. It is suggested to find hypothetical best and 

hypothetical worst value of the FMS productivity index. The FMS productivity index 

is at its best when the inheritance of all its factors is at its best. Since, inheritance of 

factors has been evaluated considering variables and applying graph theoretic approach 

at the subsystem level, it is evident that the FMS productivity index is at its best when 

the inheritance of variables is at its best. At the subsystem level, maximum value of per 
*

1P is obtained when inheritance of all the sub-factors are maximized, i.e., value taken 

from Table 2.2 is 10. Therefore, FMS productivity’ matrix for this category is rewritten 

as: 

11 12 13

11
*

1 12

13

           variable
 10   3    3             
 4   10    3             
 3   3    10            

F F F
F

P F
F

 
 =  
 
 

 

The maximum value of per *
1P for the first category is 1363. 
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Similarly, the FMS productivity index is at its worst when the inheritance of all its 

factors and variables is at its worst. This is the case when inheritance of the entire 

variables is minimum, i.e. value taken from Table 2.2 is 1. Thus, FMS productivity 

matrix for this category is rewritten as: 

11 12 13

11
*

1 12

13

           variable
 1   3    3             
 4   1    3             
 3   3    1            

F F F
F

P F
F

 
 =  
 
 

 

The minimum value of per *
1P for the first category is 94. Similarly, maximum and 

minimum values for each subsystem are evaluated and different values of permanent of 

subsystem matrices are summarized in Table 5.9. The maximum value of the FMS 

productivity index at system level is measured by considering maximum values of all 

subsystems and minimum value of the FMS productivity index at system level is 

measured by considering minimum values of all subsystems. The value of per P 

indicates the value of the FMS productivity index. Thus, the maximum and minimum 

value of FMS productivity index indicates the scope within which it can change. 

Experts can use this range to decide a threshold value for productivity in FMS.  

Table 5.9 The maximum and minimum values of the permanent function 

Permanent function at 

the Subsystem/system 

level 

Maximum 

value 
Minimum value Current value 

Per *
1P  1363 94 888 

Per *
2P  232864 6001 128676 

Per *
3P  1447520 770 629856 

Per *
4P  1472780 2756 634644 

Per *P  676.64 ×1018 11.97 ×1011 45.67 ×1018 
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5.5 RESULT AND DISCUSSION  

This chapter has provided an insight into the modelling and analysis of productivity 

variables of the flexible manufacturing system (FMS). The ISM model developed in 

this research provides the managers with an opportunity to understand the driving and 

the dependence power of the variables. Training is the highest driving power and unit 

labor cost, customer satisfaction, unit manufacturing cost and throughput time are the 

low driving power. ISM model is showing all levels of variables. Four factors were 

extracted that have eigenvalue greater than and significant factor loading i.e. > 0.30 

with three items per factor. All twenty variables loaded properly on the factors, so, all 

items were taken. Also, based on the cronbach’s alpha criteria, all items were taken. 

Factor loadings greater than 0.50 was retained for further analysis. Reliability of the 

factors was estimated using the cronbach’s alpha. From EFA, using SPSS, four factors 

were extracted in analysis i.e. people, quality, machine and flexibility. Structural 

equation modelling (SEM) using AMOS was used to perform the first order four factor 

structure. The measurement model indicated an acceptable model fit of the data CMIN 

(χ2) =397. 350, df = 159, p =.000; CMIN/DF (χ 2/ DF) = 2.499 (< 5); CFI =0.964; TLI 

= 0.957; IFI = 0.964; NFI = 0.941; RFI=0.930; GFI= 0.890; RMR= 0.05 and RMSEA 

= 0.069 .The cronbach’s alpha for the productivity variables of FMS was 0.954 which 

is acceptable and shows that the variables are reliable. Composite reliability (CR) of all 

the latent variables is greater than the acceptable limit of 0.70. The average-variance 

extracted for all the factors is greater than 0.5, which is acceptable. AVE values of all 

the factors i.e. people, quality, machine and flexibility are greater than the squared inter-

construct correlations which supports the discriminant validity of the constructs. 

Further, there is also a need to quantify the productivity variables so that the 

management can understand the contribution of various productivity variables of FMS 

and whether their efforts to increase the productivity of FMS. This dynamic behavior 

of various productivity variables of FMS can be quantified with the help of graph theory 

and matrix approach. Thus an index that would quantify the productivity variables of 

FMS would be developed by extending the graph theory in the domain of productivity 

variables of FMS. 
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5.6 CONCLUSION 

In this chapter, an attempt has been made to identify the major variables of productivity 

in FMS environment. Manufacturing companies can take quick decisions regarding the 

productivity variables of FMS. The result of this study shows that all the considered 

variables are very important for FMS productivity. 

1. A logical procedure based on an ISM, SEM and GTMA together is suggested 

which helps to focus on productivity of flexible manufacturing system among a 

large number of available variables. 

2. There are four factors like people, quality, machine and flexibility which affect 

productivity of FMS. 

3. The SEM analysis provides flexibility in determining the relationships between 

variables. Direct as well as indirect relationship between variables can be specified 

and estimated. 

4. The proposed flexible manufacturing system productivity index evaluates and 

ranks the productivity variables. This leads to the selections of a suitable 

productivity variables of flexible manufacturing system for any application. 
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CHAPTER VI 

MODELING AND ANALYSIS OF FLEXIBILITY 

VARIABLES OF FMS  

 

6.1 INTRODUCTION  

The emerging concept of flexible manufacturing system (FMS) includes a certain 

degree of flexibility that allows systems to react in case of predicted or unpredicted 

changes [34]. This was introduced in response to the need for greater responsiveness to 

changes in products, production technologies and markets. Flexibility in manufacturing 

can be defined as the ability to change or react with little penalty in time, effort, cost or 

performance [323]. To enhance productivity involved with high product proliferation 

in modern manufacturing, FMS are essential [302]. Scheduling and manufacturing 

flexibility are among the manufacturing strategies considered by researcher to improve 

the FMS performance. Shafiq et al. [324] explained that the benefit will escalate when 

the flexibility of the system increased. Chowdary [325] unified a framework that 

flexibility is the one of the main factors for evaluation and selection of manufacturing 

systems. FMS is meant for enhancing the flexibility in a production system, it is a 

very difficult task to achieve real-life flexibility. There are certain factors in  the  

achievement  of  this  flexibility. These factors consist mutual relationship 

[129].  

 

From this chapter the following papers have been published. 

V. Jain and T. Raj, "Modeling and analysis of FMS flexibility factors by TISM and 

fuzzy MICMAC," International Journal of System Assurance Engineering and 

Management, vol. 6, pp. 350-371, 2015. 

V. Jain and T. Raj, "Evaluating the Variables Affecting Flexibility in FMS by 

Exploratory and Confirmatory Factor Analysis," Global Journal of Flexible Systems 

Management, vol. 14, pp. 181-193, 2013. 

V. Jain and T. Raj, "Evaluating the intensity of variables affecting flexibility in FMS 

by graph theory and matrix approach," International Journal of Industrial and Systems 

Engineering, vol. 19, pp. 137-154, 2015. 
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In this chapter, an effort has been made to accomplish the above task of analysis of 

these factors through the use of total interpretive structural modelling (TISM) approach 

which shows the interrelationships of the variables, their driving power and 

dependencies are analyzed by fuzzy MICMAC. In accordance with the TISM 

methodology, the opinions of experts were sought to develop the relationship matrix, 

which is later used in the development of TISM model. 

The main objectives of this chapter are as follows:  

• To identify the variables which affect the flexibility of FMS  from the literature 

• To establish relationship among these variables by using total interpretive 

structural modeling (TISM)  

• To find out driving and the dependence power of variables, using fuzzy 

MICMAC analysis 

• To identify the factors/dimensions which affect the flexibility of FMS by  

exploratory factor analysis through SPSS  

• To confirm the factor structure of the same using confirmatory factor analysis 

with AMOS 

• Evaluation of intensity of flexibility variables of FMS by graph theory matrix 

approach (GTMA) 

On the basis of the exhaustive literature review and discussions with the industry 

experts and the academia, fifteen variables have been identified which are as mentioned 

below. 

1. Ability to manufacture a variety of products [326] 

2. Capacity to handle new products [327] 

3. Flexibility in production [328] 

4. Flexible fixturing [125] 

5. Combination of operation [3] 

6. Automation [329] 

7. Use of automated material handling devices [330] 

8. Increase machine utilization [331] 

9. Use of the reconfigurable machine tool [10] 

10. Manufacturing lead time and set up-time reduction [36] 
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11. Speed of response [332] 

12. Reduced WIP inventories [333] 

13. Reduction in material flow [334] 

14. Quality consciousness [335] 

15. Reduction in scrap [14] 

 

After identification of variables affecting flexibility of FMS, a TISM model is prepared 

which is discussed in the following sections: 

 

6.2 MODELING OF FMS FLEXIBILITY VARIABLES BY TISM 

In this section, the development of the model using TISM is described below. 

1. On the basis of the literature review and discussions with the industry experts and 

the academia, 15 variables were identified. 

2. Contextual relationship is made between different elements of intent structure. 

Contextual relation and interpretation of the relationship is taken as per Table 2.4. 

3. Interpretive logic–knowledge base pairwise comparison is shown in Table 6.1.  

4. The paired comparison in the interpretive logic–knowledge base are translated in 

the form of an initial reachability matrix (Table 6.2) and this matrix has further 

been checked for the transitivity rule and shown in Table 6.3 as reachability 

matrix. 

5. The level partition is carried out and iterations are shown in Table 6.4. 

6. The variables are arranged graphically in levels and the directed links are drawn 

as per the relationships shown in the reachability matrix. Only those significant 

transitive relationships may be retained whose interpretation is crucial and shown 

in Figure 6.1 

7. The final digraph is translated into a binary interaction matrix and interpretive 

matrix is shown in Table 6.5 and 6.6 respectively. 

The digraph may be translated into ISM by interpreting the node in box-bullet 

representation. 

8. The connective and interpretive information contained in the interpretive direct 

interaction matrix and digraph is used to derive the TISM. TISM is shown in Figure 

6.2. 
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Table 6.1 Interpretive logic - knowledge base 

 

Sr. 

No. 

Variable 

No. 
Paired comparison of variables Y/N 

In what way a variable will 

influence/enhance other 

variable? Give reason in 

brief 

F1 Ability to manufacture a variety of product 

1 F1-F2 
Ability to manufacture a variety of product will influence/enhance Capacity to handle 

new product 
Y Develop new product 

 F2-F1 
Capacity to handle new product will influence/enhance Ability to manufacture a variety 

of product 
N  

 F1-F3 
Ability to manufacture a variety of product will influence/enhance Flexibility in the 

design of production system 
N  

 F3-F1 
Flexibility in the design of production system will influence/enhance Ability to 

manufacture a variety of product 
N  

 F1-F4 Ability to manufacture a variety of product will influence/enhance Flexible fixturing N  

 F4-F1 Flexible fixturing will influence/enhance Ability to manufacture a variety of product Y 
Handling of variety of 

products 

 F1-F5 
Ability to manufacture a variety of product will influence/enhance Combination of 

operation 
N  

 F5-F1 
Combination of operation will influence/enhance Ability to manufacture a variety of 

product 
N  

 F1-F6 Ability to manufacture a variety of product will influence/enhance Automation N  
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 F6-F1 Automation will influence/enhance Ability to manufacture a variety of product Y 
Reduce human effort to 

product complicated parts 

 F1-F7 
Ability to manufacture a variety of product will influence/enhance Use of automated 

material handling devices 
N  

 F7-F1 
Use of automated material handling devices will influence/enhance Ability to 

manufacture a variety of product 
N  

 F1-F8 
Ability to manufacture a variety of product will influence/enhance Increase machine 

utilization 
N  

 F8-F1 
Increase machine utilization will influence/enhance Ability to manufacture a variety of 

product 
N  

 F1-F9 
Ability to manufacture a variety of product will influence/enhance Use of reconfigurable 

machine tool 
N  

 F9-F1 
Use of reconfigurable machine tool will influence/enhance Ability to manufacture a 

variety of product 
Y 

Rapid change in structure to 

cope up with a variety of 

products 

 F1-F10 
Ability to manufacture a variety of product will influence/enhance Manufacturing lead 

time and setup time reduction 
N  

 F10-F1 
Manufacturing lead time and setup time reduction will influence/enhance Ability to 

manufacture a variety of product 
N  

 F1-F11 Ability to manufacture a variety of product will influence/enhance Speed of response N  

 F11-F1 Speed of response will influence/enhance Ability to manufacture a variety of product N  

 F1-F12 
Ability to manufacture a variety of product will influence/enhance Reduced WIP 

inventories 
N  
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 F12-F1 
Reduced WIP inventories will influence/enhance Ability to manufacture a variety of 

product 
N  

 F1-F13 
Ability to manufacture a variety of product will influence/enhance Reduction in material 

flow 
N  

 F13-F1 
Reduction in material flow will influence/enhance Ability to manufacture a variety of 

product 
N  

 F1-F14 Ability to manufacture a variety of product will influence/enhance Quality consciousness N  

 F14-F1 Quality consciousness will influence/enhance Ability to manufacture a variety of product N  

 F1-F15 Ability to manufacture a variety of product will influence/enhance Reduction in scrap N  

 F15-F1 Reduction in scrap will influence/enhance Ability to manufacture a variety of product N  

F2 Capacity to handle new product 

 F2-F3 
Capacity to handle new product will influence/enhance Flexibility in the design of 

Production system 
N  

 F3-F2 
Flexibility in the design of Production system will influence/enhance Capacity to handle 

new product 
Y 

The same equipment can be 

used for new products 

 F2-F4 Capacity to handle new product will influence/enhance Flexible fixturing N  

 F4-F2 Flexible fixturing will influence/enhance Capacity to handle new product Y Handling of new products 

 F2-F5 Capacity to handle new product will influence/enhance Combination of operation N  

 F5-F2 Combination of operation will influence/enhance Capacity to handle new product N  

 F2-F6 Capacity to handle new product will influence/enhance Automation N  

 F6-F2 Automation will influence/enhance Capacity to handle new product Y 
Reduce high human skill to 

product new parts 
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 F2-F7 
Capacity to handle new product will influence/enhance Use of automated material 

handling devices 
N  

 F7-F2 
Use of automated material handling devices will influence/enhance Capacity to handle 

new product 
N  

 F2-F8 Capacity to handle new product will influence/enhance Increase machine utilization N  

 F8-F2 Increase machine utilization will influence/enhance Capacity to handle new product N  

 F2-F9 
Capacity to handle new product will influence/enhance Use of reconfigurable machine 

tool 
N  

 F9-F2 
Use of reconfigurable machine tool will influence/enhance Capacity to handle new 

product 
Y 

Rapid change in structure to 

cope up with new parts 

 F2-F10 
Capacity to handle new product will influence/enhance Manufacturing lead time and 

setup time reduction 
N  

 F10-F2 
Manufacturing lead time and setup time reduction will influence/enhance Capacity to 

handle new product 
N  

 F2-F11 Capacity to handle new product will influence/enhance Speed of response N  

 F11-F2 Speed of response will influence/enhance Capacity to handle new product N  

 F2-F12 Capacity to handle new product will influence/enhance Reduced WIP inventories N  

 F12-F2 Reduced WIP inventories will influence/enhance Capacity to handle new product N  

 F2-F13 Capacity to handle new product will influence/enhance Reduction in material flow N  

 F13-F2 Reduction in material flow will influence/enhance Capacity to handle new product N  

 F2-F14 Capacity to handle new product will influence/enhance Quality consciousness N  

 F14-F2 Quality consciousness will influence/enhance Capacity to handle new product N  

 F2-F15 Capacity to handle new product will influence/enhance Reduction in scrap N  
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 F15-F2 Reduction in scrap will influence/enhance Capacity to handle new product N  

F3 Flexibility in the design of production system 

 F3-F4 Flexibility in the design of Production system will influence/enhance Flexible fixturing N  

 F4-F3 Flexible fixturing will influence/enhance Flexibility in the design of production system Y 
Handling  a variety of work 

part configurations 

 F3-F5 
Flexibility in the design of production system will influence/enhance Combination of 

operation 
N  

 F5-F3 
Combination of operation will influence/enhance Flexibility in the design of production 

system 
N  

 F3-F6 Flexibility in the design of production system will influence/enhance Automation N  

 F6-F3 Automation will influence/enhance Flexibility in the design of production system Y 

System can operate for 

extended period of time 

without human attention 

 F3-F7 
Flexibility in the design of production system will influence/enhance Use of automated 

material handling devices 
N  

 F7-F3 
Use of automated material handling devices will influence/enhance Flexibility in the 

design of production system 
N  

 F3-F8 
Flexibility in the design of production system will influence/enhance Increase machine 

utilization 
Y 

Similar process can be 

done on same machine 

 F8-F3 
Increase machine utilization will influence/enhance Flexibility in the design of production 

system 
N  

 F3-F9 
Flexibility in the design of production system will influence/enhance Use of 

reconfigurable machine tool 
N  
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 F9-F3 
Use of reconfigurable machine tool will influence/enhance Flexibility in the design of 

production system 
Y 

Can response for sudden 

change 

 F3-F10 
Flexibility in the design of production system will influence/enhance Manufacturing lead 

time and set up time reduction 
N  

 F10-F3 
Manufacturing lead time and set up time reduction will influence/enhance Flexibility in 

the design of production system 
N  

 F3-F11 Flexibility in the design of production system will influence/enhance Speed of response N  

 F11-F3 Speed of response will influence/enhance Flexibility in the design of production system N  

 F3-F12 
Flexibility in the design of production system will influence/enhance Reduced WIP 

inventories 
N  

 F12-F3 
Reduced WIP inventories will influence/enhance Flexibility in the design of production 

system 
N  

 F3-F13 
Flexibility in the design of production system will influence/enhance Reduction in 

material flow 
N  

 F13-F3 
Reduction in material flow will influence/enhance Flexibility in the design of production 

system 
N  

 F3-F14 
Flexibility in the design of production system will influence/enhance Quality 

consciousness 
N  

 F14-F3 
Quality consciousness will influence/enhance Flexibility in the design of production 

system 
N  

 F3-F15 Flexibility in the design of production system will influence/enhance Reduction in scrap N  

 F15-F3 Reduction in scrap will influence/enhance Flexibility in the design of production system N  

F4 Flexible fixturing 
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 F4-F5 Flexible fixturing will influence/enhance Combination of operation N  

 F5-F4 Combination of operation will influence/enhance Flexible fixturing N  

 F4-F6 Flexible fixturing will influence/enhance Automation N  

 F6-F4 Automation will influence/enhance Flexible fixturing N  

 F4-F7 Flexible fixturing will influence/enhance Use of automated material handling devices N  

 F7-F4 Use of automated material handling devices will influence/enhance Flexible fixturing N  

 F4-F8 Flexible fixturing will influence/enhance Increase machine utilization Y Can be hold different parts 

 F8-F4 Increase machine utilization will influence/enhance Flexible fixturing N  

 F4-F9 Flexible fixturing will influence/enhance Use of reconfigurable machine tool N  

 F9-F4 Use of reconfigurable machine tool will influence/enhance Flexible fixturing N  

 F4-F10 
Flexible fixturing will influence/enhance Manufacturing lead time and set up time 

reduction 
Y 

Accommodate different parts 

and Quick response 

 F10-F4 
Manufacturing lead time and set up time reduction will influence/enhance Flexible 

fixturing 
N  

 F4-F11 Flexible fixturing will influence/enhance Speed of response Y Improve production schedule 

 F11-F4 Speed of response will influence/enhance Flexible fixturing N  

 F4-F12 Flexible fixturing will influence/enhance Reduced WIP inventories Y Can hold more parts 

 F12-F4 Reduced WIP inventories will influence/enhance Flexible fixturing N  

 F4-F13 Flexible fixturing will influence/enhance Reduction in material flow N  

 F13-F4 Reduction in material flow will influence/enhance Flexible fixturing N  

 F4-F14 Flexible fixturing will influence/enhance Quality consciousness N  

 F14-F4 Quality consciousness will influence/enhance Flexible fixturing N  

 F4-F15 Flexible fixturing will influence/enhance Reduction in scrap N  
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 F15-F4 Reduction in scrap will influence/enhance Flexible fixturing N  

F5 Combination of operation 

 F5-F6 Combination of operation  will influence/enhance Automation N  

 F6-F5 Automation will influence/enhance Combination of operation Y Combined tool 

 F5-F7 
Combination of operation  will influence/enhance Use of automated material handling 

devices 
N  

 F7-F5 
Use of automated material handling devices will influence/enhance Combination of 

operation 
N  

 F5-F8 Combination of operation  will influence/enhance Increase machine utilization Y Set up time reduced 

 F8-F5 Increase machine utilization will influence/enhance Combination of operation N  

 F5-F9 Combination of operation  will influence/enhance Use of reconfigurable machine tool N  

 F9-F5 Use of reconfigurable machine tool will influence/enhance Combination of operation Y Transitivity 

 F5-F10 
Combination of operation  will influence/enhance Manufacturing lead time and set up 

time reduction 
Y 

Perform two or more 

operation with single cutting 

tool 

 F10-F5 
Manufacturing lead time and set up time reduction will influence/enhance Combination 

of operation 
N  

 F5-F11 Combination of operation  will influence/enhance Speed of response Y Reduce lead time 

 F11-F5 Speed of response will influence/enhance Combination of operation N  

 F5-F12 Combination of operation  will influence/enhance Reduced WIP inventories Y 
Perform two or more 

operation  on single machine 

 F12-F5 Reduced WIP inventories will influence/enhance Combination of operation N  

 F5-F13 Combination of operation  will influence/enhance Reduction in material flow Y Reduced WIP 
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 F13-F5 Reduction in material flow will influence/enhance Combination of operation N  

 F5-F14 Combination of operation  will influence/enhance Quality consciousness N  

 F14-F5 Quality consciousness will influence/enhance Combination of operation N  

 F5-F15 Combination of operation  will influence/enhance Reduction in scrap N  

 F15-F5 Reduction in scrap will influence/enhance Combination of operation N  

F6 Automation 

 F6-F7 Automation will influence/enhance Use of automated material handling devices Y 
For unloading and loading the 

parts 

 F7-F6 Use of automated material handling devices will influence/enhance Automation N  

 F6-F8 Automation will influence/enhance Increase machine utilization Y Proper feeding of parts 

 F8-F6 Increase machine utilization will influence/enhance Automation N  

 F6-F9 Automation will influence/enhance Use of reconfigurable machine tool N  

 F9-F6 Use of reconfigurable machine tool will influence/enhance Automation Y Rapid change in structure 

 F6-F10 Automation will influence/enhance Manufacturing lead time and set up time reduction Y Fast processing of parts 

 F10-F6 Manufacturing lead time and set up time reduction will influence/enhance Automation N  

 F6-F11 Automation will influence/enhance Speed of response Y Reduce human effort 

 F11-F6 Speed of response will influence/enhance Automation N  

 F6-F12 Automation will influence/enhance Reduced WIP inventories Y Combination of operation 

 F12-F6 Reduced WIP inventories will influence/enhance Automation N  

 F6-F13 Automation will influence/enhance Reduction in material flow Y 
Different operation on a 

single machine 

 F13-F6 Reduction in material flow will influence/enhance Automation N  
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 F6-F14 Automation will influence/enhance Quality consciousness Y 
Use CNC machine and 

computer based technology 

 F14-F6 Quality consciousness will influence/enhance Automation N  

 F6-F15 Automation will influence/enhance Reduction in scrap Y Precise operation 

 F15-F6 Reduction in scrap will influence/enhance Automation N  

F7 Use of automated material handling devices 

 F7-F8 
Use of automated material handling devices will influence/enhance Increase machine 

utilization 
N  

 F8-F7 
Increase machine utilization will influence/enhance Use of automated material handling 

devices 
N  

 F7-F9 
Use of automated material handling devices will influence/enhance Use of reconfigurable 

machine tool 
N  

 F9-F7 
Use of reconfigurable machine tool will influence/enhance Use of automated material 

handling devices 
Y Transitivity 

 F7-F10 
Use of automated material handling devices will influence/enhance Manufacturing lead 

time and set up time reduction 
Y Fast movement of material 

 F10-F7 
Manufacturing lead time and set up time reduction will influence/enhance Use of 

automated material handling devices 
N  

 F7-F11 Use of automated material handling devices will influence/enhance Speed of response Y Fast movement of material 

 F11-F7 Speed of response will influence/enhance Use of automated material handling devices N  

 F7-F12 
Use of automated material handling devices will influence/enhance Reduced WIP 

inventories 
Y Transitivity 
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 F12-F7 
Reduced WIP inventories will influence/enhance Use of automated material handling 

devices 
N  

 F7-F13 
Use of automated material handling devices will influence/enhance Reduction in material 

flow 
N  

 F13-F7 
Reduction in material flow will influence/enhance Use of automated material handling 

devices 
N  

 F7-F14 
Use of automated material handling devices will influence/enhance Quality 

consciousness 
N  

 F14-F7 
Quality consciousness will influence/enhance Use of automated material handling 

devices 
N  

 F7-F15 Use of automated material handling devices will influence/enhance Reduction in scrap N  

 F15-F7 Reduction in scrap will influence/enhance Use of automated material handling devices N  

F8 Increase machine utilization 

 F8-F9 Increase machine utilization will influence/enhance Use of reconfigurable machine tool N  

 F9-F8 
Use of reconfigurable machine tool will influence/enhance Increase machine 

utilization 
Y 

Modified according to 

requirement 

 F8-F10 
Increase machine utilization will influence/enhance Manufacturing lead time and set up 

time reduction 
N  

 F10-F8 
Manufacturing lead time and set up time reduction will influence/enhance Increase 

machine utilization 
N  

 F8-F11 Increase machine utilization will influence/enhance Speed of response N  

 F11-F8 Speed of response will influence/enhance Increase machine utilization N  

 F8-F12 Increase machine utilization will influence/enhance Reduced WIP inventories N  
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 F12-F8 Reduced WIP inventories will influence/enhance Increase machine utilization N  

 F8-F13 Increase machine utilization will influence/enhance Reduction in material flow N  

 F13-F8 Reduction in material flow will influence/enhance Increase machine utilization N  

 F8-F14 Increase machine utilization will influence/enhance Quality consciousness N  

 F14-F8 Quality consciousness will influence/enhance Increase machine utilization N  

 F8-F15 Increase machine utilization will influence/enhance Reduction in scrap N  

 F15-F8 Reduction in scrap will influence/enhance Increase machine utilization N  

F9 Use of reconfigurable machine tool 

 F9-F10 
Use of reconfigurable machine tool will influence/enhance Manufacturing lead time and 

set up time reduction 
Y Transitivity 

 F10-F9 
Manufacturing lead time and set up time reduction will influence/enhance Use of 

reconfigurable machine tool 
N  

 F9-F11 Use of reconfigurable machine tool will influence/enhance Speed of response Y 
Response to sudden changes 

in market 

 F11-F9 Speed of response will influence/enhance Use of reconfigurable machine tool N  

 F9-F12 Use of reconfigurable machine tool will influence/enhance Reduced WIP inventories Y 
Operations can be done with 

slight modification 

 F12-F9 Reduced WIP inventories will influence/enhance Use of reconfigurable machine tool N  

 F9-F13 
Use of reconfigurable machine tool will influence/enhance Reduction in material 

flow 
Y Less movement of WIP 

 F13-F9 Reduction in material flow will influence/enhance Use of reconfigurable machine tool N  

 F9-F14 Use of reconfigurable machine tool will influence/enhance Quality consciousness Y Transitivity 

 F14-F9 Quality consciousness will influence/enhance Use of reconfigurable machine tool N  
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 F9-F15 Use of reconfigurable machine tool will influence/enhance Reduction in scrap Y Transitivity 

 F15-F9 Reduction in scrap will influence/enhance Use of reconfigurable machine tool N  

F10 Manufacturing lead time and set up time reduction 

 F10-F11 
Manufacturing lead time and set up time reduction will influence/enhance Speed of 

response 
N  

 F11-F10 
Speed of response will influence/enhance Manufacturing lead time and set up time 

reduction 
N  

 F10-F12 
Manufacturing lead time and set up time reduction will influence/enhance Reduced WIP 

inventories 
Y 

CNC/NC machines which 

have automatic tool 

interchange capabilities 

 F12-F10 
Reduced WIP inventories will influence/enhance Manufacturing lead time and set up 

time reduction 
N  

 F10-F13 
Manufacturing lead time and set up time reduction will influence/enhance Reduction in 

material flow 
N  

 F13-F10 
Reduction in material flow will influence/enhance Manufacturing lead time and set up 

time reduction 
N  

 F10-F14 
Manufacturing lead time and set up time reduction will influence/enhance Quality 

consciousness 
N  

 F14-F10 
Quality consciousness will influence/enhance Manufacturing lead time and set up time 

reduction 
N  

 F10-F15 
Manufacturing lead time and set up time reduction will influence/enhance Reduction in 

scrap 
N  



163 
 

 F15-F10 
Reduction in scrap will influence/enhance Manufacturing lead time and set up time 

reduction 
Y Minimum Rework 

F11 Speed of response 

 F11-F12 Speed of response will influence/enhance Reduced WIP inventories N  

 F12-F11 Reduced WIP inventories will influence/enhance Speed of response N  

 F11-F13 Speed of response will influence/enhance Reduction in material flow N  

 F13-F11 Reduction in material flow will influence/enhance Speed of response N  

 F11-F14 Speed of response will influence/enhance Quality consciousness N  

 F14-F11 Quality consciousness will influence/enhance Speed of response N  

 F11-F15 Speed of response will influence/enhance Reduction in scrap N  

 F15-F11 Reduction in scrap will influence/enhance Speed of response Y Minimum rework 

F12 Reduced WIP inventories 

 F12-F13 Reduced WIP inventories will influence/enhance Reduction in material flow N  

 F13-F12 Reduction in material flow will influence/enhance Reduced WIP inventories Y Improved Routing flexibility 

 F12-F14 Reduced WIP inventories will influence/enhance Quality consciousness N  

 F14-F12 Quality consciousness will influence/enhance Reduced WIP inventories N  

 F12-F15 Reduced WIP inventories will influence/enhance Reduction in scrap N  

 F15-F12 Reduction in scrap will influence/enhance Reduced WIP inventories Y 
Minimum scrap so 

minimum rework 

F13 Reduction in material flow 

 F13-F14 Reduction in material flow will influence/enhance Quality consciousness N  

 F14-F13 Quality consciousness will influence/enhance Reduction in material flow N  

 F13-F15 Reduction in material flow will influence/enhance Reduction in scrap N  
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Bold shows significant transitivity 

 F15-F13 Reduction in scrap will influence/enhance Reduction in material flow Y 
Reduced WIP due to less 

rework 

F14 Quality consciousness 

 F14-F15 Quality consciousness will influence/enhance Reduction in scrap N  

 F15-F14 Reduction in scrap will influence/enhance Quality consciousness N  
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Table 6.2 Initial reachability matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
F1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F3 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
F4 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 
F5 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 
F6 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 
F7 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 
F8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
F9 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 

F10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
F11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
F12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
F13 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
F14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
F15 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 

 

Table 6.3 Reachability matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

F1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F3 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
F4 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 
F5 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 
F6 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 
F7 0 0 0 0 0 0 1 0 0 1 1 1* 0 0 0 
F8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
F9 1 1 1 0 1* 1 1* 1* 1 1* 1 1* 1* 1* 1* 
F10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
F11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
F12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
F13 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
F14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
F15 0 0 0 0 0 0 0 0 0 1 1 1* 1 0 1 

 

*Transitivity 

 

 



166 
 

Table 6.4 Iterations 

Variables Reachability set Antecedent set Intersection set Level 
2 2 1,2,3,4,6,9 2 L-1 
8 8 3,4,5,6,8,9 8 L-1 
11 11 4,5,6,7,9,11,15 11 L-1 
12 12 4,5,6,7,9,10,12,13,15 12 L-1 
14 14 6,9,14 14 L-1 
1 1 1,4,6,9 1 L-2 
3 3 3,4,6,9 3 L-2 
10 10 4,5,6,7,9,10,15 10 L-2 
13 13 5,6,9,13,15 13 L-2 
4 4 4 4 L-3 
5 5 5,6,9 5 L-3 
7 7 6,7,9 7 L-3 
15 15 6,9,15 15 L-3 
6 6 6,9 6 L-4 
9 9 9 9 L-5 

  

Table 6.5 Interaction matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
F1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 
F3 0 1 - 0 0 0 0 1 0 0 0 0 0 0 0 
F4 1 0 1 - 0 0 0 0 0 1 1 0 0 0 0 
F5 0 0 0 0 - 0 0 1 0 1 1 0 1 0 0 
F6 1 0 1 0 1 - 1 0 0 0 0 0 0 1 1 
F7 0 0 0 0 0 0 - 0 0 1 1 0 0 0 0 
F8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 
F9 1 0 1 0 0 1 0 1 - 0 1 1 1 0 0 
F10 0 0 0 0 0 0 0 0 0 - 0 1 0 0 0 
F11 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 
F12 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 
F13 0 0 0 0 0 0 0 0 0 0 0 1 - 0 0 
F14 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 
F15 0 0 0 0 0 0 0 0 0 1 1 1 1 0 - 

 

Bold direct link 

Italic Significant transitive link
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Table 6.6 Interpretive matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

F1 

- Devel
op 

new 
produ

ct 

- - - - - - - - - - - - - 

F2 - - - - - - - - - - - - - - - 

F3 

- Same 
equip
ment 

can be 
used 
for 
new 

produ
cts 

- - - - - Similar 
process 
can be 

done on 
same 

machine 

- - - - - - - 

F4 

Handlin
g of 

variety 
of 

products 

- Handlin
g  a 

variety 
of work 

part 
configur
ations  

- - - - - - Accom
modate 

different 
parts 
and 

Quick 
response  

Improve 
productio

n 
schedule 

- - - - 

F5 - - - - - - - Set up 
time 

reduced 

- Perform 
two or 
more 

operatio
n with 
single 
cutting 

tool 

Reduce 
lead time 

- Redu
ced 
WIP 

- - 
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F6 Reduce 
human 

effort to 
product 
complic

ated 
parts 

- System 
can 

operate 
for 

extende
d period 
of time 
without 
human 

attention 

- Com
bined 
tool  

- For 
unload

ing 
and 

loadin
g the 
parts 

- - - - - - Use 
CNC 
mach
ine 
and 

comp
uter 

based 
techn
ology 

Preci
se 

opera
tion 

F7 

- - - - - - - - - Internal 
moveme

nt of 
material 

Fast 
moveme

nt of 
material 

- - - - 

F8 - - - - - - - - - - - - - - - 

F9 

Rapid 
change 

in 
structure 
to cope 
up with 
variety 

of 
products 

- Can 
response 

for 
sudden 
change  

- - Rapid 
chang
e in 

struct
ure 

- Modifie
d 

accordi
ng to 

require
ment  

- - Response 
to 

sudden 
changes 

in market 

Operations 
can be 

done with 
slight 

modificatio
n 

Less 
move
ment 

of 
WIP 

- - 

F10 

- - - - - - - - - - - CNC/NC 
machines 
which have 
automatic 
tool 
interchange 
capabilities 

- - - 

F11 
- Devel

op 
new 

- - - - - - - - - - - - - 
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produ
ct 

F12 - - - - - - - - - - - - - - - 

F13 

- Same 
equip
ment 

can be 
used 
for 
new 

produ
cts 

- - - - - Similar 
process 
can be 

done on 
same 

machine 

- - - - - - - 

F14 

Handlin
g of 

variety 
of 

products 

- Handlin
g  a 

variety 
of work 

part 
configur
ations  

- - - - - - Accom
modate 

different 
parts 
and 

Quick 
response  

Improve 
productio

n 
schedule 

- - - - 
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Figure 6.1 Diagraph with significant transitive links 
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Figure 6.2 Total interpretive structural model showing the levels of FMS variables 
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6.3 ANALYSIS OF FMS FLEXIBILITY VARIABLES BY TISM FUZZY 

MICMAC   

For developing the TISM model, the relation between two variables is denoted by 0 and 

1. If there is no relationship between two variables then it is denoted by 0 and if there 

is a relationship between two variables then it is denoted by 1. From Table 6.2, the 

relationship between F1 and F2 having equal importance and denoted by the binary 

number 1. However, the relationship between these variables cannot be always equal. 

Some relations may be strong, some may be especially strong and some relations may 

be better. To overcome this drawback of TISM model, the fuzzy TISM is used for the 

MICMAC analysis. Fuzzy MICMAC analysis is reviewed from the literature as Dubey 

and Ali [180] used fuzzy MICMAC in the analyzed relationship among various 

constructs of FMS and their relationship using ISM and TISM analysis. Gorane and 

Kant [336] used ISM and fuzzy MICMAC approach for modeling of supply chain 

management enablers. Gorane and Kant [336] established the relationships among 

supply chain management enablers by using ISM and find out driving and the 

dependence power of enablers, using fuzzy MICMAC. Debata et al. [337] evaluated 

medical tourism enablers with ISM and fuzzy MICMAC. Khan and Haleem [338] 

developed an integrated model of smart organization enablers by using ISM 

methodology and fuzzy MICMAC. Khurana et al. [339] have done modeling of 

information sharing enablers for building trust in the Indian manufacturing industry by 

an integrated ISM and fuzzy MICMAC approach. Qureshi et al. [340] provided an 

integrated model using ISM and fuzzy MICMAC to identify and classify various key 

criteria required for the selection of 3PL service providers. Arya and Abbasi [341] 

identified and classified the key variables and their role in environmental impact 

assessment. The TISM Fuzzy MICMAC analysis is carried out as per following 

procedure. 

6.3.1 Binary Direct Relationship Matrix  

A binary direct relationship matrix (BDRM) is obtained by examining the direct 

relationship among the variables in the TISM as given in Table 6.2. From Table 6.2, 

the transitivity is ignored and the diagonal entries are converted to zero. (The BDRM 

so derived, is shown in Table 6.7).  
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6.3.2 Development of Fuzzy Direct Relationship Matrix (FDRM) 

The conventional MICMAC analysis considers only binary type of relationship; 

however, this research uses fuzzy set theory (FST) to increase the sensitivity of 

MICMAC analysis. In fuzzy MICMAC, an additional input of possibility of interaction 

between the variables is introduced.  

Table 6.7 Binary direct relationship matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
F1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
F4 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 
F5 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 
F6 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 
F7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
F8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F9 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 
F10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
F11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
F14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F15 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

 

The possibility of interaction can be defined by qualitative consideration on 0-1 scale 

and is given in Table 6.8. 

Table 6.8 Possibility of numerical value of the reachability 

Possibility of reachability No Very low Low Medium High Very high Complete 

Value 0 0.1 0.3 0.5 0.7 0.9 1 

 

Again the opinion of same academician and industry expert as mentioned in Section 3 

are considered to rate the relationship between the two variables (Table 6.8). The values 

of the relationship between two variables are then superimposed on the BDRM to obtain 

a fuzzy direct relationship matrix (FDRM). The FDRM is given in Table 6.9. 
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6.3.3 Fuzzy MICMAC Stabilized Matrix  

The FDRM is taken as the base to start the process. The matrix is multiplied repeatedly 

until the hierarchies of the driver power and dependence stabilize. The multiplication 

process follows the principle of fuzzy matrix multiplication [336, 342].

Fuzzy matrix multiplication is basically a generalization of Boolean matrix 

multiplication. According to FST, when two fuzzy matrices are multiplied the product 

matrix is also a fuzzy matrix.  

Multiplication follows the given rule: C = A; B = max k [min aik; bkj]  

Where A = [aik] and B = [bkj]  

A stabilized matrix is shown in Table 6.10. The driving power of the variables in fuzzy 

MICMAC is derived by summing the entries of possibilities of interactions in the rows 

and the dependence of the variables is determined by summing the entries of 

possibilities of interactions in the columns. The driver power dependence power 

diagram is shown in Figure 6.3. 

Table 6.9 Fuzzy direct relationship matrix 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
F1 0 0.5 0 0 0 0 0 0 0 0 0.1 0 0 0 0 
F2 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 
F3 0.1 0.7 0 0 0.1 0 0 0.5 0.1 0.1 0.1 0 0 0 0.1 
F4 0.9 0.7 0.5 0 0.1 0.1 0 0.7 0 0.5 0.7 0.7 0.1 0 0.1 
F5 0 0 0 0 0 0 0 0.7 0 0.7 0.7 0.7 0.7 0 0 
F6 0.9 0.7 0.5 0.1 0.7 0 0.9 0.7 0.1 0.7 0.7 0.5 0.5 0.5 0.7 
F7 0 0 0.1 0 0 0.1 0 0 0 0.7 0.7 0 0 0.1 0 
F8 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 
F9 0.7 0.7 0.9 0.1 0 0.5 0 0.3 0 0 0.5 0.1 0.3 0 0 
F10 0 0 0 0 0 0 0 0 0 0 0.3 0.3 0 0 0 
F11 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F12 0 0 0 0 0 0 0 0 0 0.3 0.1 0 0.1 0 0 
F13 0 0 0 0 0 0 0 0 0 0.1 0.1 0.3 0 0 0 
F14 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 
F15 0 0 0 0 0 0 0 0 0 0.5 0.7 0.3 0.7 0.1 0 
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Table 6.10 Fuzzy MICMAC stabilized matrix 

 

  

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 SUM 

F1 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0.3 

F2 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0.3 

F3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.5 

F4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.1 2.1 

F5 0.1 0.1 0 0 0 0 0 0 0 0.3 0.3 0.3 0.1 0 0 1.2 

F6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.1 2.1 

F7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 1.9 

F8 0.1 0.1 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0.6 

F9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.1 2.1 

F10 0.1 0.1 0 0 0 0 0 0 0 0.3 0.1 0.1 0.1 0 0 0.8 

F11 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0.3 

F12 0.1 0.1 0 0 0 0 0 0 0 0.1 0.3 0.3 0.1 0 0 1 

F13 0.1 0.1 0 0 0 0 0 0 0 0.3 0.1 0.1 0.1 0 0 0.8 

F14 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0.3 

F15 0.1 0.1 0 0 0 0 0 0 0 0.3 0.3 0.3 0.1 0 0 1.2 

SUM 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2.5 2.9 2.5 1.1 0.5 0.5  
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Driving power 

Dependence power 

Figure 6.3 Clusters of variables affecting the flexibility in FMS 

 

6.4 EVALUATION OF VARIABLES BY EFA AND CFA 

The analysis proceeds in two steps. EFA is performed by SPSS software and CFA is 

performed by AMOS software. 

Analysis of variable takes place as given below: 

i. 15 variables which affect flexibility of FMS are identified through literature and 

expert opinion. After this, a survey takes place to get data. Sample size 300 is 

collected from surveys. Data set 300 is good to carry on the analysis. 

ii. Reliability test is to perform to check relatively internal consistency of variables 

through to measure cronbach's Alpha. The value of cronbach's Alpha is 0.807 good, 

i.e. more than 0.7. Table 6.11 shows the reliability statistics (cronbach’s alpha 

value). 
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iii. KMO and Bartlett’s test is performed and the result of the test is shown in Table 

6.12. From the Table 6.12, it is observed that the KMO value is 0.847and the 

significance value is 0.000. Therefore, the data are appropriate to proceed with 

factor analysis. 

iv. Table 6.13 shows the result of communalities. From the Table 6.13, it is to be noted 

most of the variables have their communalities above 0.5. Only variable 6 and 

variable 10 have 0.486 and 0.438 respectively. 

v. According to communalities result, fifteen variables or items are taken. 

vi. Four components are extracted which have an eigenvalue greater than one and 

explain the total variance 54.705 which is acceptable i.e. shown in Table 6.14. 

According to scree plot, four components extracted with three items or observed 

variables per factor, which has a significant loading more than 0.30. Scree plot is 

shown in Figure 6.4.  

vii. Four components have taken from extract initial factors as shown in Table 6.15. 

viii. Rotation of the component matrix with Varimax with Kaiser Normalization is 

shown in Table 6.16. 

 

Table 6.11 Cronbach's Alpha 

 

Case Processing Summary 

 N % 

Cases Valid 300 100.0 

Excludeda 0 .0 

Total 300 100.0 

a. List wise deletion based on all variables in the procedure. 

Reliability Statistics 

Cronbach's 

Alpha 

Cronbach's Alpha Based 

on Standardized Items 

N of Items 

0.807 0.808 15 
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Table 6.12 KMO and Bartlett’s test 

Test Values 
Kaiser-Meyer-Olkin Measure of sampling adequacy 

Approx. Chi-Square 
0.847 

1014.114 
Bartlett’s Test of sphericity             df 

                                                         Sig. 
105 

0.000 
 

Table 6.13 Communalities 

Variables Initial Extraction 

var1 1.000 0.674 

var2 1.000 0.563 

var3 1.000 0.585 

var4 1.000 0.552 

var5 1.000 0.547 

var6 1.000 0.486 

var7 1.000 0.507 

var8 1.000 0.511 

var9 1.000 0.586 

var10 1.000 0.438 

var11 1.000 0.527 

var12 1.000 0.576 

var13 1.000 0.606 

var14 1.000 0.520 

var15 1.000 0.526 

 

ix. Finally, four components taken after Rotation of the component matrix with 

Varimax with Kaiser Normalization. No change is taking place. 

x. Based on the exploratory factor analysis results, the variables were classified into 

four suitably named dimensions. The dimensions and the corresponding variables 

are shown in Table. 6.17. 
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Figure 6.4. Scree plot 

Table 6.14 Total variance explained 

 

No. 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 

Cumulati-

ve % 
Total 

% of 

Variance 

Cumulati

-ve % 
Total 

% of 

Variance 

Cumulative 

% 

1 4.243 28.283 28.283 4.243 28.283 28.283 2.558 17.056 17.056 

2 1.791 11.943 40.227 1.791 11.943 40.227 2.147 14.314 31.370 

3 1.170 7.800 48.026 1.170 7.800 48.026 1.812 12.081 43.450 

4 1.002 6.678 54.705 1.002 6.678 54.705 1.688 11.254 54.705 

5 .933 6.220 60.925       

6 .823 5.485 66.410       

7 .723 4.822 71.231       

8 .683 4.553 75.785       

9 .647 4.314 80.098       

10 .584 3.893 83.991       

11 .550 3.666 87.657       

12 .517 3.444 91.102       

13 .503 3.356 94.457       

14 .437 2.914 97.371       

15 .394 2.629 100.000       

Extraction Method: Principal Component Analysis. 
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Table 6.15 Component matrix 

 

 

 

  

Component matrixa 

 
Component 

1 2 3 4 

var1 .206 .586 .326 .427 

var2 .493 .495 .225 .158 

var3 .597 .381 .067 -.283 

var4 .626 .129 -.315 -.212 

var5 .663 .241 .095 -.199 

var6 .554 .238 .211 .280 

var7 .627 .013 -.337 .019 

var8 .392 .220 -.554 -.042 

var9 .342 .004 .381 -.569 

var10 .454 .111 -.386 .268 

var11 .641 -.205 .168 -.214 

var12 .591 -.439 -.164 .087 

var13 .592 -.461 .137 .154 

var14 .479 -.494 .174 .127 

var15 .504 -.418 .193 .246 

Extraction Method: Principal Component Analysis. 

a. 4 components extracted. 
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Table 6.16 Rotated component matrix 
 

 
Component 

1 2 3 4 

var1 -.104 -.027 .813 -.046 

var2 .030 .197 .680 .249 

var3 .012 .362 .350 .575 

var4 .149 .631 .075 .356 

var5 .182 .346 .341 .527 

var6 .284 .185 .594 .134 

var7 .296 .622 .111 .145 

var8 -.057 .711 .032 .042 

var9 .116 -.108 -.003 .749 

var10 .184 .583 .217 -.135 

var11 .502 .179 .068 .488 

var12 .656 .366 -.086 .069 

var13 .757 .119 .062 .120 

var14 .714 .019 .001 .100 

var15 .712 .033 .128 .034 

Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with 

Kaiser Normalization. 

a. Rotation converged in 5 iterations. 
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Table 6.17 Factors/Dimensions in flexible manufacturing system 

 

The analysis revealed the following dimensions: 

a) Production flexibility: The range or universe of part types that can be produced 

without the need to purchase new equipment. The range of part types that the FMS 

can produce. This flexibility is measured by the level of existing technology.  

b) Machine flexibility: It is defined as the capability to adapt a given machine 

(Workstation) in the system to a wide range of production operations and part styles. 

The greater the range of operations and part styles, the greater the machine 

flexibility.  

c) Product flexibility: The ability to change over to produce a new (set of) product(s) 

very economically and quickly. Product flexibility relates to the ease of new-

product introduction and product modification.  

d) Volume flexibility: The ability to economically produce parts in high and low total 

quantities of production, given the fixed investment in the system. A higher level 

of automation increases this flexibility, partly as a result of both lower machine 

setup costs and lower variable costs.  

 

Sr. 
No. Dimensions Variables 

1 Production flexibility (PD F) 

Combination of operation 
Reduced WIP inventories 
Reduction in material flow 

Use of reconfigurable machine tool 
Reduction in scrap 

2 Machine flexibility  (M F) 

Increase machine utilization 
Ability to manufacture a variety of product 

Manufacturing lead time and setup time 
reduction 

Quality consciousness 

3 Product flexibility (P F) 
Capacity to handle new product 

Flexible fixturing 
Flexibility in the design of production system 

4 Volume flexibility   (V F) 
Automation 

Use of automated material handling devices 
Speed of response 
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xi. After identifying four clear factors through EFA (principal components analysis), 

the next stage is to confirm the factor structure. Structural equation modeling (SEM) 

using AMOS was used to perform the first-order confirmatory factor analysis on 

the proposed measurement model in Figure 6.5. The model consists of the first-

order four-factor structure, (production flexibility, machine flexibility, product 

flexibility and volume flexibility) with the measurement variables loading in 

accordance with the pattern revealed in the exploratory factor analysis on a sample. 

xii. The model indicated an acceptable model fit of the data  

CMIN (χ2) = 154.638, DF =84,  

p=. 000 < 0.05; 

CMIN/DF (χ 2/ DF) =1. 841 < 2; 

GFI = 0.937 > 0.9; 

AGFI=0. 909> 0.9; 

RMR = 0. 03 < 0.05;  

RMSEA = 0.053< 0.08  

NFI = 0.902 > 0.9; 

CFI = 0.924> 0.9; 

TLI = 0.905> 0.9; and 

IFI = 0.926> 0.9.  

xiii. SEM model conforms to the first-order four-factor structure (production 

flexibility, machine flexibility, product flexibility and volume flexibility) of the 

flexible manufacturing system. 

6.5  VALUATION OF INTENSITY OF VARIABLES AFFECTING 

FLEXIBILITY 

The analysis proceeds after EFA analysis. With the help of SPSS software factors 

extracted from the variables and graph theory matrix approach is performed to 

evaluating the intensity of variables affecting flexibility in FMS. Analysis of variable 

takes place as given below 

i. After identifying four clear factors through EFA (principal components analysis), 

A digraph is developed for these four factors as shown in Figure 6.6 and the SSIM 

developed as given in Table 2.2.  
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Figure 6.5. Path diagram of SEM for CFA 

ii. The digraphs for each category of factors are developed considering the variables 

that affect the particular category of factors. The nodes in the digraph represent the 

variables and their mutual interaction is depicted by different edges.  

iii. The inheritance of variables and their interdependencies discuss with the experts as 

per Tables 2.2 and 2.3 and the FMS flexibility’ matrix for each category is written 

as:  
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11 12 13 14 15

11

12
*

1 13

14

15

           variable
           8    3    4    3   4
           0   7    3    0   0
           0   0    8    0   0
           4   3    3    9   3
           0   3    4    0   8

F F F F F
F
F

F F
F
F

 
 
 
 =
 
 
 
 

  (6.1) 

21 22 23 24

21

22*
2

23

24

           variable
             9   0    3    0
             4   7    0    0
            5   3    9    0
            0   2    3    6

F F F F
F
F

F
F
F

 
 
 =
 
 
 

  (6.2) 

31 32 33

31
*

3 32

33

           variable
 8   0    0             
 4   9    2             
 4   3    7            

F F F
F

F F
F

 
 =  
 
 

        (6.3) 

iv. In the present work, the value of the permanent function for each category is 

calculated by a computer program which is developed in C++ language. The value 

of permanent function for each category is as follows: 

 Per *
1F = 37632,   Per *

2F = 4248, Per *
3F = 552, Per *

4F = 808 

v. The FMS flexibility’ matrix at the system level is developed as per equation 2.3. In 

this matrix, the values of the diagonal elements are taken from the sub-system level:  

 F1 = Per *
1F = 37632; F2 = Per *

2F = 4248; F3 = Per *
3F = 552; F4 = Per *

4F = 808 

1 2 3 4

*

4

1

2

3

                          variable
      37632  4  4   5
        4 4248  3   5
        4  3 552   4
        3  3  3 808

F F F F
F
F

F
F
F

 
 
 =
 
 
 

 

vi. Value of permanent function of the system is evaluated. The value of Per F* at the 

system level of above matrix is 7.13 × 1013, which indicates the FMS flexibility 
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index for the variables considered. It is suggested to find hypothetical best and 

hypothetical worst value of the FMS flexibility index. The FMS flexibility index is 

at its best when the inheritance of all its factors is at its best. Since, inheritance of 

factors has been evaluated considering variables and applying graph theoretic 

approach at the subsystem level, it is evident that the FMS flexibility index is at its 

best when the inheritance of variables is at its best. At the subsystem level, 

maximum value of per *
1F is obtained when inheritance of all the sub-factors are 

maximized, i.e., value taken from Table 2.2 is 10. Thus, FMS flexibility’ matrix for 

this category is rewritten as : 

11 12 13 14 15

11

12
*

1 13

14

                 variable
           10    3    4    3   4
           0   10    3    0   0
           0   0    10    0   0
           4   3    3    10   3
   0   3    4    0   10

F F F F F
F
F

F F
F

 
 
 
 =
 
 
 
  15        F

 

The maximum value of per *
1F for the first category is 112000. 

Similarly, the FMS flexibility index is at its worst when the inheritance of all its 

factors and variables is at its worst. This is the case when inheritance of the entire 

variables is minimum, i.e. value taken from Table 2.2 is 1. Thus, FMS flexibility 

matrix for this category is rewritten as: 

11 12 13 14 15

11

12
*

1 13

14

1

            variable
           1    3    4    3   4
           0   1    3    0   0
           0   0    1    0   0
           4   3    3    1   3
           0   3    4    0   1

F F F F F
F
F

F F
F
F

 
 
 
 =
 
 
 
  5

 

The minimum value of per *
1F for the first category is 13. 

Similarly, maximum and minimum values for each subsystem are evaluated and 

different values of permanent of subsystem matrices are summarized in Table 6.18. The 

maximum value of the FMS flexibility index at system level is evaluated by considering 

maximum values of all subsystems and minimum value of the FMS flexibility index at 
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system level is evaluated by considering minimum values of all subsystems. The value 

of per F indicates the value of the FMS flexibility index. Thus, the maximum and 

minimum value of FMS flexibility index indicates the range within which it can vary. 

Experts can use this range to decide a threshold value for flexibility in FMS.  

Table 6.18 The maximum and minimum values of the permanent function 

Permanent function at 

the Subsystem/system 

level 

Maximum 

value 
Minimum value Current value 

Per *
1F  112000 13 37632 

Per *
2F  11860 52 4248 

Per *
3F  1060 7 552 

Per *
4F    1444 121 808 

Per *F  20.33 ×1013 736698 7.13 ×1013 

       
6.6 RESULT AND DISCUSSION  

The main objective of this chapter is to create a model of flexibility factors to assist in 

enhancing the flexibility of the manufacturing system. In this chapter TISM-based 

model has been developed to analyze the interactions among different FMS variables. 

The managers can get an  insight  of  these  variables  and  understand  their  relative  

importance  and interdependence. The driver power dependence matrix gives some 

valuable insights about the relative importance and interdependence among the FMS 

variables. The results of the TISM are in five levels discuss below as:  

Capacity to handle new products (2), increase machine utilization (8), speed of response 

(11), reduced WIP inventories (12) and quality consciousness (14) are at first level. 

Ability to manufacture a variety of products (1), flexibility in production (3), 

manufacturing lead time and set up-time reduction (10) and reduction in material flow 

(13) are at second level. Flexible fixturing (4), combination of operation (5), use of 

automated material handling devices (7), and reduction in scrap (15) are at third level. 

Automation (6) at fourth level and use of the reconfigurable machine tool (7) at fifth 

level. 
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The second objective of this chapter is to analyze the driving and the dependence power 

of the flexibility variables that influence the FMS in an organization through TISM 

fuzzy MICMAC analysis. Through fuzzy MICMAC analysis the variables are 

classified into four clusters (Figure 6.3). The first cluster consists of the autonomous 

variables which have weak driver power and weak dependence. These variables are 

relatively disconnected from the system, with which they have only a few links, which 

may be strong. A second cluster consists of the dependent variables that have weak 

driving power but strong dependence. Third cluster has the linkage variables that have 

strong driving power and also strong dependence. These variables are unstable and any 

action of these variables will have an effect on others and also a feedback on 

themselves. The fourth cluster includes the independent variables having strong driving 

power but weak dependence. The analysis of fuzzy MICMAC is as follows. 

The driver power dependence Figure 6.3 indicates that there are five autonomous 

variables i.e. combination of operation (variable 5), increase machine utilization 

(variable 8), reduction in material flow (variable 13); quality consciousness (variable 

14); reduction in scrap (variable 15) affecting the flexibility of FMS. Autonomous 

variables are weak drivers and weak dependents and do not have much influence on the 

system. Dependent variables have ability to manufacture a variety of products (variable 

1), capacity to handle new product (variable 2), manufacturing lead time and set up-

time reduction (variable 10), speed of response (variable 11) and reduced WIP 

inventories (variable 12). These variables are weak drivers, but strongly depend on one 

another. The management should therefore accord high priority in tackling these 

variables. The driving-dependence power diagram (Figure 6.3) indicates that there 

are no linkage variables. They have strong driving power as well as high dependencies. 

These variables can create a positive environment regarding the flexibility affecting in 

FMS. It is further observed from figure 6.3 that variables flexibility in production 

(variable 3); flexible fixturing (variable 4); automation (variable 6); use of automated 

material handling devices (variable 7); and use of reconfigurable machine tool (variable 

9)  are independent variables, i.e. they have strong driving power and less dependent 

on other variables. Therefore, these are strong drivers and may be treated as the root 

causes of all the variables. These variables may be treated as the ‘key variables’ for 

affecting the flexibility in FMS.  
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Four components are extracted, which have an eigenvalue greater than one and explain 

the total variance 54.705 and according to scree plot, which has a significant loading 

more than 0.30. As seen from the data analysis, four factors are extracted in analysis; 

production flexibility, machine flexibility, product flexibility and volume flexibility. 

The SEM results of the analysis were examined to determine the degree of fit of the 

model. There is not a clear single measure for testing model fit, thus several measures 

should be considered together to reach a conclusion. 

Analysis of the model resulted in a chi-square CMIN (χ2) = 154.638, DF =84, p= 0. 

000, CMIN/DF (χ 2/ DF) =1. 841 < 2 which indicates that the data fit the model. Other 

indicators also confirmed the good fit. Goodness-of-Fit index (GFI) of 0.937 indicates 

that the model fits very well because a GFI of 1.0 indicates a perfect fit. The root mean 

square error of approximation (RMSEA) value of 0.05 is below the acceptable limit of 

0.08 and implies a good model fit. The adjusted goodness-of-fit index (AGFI) value is 

0.909 and is close to its recommended value of 0.9. Root mean square residual (RMR) 

value is 0. 03 i.e. below the acceptable limit of 0.05. Normed-fit index (NFI) is 0.902; 

Comparative Fit Index (CFI) is 0.924; Non-normed Fit Index (NNFI, also known as the 

Tucker-Lewis Index or TLI) is 0.905; and Incremental fit Index (IFI) is 0.926. The 

values of NFI, CFI, TLI and the IFI are indicating good model fits because these values 

are above the recommended value of 0.9. Structural equation modeling (SEM) using 

AMOS was used to perform the first-order four-factor structure (production flexibility, 

machine flexibility, product flexibility and volume flexibility) with the measurement 

variables loading. Overall, the fit indices indicate that the model produces the 

covariance matrix as well. Using all these criteria uniformly shows the overall adequacy 

of factor solutions. The proposed work has very high industrial relevance in its 

application like extraction of factors and then confirmation of these factors. Hence, with 

the knowledge of the intensity of various variables, some precautions and good 

decisions may be taken by the managers to handle these variables which affect 

flexibility of FMS.  In advance, industries can know the strength of various variables 

which affect flexibility of FMS and steps can be taken to increase the flexibility. As 

flexibility increases performance of the FMS increases.   

The results of the analysis have been examined to determine the intensity of variables 

affecting flexibility in FMS by graph theory and matrix approach (GTMA). GTMA 

methodology helps in the calculation of intensity of different variables. Hence, with the 
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knowledge of the intensity of various variables, some precautions and good decisions 

may be taken by the managers to handle these variables which affect flexibility of FMS. 

It was observed in the present work that production flexibility has the maximum 

intensity. The future direction of this research is improving the system as the current 

value of flexibility index of this work is 7.13 ×1013 which is below than the maximum 

value of 20.33 ×1013. This value in itself speaks of the scope of improvement in the 

variables to increase the flexibility in FMS. Table 6.18 shows the results of system or 

sub-system levels. 

6.7 CONCLUSIONS 

In this chapter, an attempt has been made to identify the major variables of flexibility 

in FMS environment. Manufacturing companies can take quick decisions regarding the 

flexibility variables of FMS. The result of this study shows that all the considered 

variables are very important for FMS flexibility. 

1. A logical procedure based on the TISM, SEM and GTMA together is suggested 

which helps to focus on flexibility of flexible manufacturing system among a large 

number of available variables. 

2. There are four factors like production flexibility, machine flexibility, product 

flexibility and volume flexibility which affect mainly flexibility of FMS. 

3. The SEM analysis provides flexibility in determining the relationships between 

variables. Direct as well as indirect relationship between variables can be specified 

and estimated. 

4. The proposed flexible manufacturing system flexibility index evaluates and ranks 

the flexibility variables. This leads to the selections of a suitable flexibility variables 

of flexible manufacturing system for any application. 
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CHAPTER VII 

MODELING AND RANKING OF TYPES OF 

FLEXIBILITY IN FMS  

 

7.1 INTRODUCTION  

FMS consists  innumerable programmable and computerized machine tools connected 

by an automatic material handling system like robots and automatic guided vehicles 

(AGVs) and automatic storage and retrieval system (AS/RS) that can process 

simultaneously medium-sized volumes of the different parts [1]. FMS is capable of 

producing a variety of part types and handling flexible routing of parts instead of 

running parts in a straight line through machines [2]. FMS characterizes 

organizational culture, organizational strategy, organizational size and structure and 

management experience and style interact to determine the tendency of the organization 

to adopt FMS [8]. FMS are crucial for modern manufacturing to enhance productivity 

involved with high product proliferation [302].  

The word 'flexibility' comes from the Latin word meaning 'bendable'. Stockton and 

Bateman [343] have suggested flexibility is the ability of a manufacturing system to: 

• Change between existing part types 

• Change the operation routes of components 

 

From this chapter the following papers have been published. 

V. Jain and T. Raj, "A hybrid approach using ISM and modified TOPSIS for the 

evaluation of flexibility in FMS," International Journal of Industrial and Systems 

Engineering, vol. 19, pp. 389–406, 2015. 

V. Jain and T. Raj, "Evaluation of flexibility in FMS by VIKOR methodology," 

International Journal of Industrial and Systems Engineering, vol. 18, pp. 483-498, 

2014. 

V. Jain and T. Raj, "Ranking of Flexibility in Flexible Manufacturing System by Using 

a Combined Multiple Attribute Decision Making Method," Global Journal of Flexible 

Systems Management, vol. 14, pp. 125-141, 2013. 
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• Change the operations required to process a component 

• Change production volumes, i.e. either expansion or contraction  

• Add new part types 

• Add new processes to the system. 

The flexibility of a manufacturing system can be defined as the ability of the system to 

respond to changes either in the environment or in the system itself [344]. Flexibility in 

manufacturing is defined as the ability to change or react with little penalty in time, 

effort, cost or performance [323]. Flexibility is one of the critical dimensions of 

enhancing the competitiveness of organizations. Flexibility is one of the most sought-

after properties in modern manufacturing systems [345]. According to Chen and Chung 

[346] flexibility refers to the ability of the manufacturing system to respond quickly to 

changes in part demand and part mix. Das [49] has defined it as the ability of a system 

or facility to adjust to changes in its internal or external environment. Several 

researchers have classified flexibility under different categories. Park and Son [347] 

and Son and Park [348] have identified four types of flexibility—process, product, 

demand and equipment flexibility. Browne et al. [94] have proposed eight types of 

flexibilities including machine flexibility, routing and expansion, etc., Azzone and 

Bertele [349] have suggested six types of flexibility: process, product, production, 

routing, expansion and volume flexibility. Sethi and Sethi [89] have identified eleven 

types of flexibility: product, process, program, production, volume, routing, expansion, 

operation, machine, material handling and market flexibility.  

From literature fifteen flexibilities and fifteen variables which affect the flexibility in a 

flexible manufacturing system have been identified. The ranking of these flexibilities 

is analyzed by combined multiple attribute decision making methods, i.e. AHP, 

TOPSIS, Modified TOPSIS Improved PROMETHEE and VIKOR. 

The proposed methods easily handle qualitative criteria involved in the decision-

making process. Multi-objective techniques seem to be an appropriate tool for ranking 

or selecting one or more alternatives from a set of the available options based on the 

multiple objectives. 

The purpose of the ranking of flexibility is to accord a proper attention of researchers 

and production managers to focus the flexibility in FMS. Olhager [66] has proved that 
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flexibility is usually considered to be the best step towards manufacturing excellence. 

The impact of flexibility and its contributing means on increasing profitability of the 

manufacturing system.  

The main objectives of this chapter are as follows: 

• To identify different types of flexibility and variables affecting these 

flexibilities in FMS. 

• To establish relationship among these flexibilities by using ISM  

• To find the ranking of different types of flexibility based on variables by using 

combined multiple attribute decision making methods, i.e. AHP, TOPSIS, 

Modified TOPSIS Improved PROMETHEE and VIKOR. 

On the basis of the exhaustive literature review and discussions with the industry 

experts and the academia, 15 flexibilities and 15 variables were identified and discussed 

in chapter 2 in detailed. These flexibilities and variables are given below: 

The fifteen flexibilities are as given below: 

1. Machine flexibility 

2. Routing flexibility 

3. Process flexibility 

4. Product flexibility  

5. Volume flexibility 

6. Material handling flexibility  

7. Operation flexibility  

8. Expansion flexibility 

9. Production flexibility 

10. Programme flexibility 

11. Market flexibility 

12. Response flexibility 

13. Product mix flexibility 

14. Size flexibility 

15. Range flexibility 
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The fifteen variables are as given below: 

1. Ability to manufacture a variety of products 

2. Capacity to handle new products 

3. Flexibility in production 

4. Flexible fixturing 

5. Combination of operation 

6. Automation 

7. Use of automated material handling devices 

8. Increase machine utilization 

9. Use of the reconfigurable machine tool 

10. Manufacturing lead time and set up-time reduction 

11. Speed of response 

12. Reduced WIP inventories 

13. Reduction in material flow 

14. Quality consciousness 

15. Reduction in scrap 

After identification of different types of flexibilities of FMS, an ISM model is prepared 

which is discussed in the following sections: 

7.2 ISM MODEL FOR FLEXIBILITIES OF FMS 

In this section, the development of the model using ISM is described below. 

7.2.1 Development of Structural Self-Interaction Matrix (SSIM) 

ISM methodology suggests the use of expert opinions in developing the contextual 

relationship between the variables. Experts, both from industry and academia, have 

been consulted in identifying and developing the contextual relationship between the 

flexibilities. 

The following four symbols have been used to denote the direction of the relationship 

between two flexibilities (i and j): 

V is used for the relation from flexibility i to j (i.e. if flexibility i influence or reach to 

flexibility j) 

A is used for the relation from flexibility j to i (i.e. if flexibility j reach to flexibility i) 
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X is used for both direction relations (i.e. if flexibility i and j reach to each other) 

O is used for no relation between two flexibilities (i.e. if flexibility i and j are unrelated). 

Based on the contextual relationship, the SSIM is developed and it is presented in Table 

7.1. As symbol V is assigned to a cell (1, 7) because flexibility 1 influences to flexibility 

7. 

Table 7.1 Structural self-interactive matrix 

 

7.2.2 Development of the Reachability Matrix (RM) 

The RM is obtained from SSIM. The RM indicates the relationship between flexibilities 

in the binary form. The various relationships between flexibilities depicted by symbols 

V, A, X and O used earlier in SSIM are replaced by binary digits of 0 and 1. The 

following rules are used to substitute V, A, X and O of SSIM to get RM: 

• if the cell (i, j) is assigned with symbol V in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry becomes 0 in the initial RM 

• if the cell (i, j) is assigned with symbol A in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry becomes 1 in the initial RM 

Variables 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 A V O A V O A O V A V A A V 

2 O O O O O O A V V A V A O  

3 V X X V V O A O A A V A   

4 X V V V V O A V V O V    

5 V V O A V O A X A A     

6 V O O O O O A V O      

7 V V V A O O A O       

8 V X A O V O A        

9 V V V V V O         

10 O O O O O          

11 A A A X           

12 V O O            

13 V A             

14 A              
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• if the cell (i, j) is assigned with symbol X in the SSIM, then; this cell (i, j) entry 

becomes 1 and the cell (j, i) entry also becomes 1 in the initial RM 

• if the cell (i, j) is assigned with symbol O in the SSIM, then; this cell (i, j) entry 

becomes 0 and the cell (j, i) entry also becomes 0 in the initial RM. 

The RM thus derived is known as initial RM (Table 7.2). The final RM is obtained by 

incorporating the transitivity. Final RM is shown in Table 7.3 wherein transitivity is 

marked as 1*. 

 

Table 7.2 Initial reachability matrix 

 
 
 
 
 
 
 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 

2 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 

3 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 

4 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 

5 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 

6 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 

7 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 

8 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 

9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

12 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 

13 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 

14 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 

15 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 
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Table 7.3 Final reachability matrix 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 0 0 1 0 1 1* 0 0 1 1* 1* 1 1* 

2 0 1 0 0 1 0 1 1 0 0 1* 0 1* 1* 1* 

3 1 0 1 0 1 0 0 1* 0 0 1 1 1 1 1 

4 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 

5 0 0 0 0 1 0 0 1 0 0 1 1* 0 1 1 

6 1 1 1 0 1 1 0 1 0 0 1* 0 0 1* 1 

7 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 

8 0 0 0 0 1 0 0 1 0 0 1 1* 0 1 1 

9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1* 

12 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 

13 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 

14 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 

15 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 

* entries are included to incorporate transitivity. 

7.2.3 Partitioning the RM 

From the final reachability matrix, the reachability and the antecedent set for each 

flexibility can be found (Warfield, 1974). The matrix is partitioned by assessing the 

reachability and antecedent set for each flexibility. This process is completed in eight 

iterations, summarized in Table 7.4, as follows: 

In Table 7.4, variable 10 (programme flexibility), 11 (market flexibility), 12 (response 

flexibility), 15 (range flexibility) are put at the level 1. These variables will be 

positioned at the top of ISM in the digraph. Variable 5 (volume flexibility), 8 

(expansion flexibility), 14 (size flexibility) are at the level II. Variable 3 (process 

flexibility) and 13 (product mix flexibility) are at the level III. Variable 7 (operation 

flexibility) is at the level IV. Variable 2 (routing flexibility) is at the level V. Variable1 

(machine flexibility) is at the level VI. Variable 4 (product flexibility) and 6 (material 

handling flexibility) are at the level VII. Variable 9 (production flexibility) is at the 

level VIII. 
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Table 7.4 Iterations  

No. Flexibility Reachability 
set Antecedent set Intersection 

set Level 

10 
Programme 
flexibility 

10 10 10 I 

11 
Market 

flexibility 
11,12,15 

1,2,3,4,5,6,8,9,11,12,
13,14,15 

11,12,15 I 

8 
Expansion 
flexibility 

5,8,14 1,2,3,4,5,6,8,9,13,14 5,8,14 II 

13 
Product 

mix 
flexibility 

3, 13 1, 2,3,4,7,9,13 3, 13 III 

7 
Operation 
flexibility 

7 1, 2,4,7,9 7 IV 

2 
Routing 

flexibility 
2 1, 2,4,6,9, 2 V 

1 
Machine 
flexibility 

1 1,4,6,9 1 VI 

4 
Product 

flexibility 
4 4, 9 4 VII 

6 
Material 
handling 
flexibility 

6 6, 9 6 VII 

9 
Production 
flexibility 

9 9 9 VIII 

 

7.2.4 Development of the Conical Matrix 

A conical matrix is developed by clubbing together flexibilities in the same level, across 

rows and columns of the final RM, as shown in Table 7.5. The drive power of a 

flexibility is derived by summing up the number of ones in the rows and its dependence 

power by summing up the number of ones in the columns.   

7.2.5 Development of ISM Model 

Based on the conical matrix, an initial digraph, including transitivity links is obtained. 

This is generated by nodes and lines of the edges. After removing the indirect links, a 
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final digraph is developed (Figure 7.1). Next, the digraph is converted into an ISM 

model by replacing nodes of the elements with statements as shown in Figure 7.2. 

 

Table 7.5 Conical matrix 

 

7.2.6 MICMAC Analysis 

Matrice d'Impacts croises-multipication applique an classment (cross-impact matrix 

multiplication applied to classification) is abbreviated as MICMAC. The main purpose 

of MICMAC analysis is to analyses the drive power and dependence power of 

flexibilities. The flexibilities are separated into four clusters [307]. The first cluster 

consists of 'autonomous flexibilities' which have weak drive power and weak 

dependence. They are relatively disconnected from the system, with which they have 

few links, which may be very strong. The second cluster consists of 'dependent  

Variables 10 11 12 15 5 8 14 3 13 7 2 1 4 6 9 
Drive 

Power 

10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

11 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3 

12 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 6 

15 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 5 

5 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 6 

8 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 6 

14 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 5 

3 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 9 

13 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 5 

7 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 6 

2 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 8 

1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 10 

4 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 12 

6 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 9 

9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 

Dependence 

Power 
1 13 8 13 10 10 11 7 8 6 5 7 3 2 1  
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Figure 7.1 Diagraph showing the levels of FMS flexibilities 

flexibilities' which have weak drive power but strong dependence power. The third 

cluster includes 'linkage flexibilities' which have strong drive power as well as strong 

dependence. They are also unstable. Any action on them will have an effect on others 

and also a feedback effect on themselves. Fourth cluster has the 'independent 

flexibilities' having strong drive power but weak dependence power. It is generally 

observed that a flexibility with a very strong drive power called the 'key flexibility' falls 

into the category of independent flexibilities. The drive power and dependence power  

12 11 10 

5 14 8 

7 

6 

2 

3 

4 

1 

13 

9 

15 
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Figure 7.2 ISM model showing the levels of FMS flexibilities. 

of flexibility is shown in Table 7.5. Thereafter, the drive power and dependence 

power diagram is depicted as shown in Figure 7.3. As an example, it is observed from 

Table 7.5 that flexibility 9 has a drive power of 14 and dependence power of 1, hence 

in Figure 7.3, it is positioned in a space which corresponds to drive power of 14 and 

dependence of 1, i.e. in the fourth cluster. Now, its position in the fourth cluster shows 

that it is an independent flexibility. Likewise, all the components are positioned in 

places corresponding to their driving power and dependence. 
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7.3 RANKING OF FLEXIBILITIES BY MADM METHODS 

In this chapter, methodology used for ranking of flexibilities are  

i. Analytic hierarchy process (AHP) 

ii. Technique for order preference by similarity to ideal situation (TOPSIS) 

iii. Modified TOPSIS 

iv. Improved preference ranking organization method for enrichment evaluations 

(Improved PROMETHEE) 

v. VIKOR 

7.3.1 Ranking of Flexibilities by AHP 

In this section, the evaluation of flexibilities is carried out by AHP is described below: 

Step 1: Objective is to find the ranking of flexibilities in flexible manufacturing 

system based on 15 attributes. The hierarchical structure is shown in Figure 7.4 as a 

ranking of flexibilities at the top level, 15 attributes at the second level and 15 

alternatives at the third level. 

Step 2: Relative importance of different attributes with respect to objective is find as 

under: 

a) Pairwise comparison matrix using a scale of relative importance (as explained 

in AHP methodology) is shown in Table 7.6. All attributes are beneficial 

attributes so higher values are desired. The data given in Table 7.6 will be used 

as a matrix A115x15. 

b) Calculating the geometric mean of i-th row and weights of the attributes, 

according to the step 2 of AHP methodology in chapter 2. The weights of the 

attributes will be used as the matrix A2. Weights of attributes are shown in 

Table 7.7. 

c) The matrix A3 and A4 is calculate i.e. shown in Table 7.7. 

d) Maximum eigenvalue λmax is 17.2112 i.e. is the average of matrix A4. 

e) The consistency index CI = (λmax - M) / (M -1) = 0.158. 

f) The random index (RI) for the 15 number of attributes=1. 59 is taken. 

g) The consistency ratio (C.R) is calculated as C.R = CI/RI = 0.0993.  

C.R. = 0.0993 < 0.1  

C.R is less than or equal to 0.1 is acceptable. 
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Step 3:  The attributes are expressed in linguistic term. These linguistic terms are 

converted into fuzzy scores as explained by the fuzzy MADM methodology. Table 7.8 

presents the values in quantitative terms. The quantitative values of attributes are 

normalized and shown in Table 7.9.  

Step 4: The overall or composite performance scores for the alternatives is obtained by 

multiplying the relative normalized weight (wj) of each attribute with its corresponding 

normalized weight value for each alternative and summing over the attributes for each 

alternative. The overall or composite performance scores are shown in Table 7.10 and 

according this score ranking of flexibilities are also shown in Table 7.10. 

7.3.2  Ranking of Flexibilities by TOPSIS 

In this section, the evaluation of flexibilities is carried out by TOPSIS is described 

below: 

Step 1: Objective is to find the ranking of flexibilities in a flexible manufacturing 

system based on 15 attributes is same as discussed in AHP ranking. All attributes the 

beneficial attributes i.e. higher values are desired. 

Step 2:  The next step is to represent all the information available for attributes (as in 

Table 7.7) in a decision matrix. 

Step 3: The quantitative values of attributes are normalized and shown in Table 7.11 as 

R15x15 matrix. 

Step 4: Relative importance matrix (i.e. weights) of different attributes with respect to 

the objective is taken as in AHP section (Table 7.7). 

Step 5: The weighted normalized matrix, V15x15 is calculated and is shown below in 

Table 7.12. 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) solutions. 

ideal (best) and negative ideal (worst) solutions are shown in Table 7.13.  

Step 7: The next step is to obtain the separation measures. Separation measures are 

shown in Table 7.14.       

Step 8: The relative closeness of a particular alternative to the ideal solution is 

calculated and shown in Table 7.15 and according to this ranking of flexibilities are 

shown in Table 7.16.  
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Figure 7.4 Hierarchical Structure 

 

Table 7.7 Weights of the attributes 

 

 

 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Weight (w) 

i.e. A2 
0.086 0.085 0.078 0.136 0.067 0.121 0.096 0.035 0.095 0.053 0.019 0.037 0.030 0.027 0.035 

A3 1.591 1.478 1.435 2.378 1.215 2.085 1.943 0.610 1.624 0.928 0.305 0.572 0.479 0.424 0.545 

A4=A3/A2 18.53 17.34 18.45 17.49 18.09 17.23 20.31 17.23 17.09 17.35 16.14 15.59 15.95 15.81 15.57 

15. Reduction in scrap 15. Range flexibility R
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M
S 2. Capacity to handle new product 

3. Flexibility in production 

1. Machine flexibility 

2. Routing flexibility 

3. Process flexibility 

1. Ability to manufacture a variety of product 
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Table 7.6 Pairwise matrix 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 1/3 1/3 1/3 3 3 1/3 3 5 2 3 3 2 

2 1/2 1 3 1/3 2 1/3 2 3 1/3 3 3 3 3 3 2 

3 1/3 1/3 1 1/3 3 ½ 3 3 1/3 3 3 3 3 3 2 

4 3 3 3 1 3 3 1/3 3 2 3 3 3 3 3 3 

5 3 ½ 1/3 1/3 1 1/3 1/3 3 1/3 3 3 2 3 3 3 

6 3 3 2 1/3 3 1 1/3 3 3 2 7 3 3 3 3 

7 1/3 ½ 1/3 3 3 3 1 3 1/3 3 5 3 3 3 3 

8 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1 1/3 1/2 1/3 2 3 2 2 

9 3 3 3 1/2 3 1/3 1/3 3 1 1/2 3 3 3 3 3 

10 1/3 1/3 1/3 1/3 1/3 ½ 1/3 2 2 1 3 2 3 3 2 

11 1/5 1/3 1/3 1/3 1/3 1/7 1/5 1/3 1/3 1/3 1 1/3 1/3 1/3 1/2 

12 1/2 1/3 1/3 1/3 ½ 1/3 1/3 1/2 1/3 1/2 3 1 1 2 2 

13 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 3 1 1 2 1/2 

14 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 3 1/2 1/2 1 1/2 

15 1/2 ½ 1/2 1/3 1/3 1/3 1/3 1/2 1/3 1/2 2 1/2 2 2 1 
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Table 7.8 Fuzzy or crisp value of attributes 

No. 
Attributes 

Alternatives 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Machine  0.865 0.665 0.665 0.5 0.59 0.5 0.41 0.59 0.665 0.665 0.59 0.335 0.255 0.5 0.41 

2 Routing  0.41 0.41 0.665 0.5 0.255 0.5 0.59 0.59 0.41 0.41 0.665 0.59 0.5 0.41 0.5 

3 Process  0.665 0.5 0.59 0.59 0.5 0.5 0.41 0.59 0.5 0.5 0.59 0.5 0.5 0.41 0.5 

4 Product  0.745 0.865 0.665 0.59 0.41 0.5 0.41 0.59 0.59 0.5 0.665 0.41 0.41 0.5 0.41 

5 Volume  0.41 0.41 0.41 0.5 0.5 0.59 0.59 0.5 0.5 0.665 0.5 0.41 0.41 0.41 0.41 

6 Material  0.255 0.255 0.41 0.41 0.5 0.59 0.745 0.41 0.41 0.59 0.59 0.5 0.41 0.335 0.255 

7 Operation 0.335 0.255 0.41 0.5 0.41 0.5 0.41 0.41 0.59 0.5 0.41 0.335 0.335 0.255 0.255 

8 Expansion 0.41 0.335 0.665 0.5 0.5 0.41 0.5 0.665 0.745 0.745 0.5 0.335 0.255 0.41 0.255 

9 Production 0.665 0.59 0.59 0.59 0.5 0.665 0.59 0.665 0.865 0.41 0.41 0.255 0.335 0.5 0.135 

10 Programme 0.255 0.255 0.335 0.255 0.135 0.5 0.59 0.335 0.41 0.335 0.59 0.255 0.255 0.135 0.135 

11 Market 0.5 0.59 0.5 0.335 0.255 0.665 0.135 0.255 0.59 0.255 0.5 0.255 0.135 0.5 0.135 

12 Response 0.5 0.59 0.665 0.59 0.335 0.745 0.59 0.41 0.5 0.335 0.5 0.255 0.41 0.665 0.5 

13 Product mix 0.59 0.5 0.665 0.5 0.5 0.59 0.5 0.5 0.5 0.59 0.5 0.59 0.41 0.5 0.5 

14 Size 0.665 0.59 0.5 0.5 0.5 0.5 0.59 0.5 0.59 0.665 0.5 0.41 0.335 0.335 0.255 

15 Range flexibility 0.5 0.5 0.59 0.5 0.41 0.5 0.59 0.41 0.5 0.5 0.59 0.335 0.255 0.255 0.135 
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Table 7.9 Normalized value of attributes 

No. 
Attributes 

Alternatives 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Machine  1.000 0.769 1.000 0.847 1.000 0.671 0.550 0.887 0.769 0.893 0.887 0.568 0.510 0.752 0.820 

2 Routing  0.474 0.474 1.000 0.847 0.432 0.671 0.792 0.887 0.474 0.550 1.000 1.000 1.000 0.617 1.000 

3 Process  0.769 0.578 0.887 1.000 0.847 0.671 0.550 0.887 0.578 0.671 0.887 0.847 1.000 0.617 1.000 

4 Product  0.861 1.000 1.000 1.000 0.695 0.671 0.550 0.887 0.682 0.671 1.000 0.695 0.820 0.752 0.820 

5 Volume  0.474 0.474 0.617 0.847 0.847 0.792 0.792 0.752 0.578 0.893 0.752 0.695 0.820 0.617 0.820 

6 
Material 

handling 
0.295 0.295 0.617 0.695 0.847 0.792 1.000 0.617 0.474 0.792 0.887 0.847 0.820 0.504 0.510 

7 Operation 0.387 0.295 0.617 0.847 0.695 0.671 0.550 0.617 0.682 0.671 0.617 0.568 0.670 0.383 0.510 

8 Expansion 0.474 0.387 1.000 0.847 0.847 0.550 0.671 1.000 0.861 1.000 0.752 0.568 0.510 0.617 0.510 

9 Production 0.769 0.682 0.887 1.000 0.847 0.893 0.792 1.000 1.000 0.550 0.617 0.432 0.670 0.752 0.270 

10 Programme 0.295 0.295 0.504 0.432 0.229 0.671 0.792 0.504 0.474 0.450 0.887 0.432 0.510 0.203 0.270 

11 Market 0.578 0.682 0.752 0.568 0.432 0.893 0.181 0.383 0.682 0.342 0.752 0.432 0.270 0.752 0.270 

12 Response 0.578 0.682 1.000 1.000 0.568 1.000 0.792 0.617 0.578 0.450 0.752 0.432 0.820 1.000 1.000 

13 Product mix 0.682 0.578 1.000 0.847 0.847 0.792 0.671 0.752 0.578 0.792 0.752 1.000 0.820 0.752 1.000 

14 Size 0.769 0.682 0.752 0.847 0.847 0.671 0.792 0.752 0.682 0.893 0.752 0.695 0.670 0.504 0.510 

15 Range  0.578 0.578 0.887 0.847 0.695 0.671 0.792 0.617 0.578 0.671 0.887 0.568 0.510 0.383 0.270 
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Table 7.10 Composite performance scores and ranking of flexibilities by AHP 

Sr. No. Alternatives Composite performance scores Ranking 

1 Machine flexibility 0.799 2 

2 Routing flexibility 0.703 10 

3 Process flexibility 0.763 6 

4 Product flexibility 0.803 1 

5 Volume flexibility 0.712 8 

6 
Material handling 

flexibility 
0.654 12 

7 Operation flexibility 0.605 13 

8 Expansion flexibility 0.710 9 

9 Production flexibility 0.789 3 

10 Programme flexibility 0.470 15 

11 Market flexibility 0.562 14 

12 Response flexibility 0.774 4 

13 Product mix flexibility 0.772 5 

14 Size flexibility 0.742 7 

15 Range flexibility 0.672 11 

 

7.3.3 Evaluation of Flexibilities by Modified TOPSIS 

In this section, the evaluation of flexibilities is described by Modified TOPSIS as given 

below: 

Step 1: Objective is to evaluate the flexibilities in FMS based on 15 attributes. All these 

attributes the beneficial attributes, so, taken higher values of attribute.  

Step 2:  The next step is to represent all the information available for attributes in the 

form of a decision matrix. The data given in Table 7.8 are represented as the matrix 

A115x15. But the matrix is not shown here as it is nothing but the repetition of data given 

in Table 7.8. The quantitative values of attributes, given in Table 7.8, are given in fuzzy 

crisp values.  

Step 3: In this step, the positive ideal solution (R+) and the negative ideal solution (R-) 

which is not dependent on the weighted decision matrix, are given in Table 7.17. 
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 Step 4: Weights of different attributes are taken by AHP methodology and the weights 

as given in Table 7.7. The value of λmax is 17.2112 and CR= 0.0993, it should be less 

than 0.1. Thus, there is good consistency in the judgment made. 

Step 5: The weighted Euclidean distances are calculated and shown in Table 7.18. 

Step 6:  The relative closeness of a particular alternative to the ideal solution, Pi-mod, is 

calculated and shown in Table 7.19. 

Step 7: The alternative flexibilities in FMS are arranged in descending order based on 

relative closeness. It is shown in Table 7.20. 

7.3.4 Ranking of Flexibilities by Improved PROMETHEE   

In this section, the evaluation of flexibilities is carried out by improved PROMETHEE 

is described below: 

Step1: Objective is to find the ranking of flexibilities in a flexible manufacturing 

system based on 15 attributes is same as discussed in AHP ranking.  

Step2: Relative importance matrix (i.e. weights) of different attributes with respect to 

the objective is taken as in AHP section and shown in Table 7.7. 

Step 3: The next step is to have the information on the decision maker preference 

function Pi, for comparing the contribution of the alternatives in terms of each separate 

criterion. The pairwise comparison of criterion ‘ability to manufacture a variety of 

product’ gives the matrix given in Table 7.21. Ability to manufacture a variety of 

products is a beneficial criterion and higher values are desired. Flexibility having a 

comparatively high value of Ability to manufacture a variety of products is said to be 

‘better’ than the other. Another criterion is followed same as the ability to manufacture 

a variety of products. 

Step 4: After specifying a preference function Pi and weight wi for each criterion, the 

multiple criteria preference index, Π𝑎𝑎1𝑎𝑎2 is calculated. 

The leaving flow, entering flow and the net flow for different alternatives are calculated 

and these are given in Table 7.22. According to this net flow ranking of flexibility is 

shown in Table 7.23.
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Table 7.11 Normalized value of attributes 

No. 
Attributes 

Alternatives 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Machine  0.409 0.333 0.303 0.259 0.349 0.232 0.200 0.300 0.301 0.324 0.279 0.216 0.182 0.302 0.302 

2 Routing  0.194 0.206 0.303 0.259 0.151 0.232 0.288 0.300 0.185 0.200 0.315 0.380 0.358 0.248 0.369 

3 Process  0.314 0.251 0.269 0.305 0.296 0.232 0.200 0.300 0.226 0.244 0.279 0.322 0.358 0.248 0.369 

4 Product  0.352 0.434 0.303 0.305 0.242 0.232 0.200 0.300 0.267 0.244 0.315 0.264 0.293 0.302 0.302 

5 Volume  0.194 0.206 0.187 0.259 0.296 0.274 0.288 0.254 0.226 0.324 0.237 0.264 0.293 0.248 0.302 

6 Material handling 0.121 0.128 0.187 0.212 0.296 0.274 0.364 0.208 0.185 0.288 0.279 0.322 0.293 0.202 0.188 

7 Operation 0.158 0.128 0.187 0.259 0.242 0.232 0.200 0.208 0.267 0.244 0.194 0.216 0.240 0.154 0.188 

8 Expansion 0.194 0.168 0.303 0.259 0.296 0.190 0.244 0.338 0.337 0.363 0.237 0.216 0.182 0.248 0.188 

9 Production 0.314 0.296 0.269 0.305 0.296 0.308 0.288 0.338 0.391 0.200 0.194 0.164 0.240 0.302 0.100 

10 Programme 0.121 0.128 0.153 0.132 0.080 0.232 0.288 0.170 0.185 0.163 0.279 0.164 0.182 0.082 0.100 

11 Market 0.236 0.296 0.228 0.173 0.151 0.308 0.066 0.130 0.267 0.124 0.237 0.164 0.097 0.302 0.100 

12 Response 0.236 0.296 0.303 0.305 0.198 0.345 0.288 0.208 0.226 0.163 0.237 0.164 0.293 0.402 0.369 

13 Product mix 0.279 0.251 0.303 0.259 0.296 0.274 0.244 0.254 0.226 0.288 0.237 0.380 0.293 0.302 0.369 

14 Size 0.314 0.296 0.228 0.259 0.296 0.232 0.288 0.254 0.267 0.324 0.237 0.264 0.240 0.202 0.188 

15 Range  0.236 0.251 0.269 0.259 0.242 0.232 0.288 0.208 0.226 0.244 0.279 0.216 0.182 0.154 0.100 
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Table 7.12 Weighted normalized (Rij) 

No 
Attributes 

Alternatives 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Machine 0.035 0.028 0.024 0.035 0.023 0.028 0.019 0.010 0.029 0.017 0.005 0.008 0.005 0.008 0.011 

2 Routing 0.017 0.017 0.024 0.035 0.010 0.028 0.028 0.010 0.018 0.011 0.006 0.014 0.011 0.007 0.013 

3 Process 0.027 0.021 0.021 0.042 0.020 0.028 0.019 0.010 0.021 0.013 0.005 0.012 0.011 0.007 0.013 

4 Product 0.030 0.037 0.024 0.042 0.016 0.028 0.019 0.010 0.025 0.013 0.006 0.010 0.009 0.008 0.011 

5 Volume 0.017 0.017 0.015 0.035 0.020 0.033 0.028 0.009 0.021 0.017 0.004 0.010 0.009 0.007 0.011 

6 Material handling 0.010 0.011 0.015 0.029 0.020 0.033 0.035 0.007 0.018 0.015 0.005 0.012 0.009 0.005 0.007 

7 Operation 0.014 0.011 0.015 0.035 0.016 0.028 0.019 0.007 0.025 0.013 0.004 0.008 0.007 0.004 0.007 

8 Expansion 0.017 0.014 0.024 0.035 0.020 0.023 0.023 0.012 0.032 0.019 0.004 0.008 0.005 0.007 0.007 

9 Production 0.027 0.025 0.021 0.042 0.020 0.037 0.028 0.012 0.037 0.011 0.004 0.006 0.007 0.008 0.003 

10 Programme 0.010 0.011 0.012 0.018 0.005 0.028 0.028 0.006 0.018 0.009 0.005 0.006 0.005 0.002 0.003 

11 Market 0.020 0.025 0.018 0.024 0.010 0.037 0.006 0.005 0.025 0.007 0.004 0.006 0.003 0.008 0.003 

12 Response 0.020 0.025 0.024 0.042 0.013 0.042 0.028 0.007 0.021 0.009 0.004 0.006 0.009 0.011 0.013 

13 Product mix 0.024 0.021 0.024 0.035 0.020 0.033 0.023 0.009 0.021 0.015 0.004 0.014 0.009 0.008 0.013 

14 Size 0.027 0.025 0.018 0.035 0.020 0.028 0.028 0.009 0.025 0.017 0.004 0.010 0.007 0.005 0.007 

15 Range 0.020 0.021 0.021 0.035 0.016 0.028 0.028 0.007 0.021 0.013 0.005 0.008 0.005 0.004 0.003 
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Table 7.13 Ideal (best) solutions (V + ) and Ideal (worst) solutions (V − ) 

Table 7.14 Separation measures 

Table 7.15 The relative closeness of a particular alternative to the ideal solution 

Table 7.16 Ranking of flexibilities by TOPSIS 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ideal(best)  (V + ) 0.035 0.037 0.024 0.042 0.023 0.042 0.035 0.012 0.037 0.019 0.006 0.014 0.011 0.011 0.013 

Ideal(worst) (V − ) 0.010 0.011 0.012 0.018 0.005 0.023 0.006 0.005 0.018 0.007 0.004 0.006 0.003 0.002 0.003 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( S + ) 0.027 0.041 0.030 0.027 0.036 0.046 0.046 0.039 0.023 0.058 0.048 0.031 0.030 0.030 0.104 

( S − ) 0.047 0.036 0.047 0.048 0.038 0.037 0.028 0.038 0.050 0.022 0.026 0.046 0.041 0.045 0.042 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( iP ) 0.640 0.471 0.610 0.643 0.512 0.447 0.378 0.492 0.681 0.279 0.354 0.596 0.575 0.601 0.285 

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Flexibility 9 4 1 3 14 12 13 5 2 8 6 7 11 15 10 
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Table 7.17 Positive ideal solutions ( R+ ) and negative ideal solutions ( R − ) 

Table 7.18 Weighted Euclidean distances 

 

Table 7.19 The relative closeness of a particular alternative to the ideal solution ( modiP− ) 

 

Table 7.20 Ranking of flexibilities by modified TOPSIS 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( R+ ) 0.865 0.865 0.665 0.590 0.590 0.745 0.745 0.665 0.865 0.745 0.665 0.590 0.500 0.665 0.500 

( R − ) 0.255 0.255 0.335 0.255 0.135 0.410 0.135 0.255 0.410 0.255 0.410 0.255 0.135 0.135 0.135 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( D+ ) 0.179 0.285 0.213 0.185 0.255 0.326 0.325 0.269 0.177 0.402 0.335 0.231 0.211 0.204 0.260 

( D− ) 0.334 0.252 0.306 0.332 0.255 0.253 0.178 0.271 0.335 0.149 0.182 0.301 0.284 0.278 0.236 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( modiP− ) 0.650 0.469 0.588 0.6414 0.5 0.437 0.354 0.501 0.654 0.271 0.352 0.566 0.573 0.576 0.475 

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Flexibility 9 1 4 3 14 13 12 8 5 15 2 6 7 11 10 
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Table 7.21 Pairwise comparison of criterion ‘Ability to manufacture a variety of product’ 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 0 - 0 0 0 1 1 0 0 1 0 0 0 0 0 

3 0 1 - 0 1 1 1 1 0 1 1 1 1 0 1 

4 0 1 1 - 1 1 1 1 1 1 1 1 1 1 1 

5 0 0 0 0 - 1 1 0 0 1 0 0 0 0 0 

6 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 1 - 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 1 1 - 0 1 0 0 0 0 0 

9 0 1 0 0 1 1 1 1 - 1 1 1 1 0 1 

10 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 

11 0 1 0 0 1 1 1 1 0 1 - 0 0 0 0 

12 0 1 0 0 1 1 1 1 0 1 0 - 0 0 0 

13 0 1 0 0 1 1 1 1 0 1 1 1 - 0 1 

14 0 1 0 0 1 1 1 1 0 1 1 1 1 - 1 

15 0 1 0 0 1 1 1 1 0 1 0 0 0 0 - 
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Table 7.22 Leaving flow, entering flow and the net flow 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝝋𝝋+(𝒂𝒂) 𝝋𝝋−(𝒂𝒂) 𝝋𝝋(𝒂𝒂) 

1 - 0.346 0.424 0.234 0.492 0.697 0.580 0.440 0.460 0.734 0.852 0.477 0.440 0.432 0.561 7.16 3.39 3.77 

2 0.217 - 0.230 0.198 0.234 0.568 0.528 0.423 0.199 0.688 0.519 0.174 0.180 0.261 0.261 4.68 5.54 -0.86 

3 0.238 0.522 - 0.169 0.541 0.607 0.635 0.549 0.174 0.764 0.672 0.327 0.306 0.397 0.453 6.35 4.16 2.19 

4 0.307 0.549 0.390 - 0.561 0.596 0.568 0.576 0.423 0.783 0.757 0.477 0.456 0.531 0.663 7.63 3.28 4.34 

5 0.284 0.336 0.270 0.337 - 0.552 0.691 0.404 0.174 0.885 0.489 0.192 0.149 0.213 0.405 5.38 5.03 0.34 

6 0.284 0.337 0.270 0.374 0.152 - 0.450 0.303 0.270 0.715 0.508 0.272 0.168 0.303 0.466 4.87 7.38 -2.51 

7 0.030 0.215 0.095 0.000 0.095 0.317 - 0.151 0.125 0.679 0.489 0.252 0.095 0.000 0.160 2.70 7.85 -5.14 

8 0.279 0.277 0.384 0.346 0.288 0.595 0.641 - 0.222 0.734 0.662 0.287 0.183 0.288 0.390 5.57 5.94 -0.37 

9 0.513 0.625 0.432 0.414 0.636 0.636 0.799 0.649 - 0.786 0.703 0.363 0.681 0.465 0.655 8.35 2.9 5.45 

10 0.096 0.000 0.096 0.096 0.019 0.000 0.115 0.236 0.019 - 0.233 0.019 0.115 0.019 0.000 1.06 10.60 -9.54 

11 0.121 0.414 0.328 0.121 0.492 0.492 0.416 0.319 0.019 0.695 - 0.095 0.301 0.148 0.328 4.28 8.34 -4.05 

12 0.445 0.617 0.407 0.279 0.568 0.663 0.713 0.616 0.310 0.795 0.678 - 0.465 0.427 0.512 7.49 3.76 3.73 

13 0.319 0.534 0.412 0.409 0.348 0.614 0.769 0.421 0.252 0.885 0.653 0.278 - 0.328 0.569 6.79 4.06 2.72 

14 0.163 0.386 0.329 0.216 0.344 0.568 0.583 0.455 0.144 0.764 0.575 0.373 0.415 - 0.550 5.86 3.90 1.95 

15 0.096 0.386 0.096 0.096 0.268 0.480 0.364 0.407 0.109 0.699 0.551 0.176 0.115 0.097 - 3.94 5.97 -2.03 
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Table 7.23 Ranking of flexibilities by improved PROMETHEE 

Table 7.24 The best values and the worst values for the 15 Attributes 

Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(mij)max 0.865 0.865 0.665 0.59 0.59 0.745 0.745 0.665 0.865 0.745 0.665 0.59 0.5 0.665 0.5 

(mij)min 0.255 0.255 0.335 0.255 0.135 0.41 0.135 0.255 0.41 0.255 0.41 0.255 0.135 0.135 0.135 

Table 7.25 Values of Ei 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ei 0.333 0.477 0.389 0.319 0.478 0.570 0.635 0.469 0.300 0.857 0.675 0.351 0.369 0.434 0.530 

Table 7.26 Values of Fi 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fi 0.088 0.095 0.088 0.088 0.076 0.095 0.088 0.121 0.038 0.136 0.104 0.076 0.076 0.088 0.088 

Table 7.27 Values of Pi 

Alternatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Pi 0.288 0.450 0.337 0.275 0.355 0.533 0.558 0.576 0.002 1.000 0.671 0.240 0.257 0.378 0.464 

 

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Flexibility 9 4 1 12 13 3 14 5 8 2 15 6 11 7 10 
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7.3.5 Evaluation of Flexibilities by VIKOR 

In this section, the evaluation of flexibilities is carried out by VIKOR is described 

below: 

Step 1: Objective is to rank the flexibilities in FMS based on 15 attributes. All attributes 

the beneficial attributes, i.e. higher values are desired.  

Step 2: Qualitative attributes are converted to their corresponding fuzzy number and 

then converted to the crisp scores. The quantitative values of attributes are, given in 

fuzzy crisp values, given in Table 7.8. 

Step 3: Relative importance matrix (i.e. weights) of different attributes with respect to 

the objective is taken with AHP methodology and shown in Table 7.7. 

The value of λmax is 17.2112 and CR= 0.0993, which is less than allowed CR value of 

0.1. Thus, there is good consistency in the judgment made. 

Step 4: The best, i.e., (mij)max and the worst, i.e., (mij)min, values of all attributes are 

determined. It is indicated in Table 7.24. 

Step 5: The values of Ei and Fi are calculated and shown in Table 7.25 and 7.26. 

 Step 6: The values of iP  are calculated as given below in Table 7.27 

Step 7: Alternatives are arranged in the ascending order, according to the values of Pi, 

Ei and Fi separately. It is indicated in Table 7.28. It  can  be  determined  from  the  

results  of  Table 7.28 that  alternative  9  is  the  best ranked  by  the  measure  Pi.  It is 

checked in the two conditions as follows: 

Condition 1: ‘Acceptable advantage’: 

DQ = 1/15-1 = 1/14 = 0.071.  

Using equation 2.34, P (A (2)) - P (A (l)) = 0.275-0.002= 0.273 > 0.071, hence the 

condition P (A (2)) - P (A (l)) ≥ DQ is satisfied. 

Condition 2: ‘Acceptable stability in decision making’ alternative: 

Since alternative 9 is also best ranked by Ei and Fi (considering the ‘by consensus rule 

v = 0. 5’), therefore it is finally chosen and ranked as the best flexibility in FMS. 
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Step 8: The alternative flexibilities in FMS are arranged in descending order based on 

the values of Pi, Ei and Fi as shown in Table 7.29. 

 

Table 7.28 Values of Pi, Fi and Ei for the 15 attributes 
 

Sr. No. Pi Value Fi Value Ei Value 

1 P9 0.002 F9 0.038 E9 0.300 

2 P4 0.240 F4 0.076 E4 0.319 

3 P1 0.257 F1 0.076 E1 0.333 

4 P12 0.275 F12 0.076 E12 0.351 

5 P13 0.288 F13 0.088 E13 0.369 

6 P3 0.337 F3 0.088 E3 0.389 

7 P14 0.355 F14 0.088 E14 0.434 

8 P8 0.378 F8 0.088 E8 0.469 

9 P2 0.450 F2 0.088 E2 0.477 

10 P5 0.464 F5 0.088 E5 0.478 

11 P15 0.533 F15 0.095 E15 0.530 

12 P6 0.558 F6 0.095 E6 0.570 

13 P7 0.576 F7 0.104 E7 0.635 

14 P11 0.671 F11 0.121 E11 0.675 

15 P10 1.000 F10 0.136 E10 0.857 

 

 

Table 7.29 Ranking of flexibilities by VIKOR 
 

 

 

 

 

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Flexibility 9 4 1 12 13 3 14 8 2 5 15 6 7 11 10 
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7.4 SPEARMAN COEFFICIENT 

In this case, the rankings obtained by the different MADM methods for alternative i.e. 

FMS flexibility ranking are consistent but not the same. To check the consistency in 

the rankings given by different methods, Spearman’s rank correlation coefficients are 

calculated and shown in Table 7.30 and Figure 7.5 also. It can be observed that the 

rankings by different methods are consistent and all the methods can be considered for 

averaging of the ranks to find the adjusted ranks of alternative FMSs. Higher the 

coefficient, more consistent the rankings proposed by two MADM methods. From the 

values of correlation coefficients, it can be seen that all five MADM methods have good 

rank correlation with each other, hence the rankings given by any of the five MADM 

methods considered here has good similarity with the rankings given by other methods. 

Hence, ranking on the basis of average ranking values of all methods is carried out. As 

per the adjusted ranking the alternative FMS flexibility ranking, production flexibility 

(9) is chosen as the first rank and FMS flexibility, programme flexibility (10) as the last 

ranking. Therefore, averaging the rankings obtained by these five methods leads to the 

rank orders given in M and M* columns of Table 7.31 and Figure 7.6. 

Table 7.30 Spearman’s rank correlation coefficients between different MADM 
methods for ranking of flexibilities in flexible manufacturing system 

 AHP TOPSIS 
MODIFIED 

TOPSIS 

Improved 

PROMETHEE 
VIKOR 

AHP 1.000 0.936 0.946 0.986 0.979 

TOPSIS 0.936 1.000 0.943 0.943 0.936 

MODIFIED 

TOPSIS 
0.946 0.943 1.000 0.954 0.954 

Improved 

PROMETHEE 
0.986 0.943 0.954 1.000 0.986 

VIKOR 0.979 0.936 0.954 0.986 1.000 
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Table 7.31 Comparison of rankings obtained by AHP, TOPSIS, Modified TOPSIS, Improved PROEMTHEE and VIKOR methods for 

the ranking of flexibilities in flexible manufacturing system 

M average of the all five methods; and M* adjusted rank of M 

Sr. No. FLEXIBILITY AHP TOPSIS MODIFIED 
TOPSIS 

Improved 
PROMTEE VIKOR M M* 

1 Machine Flexibility 2 3 2 3 3 2.60 3 

2 Routing Flexibility 10 9 11 10 9 9.80 10 

3 Process Flexibility 6 4 4 6 6 5.20 5 

4 Product Flexibility 1 2 3 2 2 2.00 2 

5 Volume Flexibility 8 8 9 8 10 8.60 8 

6 Material handling Flexibility 12 11 12 12 12 11.80 12 

7 Operation Flexibility 13 12 13 14 13 13.00 13 

8 Expansion Flexibility 9 10 8 9 8 8.80 9 

9 Production Flexibility 3 1 1 1 1 1.40 1 

10 Programme Flexibility 15 15 15 15 15 15.00 15 

11 Market Flexibility 14 13 14 13 14 13.60 14 

12 Response Flexibility 4 6 7 4 4 5.00 4 

13 Product mix Flexibility 5 7 6 5 5 5.60 6 

14 Size Flexibility 7 5 5 7 7 6.20 7 

15 Range Flexibility 11 14 10 11 11 11.40 11 
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Figure 7.5 Spearman’s rank correlation coefficients 
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Figure 7.6 Ranking of flexibility by MADM method 
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7.5 DISCUSSION AND CONCLUSION 

The aim of this chapter is to evaluate the flexibility which significantly affects the 

flexible manufacturing system (FMS) so that the management of any industry may 

effectively deal with these variables. Two distinct modelling approaches have been 

employed to examine the contextual relationship between the flexibilities and to 

evaluate them with some variables, which affect the flexibility in FMS. Flexibility and 

variables are identified through literature review and a relationship is established in the 

opinion of experts from industries and academia. Interpretive structural modelling has 

been developed to analyse the interactions in different types of flexibilities in FMS. It 

identifies the hierarchy of actions to be taken in handling different flexibilities, which 

affect the FMS. The managers can get an insight of these flexibilities and understand 

their relative importance and interdependence. The driving power dependence matrix 

gives some valuable insights about the relative importance and interdependence among 

the FMS flexibilities. 

The management should therefore accord high priority in tackling these flexibilities. 

Besides tackling these flexibilities, management should also understand the dependence 

of these flexibilities on other levels in the ISM. This model has not been statistically 

validated. Structural equation modelling (SEM), also commonly known as linear 

structural relationship approach, has the capability of testing the validity of such a 

hypothetical model. But in this chapter, flexibility is evaluated by the different MADM 

methods like as AHP, TOPSIS, Modified TOPSIS, Improved PROMETHEE and 

VIKOR based on some variables. Ranking of flexibilities is found out by a different 

methodology of combined multiple attribute decision making method such as an AHP, 

TOPSIS, Modified TOPSIS, Improved PROMETHEE and VIKOR.  

1. Ranking of flexibilities by AHP is 4-1-9-12-13-3-14-5-8-2-15-6-7-11-10. 

2. Ranking of flexibilities by TOPSIS is 9-4-1-3-14-12-13-5-2-8-6-7-11-15-10. 

3. Ranking of flexibilities by modified TOPSIS is 9-1-4-3-11-13-12-8-5-15-2-6-

7-11-10 

4. Ranking of flexibilities by improved PROMETHEE is 9-4-1-12-13-3-14-5-8-2-

15-6-11-7-10. 

5. Ranking of flexibilities by VIKOR is 9-4-112-13-314-8-2-5-15-6-7-11-10 
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 Final ranking of flexibility in a flexible manufacturing system based on AHP, 

TOPSIS, Modified TOPSIS, Improved PROMETHEE and VIKOR is 9-4-1-12-3-13-

14-5-8-2-15-6-7-11-10. According to these rankings, no. 9 i.e. production flexibility 

has the top ranking, i.e. the most impact on flexible manufacturing system and no.10 

i.e. programme flexibility has lower most ranking i.e. the least impact on flexible 

manufacturing system. Ranking of flexibilities is shown in Figure 7.6. ISM model also 

concludes that production flexibility has the more driving power than other flexibilities. 

So, the practicing manager can focus on this flexibility in FMS. Now, practicing 

manager can conclude on which flexibility he should focus and up to which extent in 

FMS.  
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CHAPTER VIII 

MAKESPAN ESTIMATION OF FMS ASSEMBLY SHOP  

 

8.1 INTRODUCTION  

Many large industries have tried to introduce flexible manufacturing systems (FMS) in 

today’s manufacturing environment as their strategy. It enables them to adapt to the 

ever-changing competitive market requirements based on quality of machining 

products and to reduce the machining costs and to enhance the machining effectiveness 

[273]. A Flexible manufacturing system assembly shop (FMSAS) schedule is one in 

which all jobs must visit all machines in the same sequence. Processing of the job 

should be started on a succeeding machine before completing processing of a job on a 

current machine. This means that initially all jobs are available and that each machine 

is confined to processing only one job at any particular time [350]. In the facility 

arrangement the first machine to be visited first by each job and leaving other machines 

as idle queued by other jobs. Although queuing of jobs is prohibited in just-in-time 

manufacturing environments, production flow-shop manufacturing continues to find 

applications in manufacturing [351] and has attracted much research work [263, 352-

355]. 

Scheduling an n-job m-machine with the constraint that all machines process jobs in 

the same order causes to the permutation situation due to which n! possible sequences 

to be considered and this easily leads to a combinatorial explosion in large numbers of 

jobs. Most of the researchers studied one-machine and two-machines flow-shop 

scheduling  and used technique as branch and bound [356, 357] and others have resorted 

to heuristic techniques [358, 359] for seeking optimal solutions. An important aspect of 

scheduling is sequencing. The order in which jobs visit a machine is the process of 

sequencing. Johnson [354] stated that Johnson’s algorithm is well suited for a two-

machine problems and can be extended to three-machine cases by splitting machines 

into two pseudo machines which have processing times equal to the sum of the 

processing times on the actual machines. A generalization of Johnson’s algorithm is 

that proposed by Campbell et al. [355] for solving general n-jobs m-machine problems 

in which m-1 two-machine problems are solved and the sequence having the least      

makespan is selected. Nawaz et al. [263] proposed a Nawaz, Enscor and Ham (NEH) 
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algorithm to construct a jobs sequence in an iterative manner. The production flow 

shop scheduling of assembly problem is the problem of defining order over a set of 

jobs as they proceed from one machine (processor) to another in minimum time i.e. 

makespan of the jobs or assembly. 

Scheduling outputs are generally graphically displayed by Gantt charts. Machine 

processing times for each job is used to draw them. It is also ensured that delay times 

are taken into consideration. A minimum makespan, which represents the minimum 

time required to complete all the jobs, is not found, this process is repeated for different 

sequences. The obtained sequence is considered to be optimal. The manual method for 

scheduling is tedious and prone to error. So, soft computing technique is used to find 

the makespan of the production flow shop. The makespan of the jobs can be calculated 

by neuro and fuzzy system.  

An adaptive neuro fuzzy inference system for makespan estimation of FMSAS for five 

to ten jobs and five machines is presented by this research work. A FMSAS processes 

multiple part types and assemblies processed parts using various resources according 

to a specific sequence. The manufacturing sequences of parts are flexible. Alternative 

sets of resources may be selected for a manufacturing operation. The characteristics 

such as resource sharing, concurrency, routing flexibility, mutual exclusion, lot sizes 

and synchronization which are difficult to study [360].  

The main objectives of this chapter are as follows: 

• To find the makespan of the FMS assembly shop. 

• To make a model with the help of neural network and fuzzy rules i.e. ANFIS 

model. 

• To discuss the ANFIS model verification. 

8.2 PROBLEM DESCRIPTION 

The production shop of flexible manufacturing system assembly shop problem can be 

formulated as follows. Each of n jobs from the jobs set i = [1,2….,n], for n > 1, has to 

processed on m machine j = [1,2,….m] in the order given by the indexing of the 

machine being ti,j to find the minimum makespan and make a model to predict or 

estimate the makespan of the assembly  jobs. 

The following assumptions are considered in this problem:    
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 1. Jobs are independent and available at time zero. 

 2. Machines are available at time zero. 

 3. Processing time of jobs is formerly specified. 

 4. No job has priority over any other job. 

 5. The transportation time between machines and set up time are included in the 

processing time. 

 6. Assembly of parts is also included in the processing time. 

 7. One job can only be processed on one machine at a time. 

 8. One machine can only process one job at a time. 

 9. No preemption is allowed, i.e. the processing of a job i on a machine j cannot be 

interrupted. 

In this study, the operations set-up times are assumed to be independent of the job 

sequences and hence is added to the operation times. The performance of the proposed 

heuristic algorithm is studied in terms of minimum makespan.  

Here, a case study of flexible manufacturing system assembly shop has been 

considered. This is the case of a large multi nation organization X engaged in the 

manufacture of a wide variety of automobile components in India, with an estimated 

turnover of Rs. 350 crores per year. That is one of the largest automobile component 

supplier in the country. The product range includes different car manufacturing 

company like Maruti Suzuki, Hyundai, Honda, Toyota etc. with different models. The 

organization has to increase the good quality and supply the product with variations of 

models with minimum time frame. 

So, a model is prepared to predict the makespan of the components with different 

variants (i.e. five to ten jobs) on five machines or workstations including machining 

and assembly processes. A sample assembly shop line is shown in Figure 8.1. The final 

assembly is completed to pass five machines or workstations including machining and 

assembly process. 

In this chapter, the framework of the proposed ANFIS-based soft computing 

intelligent system is described in the ANFIS methodology section for consisting of 

five machines which are capable of handling a five to ten numbers of jobs. 
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8.3 MAKESPAN CALCULATION BY NEH ALGORITHM 

Considering 5 machine and 5 jobs for calculation of makespan by NEH algorithm. 

 

Table 8.1 Processing time of jobs 

 J1 J2 J3 J4 J5 

M1 66 52 98 65 81 

M2 46 44 83 9 14 

M3 18 40 84 81 7 

M4 40 53 42 66 63 

M5 30 44 2 99 17 

 

Step 1 Calculate total process times for each job i 

 

Table 8.2 Total processing time of jobs 

 J1 J2 J3 J4 J5 

M1 66 52 98 65 81 

M2 46 44 83 9 14 

M3 18 40 84 81 7 

M4 40 53 42 66 63 

M5 30 44 2 99 17 

Processing 

Time 
200 233 309 320 182 

Step 2 Arranged in the decreasing order of processing times 

 

Table 8.3 Descending order of total processing time of jobs 

J4 J3 J2 J1 J5 

320 309 233 200 182 

 

Step 3 Take J4 and J3 

Iteration 1  

Possible combinations:  J4-J3 and J3-J4. 
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Figure 8.1 Five machine FMS assembly shops 
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For J4-J3: 

Table 8.4 Makespan for partial sequence 4-3 jobs 

 J4 J3 C4 C3 Cmax 

M1 65 98 65 163  

M2 9 83 74 246  

M3 81 84 155 330  

M4 66 42 221 372  

M5 99 2 320 374 374 

where C is makespan 

For J3-J4: 

Table 8.5 Makespan for partial sequence 3-4 jobs 

 J3 J4 C3 C4 Cmax 

M1 98 65 98 163  

M2 83 9 181 172  

M3 84 81 265 253  

M4 42 66 307 319  

M5 2 99 309 418 418 

Cmax for J4-J3 < J3-J4, therefore we choose J4-J3. 

 

Step 4 Then take the next job in the sequence i.e., J2. 

Now J2 can be squeezed in three ways i.e., J2-J4-J3, J4-J2-J3, J4-J3- J2 

Iteration 2 

For J2-J4-J3: 

Table 8.6 Makespan for partial sequence 2-4-3 jobs 

 J2 J4 J3 C2 C4 C3 Cmax 

M1 52 65 98 52 117 215  

M2 44 9 83 96 126 298  

M3 40 81 84 84 207 382  

M4 53 66 42 93 273 424  

M5 44 99 2 97 372 426 426 
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For J4-J2-J3: 

Table 8.7 Makespan for partial sequence 4-2-3 jobs 

 J4 J2 J3 C4 C2 C3 Cmax 

M1 65 52 98 65 117 215  

M2 9 44 83 74 161 298  

M3 81 40 84 90 201 382  

M4 66 53 42 147 254 424  

M5 99 44 2 165 298 426 426 

 

For J4-J3-J2: 

Table 8.8 Makespan for partial sequence 4-3-2 jobs 

 J4 J3 J2 C4 C3 C2 Cmax 

M1 65 98 52 65 163 215  

M2 9 83 44 74 246 259  

M3 81 84 40 90 330 299  

M4 66 42 53 147 372 352  

M5 99 2 44 165 374 396 396 

Cmax for J4-J3-J2 < J4-J2-J3, J2-J4-J3 J3-J4, therefore we choose J4-J3-J2. 

 

Step 5:- Then take the next job in the sequence i.e., J1. 

Now J1 can be squeezed in 4 ways i.e., J1-J4-J3-J2, J4-J1-J3-J2, J4-J3-J1-J2, J4-J3-J2-J1. 

Iteration 3 

For J1-J4-J3-J2: 

Table 8.9 Makespan for partial sequence 1-4-3-2 jobs 

 J1 J4 J3 J2 C1 C4 C3 C2 Cmax 

M1 66 65 98 52 66 131 229 281  

M2 46 9 83 44 112 140 312 325  

M3 18 81 84 40 130 221 396 365  

M4 40 66 42 53 170 287 438 418  

M5 30 99 2 44 200 386 440 462 462 
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For J4-J1-J3-J2: 

Table 8.10 Makespan for partial sequence 4-1-3-2 jobs 

 J4 J1 J3 J2 C4 C1 C3 C2 Cmax 

M1 65 66 98 52 65 131 229 281  

M2 9 46 83 44 74 177 312 325  

M3 81 18 84 40 155 195 396 365  

M4 66 40 42 53 221 235 438 418  

M5 99 30 2 44 320 265 440 462 462 

 

For J4-J3-J1-J2: 

Table 8.11 Makespan for partial sequence 4-3-1-2 jobs 

 J4 J3 J1 J2 C4 C3 C1 C2 Cmax 

M1 65 98 66 52 65 163 229 281  

M2 9 83 46 44 74 246 275 325  

M3 81 84 18 40 155 330 293 365  

M4 66 42 40 53 221 372 333 418  

M5 99 2 30 44 320 374 363 462 462 

 

For J4-J3-J2-J1: 

Table 8.12 Makespan for partial sequence 4-3-2-1 jobs 

 J4 J3 J2 J1 C4 C3 C2 C1 Cmax 

M1 65 98 52 66 65 163 215 281  

M2 9 83 44 46 74 246 259 327  

M3 81 84 40 18 155 330 299 345  

M4 66 42 53 40 221 372 352 385  

M5 99 2 44 30 320 374 396 415 415 

Cmax for J4-J3-J2-J1 < J1-J4-J3-J2, J4-J1-J3-J2, J4-J3-J1-J2, therefore we choose J4-J3-J2-J1. 

 

Step 6:- Then take the next job in the sequence i.e., J5. 

Now J5 can be squeezed in 5 ways i.e., J5-J4-J3-J2-J1, J4-J5-J3-J2-J1, J4-J3-J5-J2-J1, J4-J3-

J2- J5-J1, J4-J3-J2-J1-J5. 
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Iteration 4 

For J5-J4-J3-J2-J1: 

Table 8.13 Makespan for partial sequence 5-4-3-2-1 jobs 

 J5 J4 J3 J2 J1 C5 C4 C3 C2 C1 Cmax 

M1 81 65 98 52 66 81 146 244 296 362  

M2 14 9 83 44 46 95 155 327 340 408  

M3 7 81 84 40 18 102 236 411 380 426  

M4 63 66 42 53 40 165 302 453 433 466  

M5 17 99 2 44 30 182 401 455 477 496 496 

 

 

For J4-J5-J3-J2-J1: 

Table 8.14 Makespan for partial sequence 4-5-3-2-1 jobs 

 J4 J5 J3 J2 J1 C4 C5 C3 C2 C1 Cmax 

M1 65 81 98 52 66 65 146 244 296 362  

M2 9 14 83 44 46 74 160 327 340 408  

M3 81 7 84 40 18 155 167 411 380 426  

M4 66 63 42 53 40 221 230 453 433 466  

M5 99 17 2 44 30 320 247 455 477 496 496 

 

For J4-J3-J5-J2-J1: 

Table 8.15 Makespan for partial sequence 4-3-5-2-1 jobs 

 J4 J3 J5 J2 J1 C4 C3 C5 C2 C1 Cmax 

M1 65 98 81 52 66 65 163 244 296 362  

M2 9 83 14 44 46 74 246 258 340 408  

M3 81 84 7 40 18 155 330 265 380 426  

M4 66 42 63 53 40 221 372 328 433 466  

M5 99 2 17 44 30 320 374 345 477 496 496 
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For J4-J3-J2- J5-J1: 

Table 8.16 Makespan for partial sequence 4-3-2-5-1 jobs 

 J4 J3 J2 J5 J1 C4 C3 C2 C5 C1 Cmax 

M1 65 98 52 81 66 65 163 215 296 362  

M2 9 83 44 14 46 74 246 259 310 408  

M3 81 84 40 7 18 155 330 299 317 426  

M4 66 42 53 63 40 221 372 352 380 466  

M5 99 2 44 17 30 320 374 396 397 496 496 

 

For J4-J3-J2-J1-J5: 

Table 8.17 Makespan for partial sequence 4-3-2-1-5 jobs 

 J4 J3 J2 J1 J5 C4 C3 C2 C1 C5 Cmax 

M1 65 98 52 66 81 65 163 215 281 362  

M2 9 83 44 46 14 74 246 259 327 376  

M3 81 84 40 18 7 155 330 299 345 383  

M4 66 42 53 40 63 221 372 352 385 446  

M5 99 2 44 30 17 320 374 396 415 463 463 

 

Cmax for J4-J3-J2-J1-J5 < J5-J4-J3-J2-J1, J4-J5-J3-J2-J1, J4-J3-J5-J2-J1, J4-J3-J2-J5-J1, therefore 

we choose J4-J3-J2-J1-J5 and final makespan is 463. 

 

Table 8.18 Makespan for five machine and jobs from five to ten 

N M1 M2 M3 M4 M5 MAKESPAN 

10 478 704 454 440 458 946 

10 529 541 432 402 389 901 

10 518 410 594 488 618 941 

10 576 417 520 508 420 834 

10 491 494 394 429 562 905 

10 445 396 420 380 590 820 

10 503 524 461 632 520 924 

10 493 596 654 570 536 932 
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10 624 432 523 511 388 888 

10 606 388 494 561 434 925 

10 543 581 431 541 533 907 

10 421 532 509 500 463 835 

10 612 456 751 536 405 932 

10 359 475 609 524 445 926 

10 524 586 673 423 493 948 

10 673 466 460 605 554 998 

10 468 509 478 574 517 852 

10 471 517 601 369 613 887 

10 419 319 539 418 487 814 

10 486 472 678 619 611 985 

9 447 596 342 399 593 916 

9 492 302 491 454 429 816 

9 547 453 348 363 471 813 

9 518 504 630 442 557 904 

9 517 482 510 410 361 767 

9 407 476 548 609 350 858 

9 515 445 348 432 517 907 

9 380 343 465 560 437 844 

9 528 530 522 500 425 821 

9 350 560 481 548 401 799 

9 535 409 406 585 526 894 

9 467 581 282 298 308 769 

9 454 437 395 441 362 779 

9 381 663 414 576 540 990 

9 414 430 499 478 461 935 

9 399 531 485 280 361 798 

9 507 551 499 455 465 792 

9 301 404 491 411 455 839 

9 433 366 296 580 493 850 

9 362 551 412 514 521 817 
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8 525 455 422 388 249 748 

8 343 278 294 503 417 741 

8 444 424 470 315 266 740 

8 345 367 461 415 345 698 

8 444 366 499 426 326 741 

8 347 399 453 478 399 739 

8 416 419 190 273 436 672 

8 303 339 337 339 415 635 

8 349 254 577 493 303 738 

8 275 314 421 390 273 652 

8 442 266 423 211 305 659 

8 540 295 315 443 495 747 

8 295 418 547 446 481 767 

8 468 614 241 484 455 828 

8 438 354 502 384 322 699 

8 569 223 413 377 445 822 

8 447 341 370 501 461 822 

8 334 455 331 365 401 718 

8 381 510 506 459 373 870 

8 614 320 404 407 311 905 

7 371 375 381 261 358 692 

7 324 252 393 452 351 664 

7 444 277 329 261 298 637 

7 400 330 402 328 406 787 

7 394 459 175 229 494 688 

7 420 150 413 293 331 669 

7 430 446 374 438 381 806 

7 226 341 304 480 387 658 

7 375 356 443 453 291 678 

7 200 326 431 311 256 646 

7 324 321 349 432 434 765 

7 595 309 310 244 305 791 
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7 408 199 412 382 333 653 

7 327 300 325 486 316 696 

7 469 299 357 361 343 734 

7 341 414 334 368 406 736 

7 410 251 434 352 286 666 

7 393 305 371 255 440 718 

7 307 389 377 303 324 658 

7 402 227 352 357 391 689 

6 187 324 420 235 157 551 

6 350 184 296 314 406 753 

6 239 383 260 341 272 643 

6 337 342 246 298 310 600 

6 202 344 254 371 370 649 

6 309 180 386 382 346 601 

6 333 180 319 198 261 548 

6 405 413 327 220 389 676 

6 243 189 311 293 340 549 

6 312 411 406 331 351 737 

6 355 288 463 297 355 703 

6 271 345 197 390 412 632 

6 251 347 224 363 186 597 

6 229 145 368 252 321 536 

6 358 406 204 351 297 712 

6 341 362 262 334 339 630 

6 191 370 306 372 413 721 

6 258 323 263 279 234 547 

6 255 390 388 234 194 612 

6 350 293 283 289 212 578 

5 362 196 230 264 192 594 

5 272 162 290 313 214 502 

5 234 392 290 255 222 634 

5 305 252 194 348 198 545 
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5 144 338 306 180 297 581 

5 292 304 181 328 265 608 

5 202 329 339 251 209 519 

5 290 270 319 232 328 618 

5 336 260 197 190 190 519 

5 217 218 206 238 255 491 

5 292 249 341 200 234 573 

5 137 327 263 392 230 627 

5 262 206 293 266 231 533 

5 297 216 282 229 321 587 

5 263 263 265 304 308 618 

5 237 165 149 247 183 411 

5 172 311 244 298 279 573 

5 247 238 310 282 176 629 

5 327 222 255 192 274 615 

5 187 252 217 238 307 512 

 

8.4 ANFIS METHODOLOGY 

MATLAB is used for ANFIS model development. ANFIS command window is used 

for training and testing. Gaussian bell membership function was used in input and 

output. In ANFIS a hybrid learning method is applied for updating the FIS parameters. 

The training process continues till the desired number of training steps (epochs) or the 

desired root mean squared error (RMSE) between the desired and the generated output 

is achieved.   

Steps of ANFIS model for makespan estimation of FMSAS are explained as follows: 

Step 1: Normalize the training and test data. 

Because the range of data is different, so normalized the data as 

,min'

,max ,min

i i
i

i i

x x
x

x x
−

=
−

   [262]  (8.1) 

Where ,minix  and ,maxix are the minimum and maximum values of ith input data. 
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Step 2: Input training data and test data loaded into the ANFIS model. 

Input data are a number of jobs, summation of processing times for one to five 

machines, whereas the output data is the makespan or the completion time of jobs.  

Step 3: Set the input and output parameters and membership function. 

The output and input parameters for ANFIS are defined. Membership function i.e. 

gaussian bell shape is defined and used evalfis command for this. 

Step 4: The optimal parameter values for optimization are defined. 

The parameters are optimized in which radii parameter is most important. 

Step 5: The epochs of the fuzzy inference system for training are defined. 

The epochs are set for the training of the model. 

Step 6:  Train the ANFIS model. 

The training of the model is started. 

Step 7: Test the ANFIS model. 

The model is tested after the training. 

Step 8: The test output of the ANFIS model are recorded. 

Table 8.19 shows the parameter values used in testing with the output of the model. 

Finally, the obtained test output results with ANFIS model are compared with the 

measured values. 

Step 9: Plot correlation coefficient between measured and predicted makespan. 

Correlation coefficient is a statistical process for estimating the relationships among 

variables, i.e. prediction of ANFIS model and the measured data used for the testing. 

Correlation coefficient is widely used for prediction. After obtaining the output of 

ANFIS model, a plot is drawn between the predicted data of ANFIS model and 

measured data set. Correlation coefficient of ANFIS model is shown in Figure 8.2.  

8.5 MODEL VERIFICATION 

Twenty-four random readings were used as the testing data set (Table 8.19). The plot 

of 24 measured makespan values versus predicted makespan using the ANFIS model 

is shown in Figure 8.3. This Figure presents a comparison of the measured makespan  
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Figure 8.2 Correlation coefficient (R) of ANFIS data 

and predicted makespan of the testing data set of 24 following training using ANFIS. 

Appropriate assent is evident between the measured and ANFIS-predicted makespan 

values. This close assent obviously displays that the ANFIS model can be used to 

predict the makespan under consideration. Thus, the proposed ANFIS model offers a 

promising solution to predicting makespan values in the specific range of parameters. 

To assess the ANFIS model, the percentage error Ei and average percentage error Eav 

defined in equations (8.2) and (8.3) [361], respectively, were used. 

   
100

  i

measured makespan predicted makespan
measured makespan

E ×
−

=                            (8.2)                    

1

1 m

av i
i

E E
m =

= ∑
                                                                                            

(8.3) 

Where Ei is the percentage error of sample number I; and Eav is the average percentage 

error of m sample data. 

From Table 8.19 and Figure 8.4 show that the average percentage error for predicting 

makespan is 4.03%. Figure 8.4 presents the percentage error between the predicted and  
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measured makespan. The highest percentage of error for ANFIS model prediction is 

9.7 %. The low error level signifies that the makespan results predicted by ANFIS are 

very close to the actual results. The error and accuracy values mean that the proposed 

model can predict makespan satisfactorily. 

Table 8.19 Comparison of measured and predicted makespan 

Sr. No. Actual Calculated Error in % Accuracy in % 
1 901 894 -0.78 99.22 
2 941 923 -1.91 98.09 
3 834 904 8.39 91.61 
4 905 884 -2.32 97.68 
5 916 912 -0.44 99.56 
6 816 879 7.72 92.28 
7 813 857 5.41 94.59 
8 904 956 5.75 94.25 
9 767 824 7.43 92.57 
10 698 751 7.59 92.41 
11 741 742 0.13 99.87 
12 672 691 2.83 97.17 
13 696 665 -4.45 95.55 
14 734 679 -7.49 92.51 
15 736 729 -0.95 99.05 
16 666 657 -1.35 98.65 
17 718 724 0.84 99.16 
18 548 552 0.73 99.27 
19 676 633 -6.36 93.64 
20 549 558 1.64 98.36 
21 703 652 -7.25 92.75 
22 502 506 0.80 99.20 
23 545 521 -4.40 95.60 
24 608 549 -9.70 90.30 
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Figure 8.3 Measured makespan versus predicted makespan 

 

 

Figure 8.4 The error percentage 

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ak

es
pa

n

Testing data point

ANFIS testing diagram
measured makespan predicted makespan

-10.00
-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

10.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
rr

or
 in

 %

Testing data point

ANFIS testing error diagram



 

245 
 

8.6 CONCLUSION 

In this study, ANFIS has been used to develop an empirical model for predicting the 

makespan of FMSAS jobs in a manufacturing plant.  An ANFIS model has been 

developed based on NEH heuristics for makespan calculation as a scheduling problem. 

The ANFIS model was developed in two phases, namely training phase and test phase. 

In the training phase, about 90 values, i.e. 79% of the problems are used and 24 values, 

i.e. 21% of the problems used for the testing phase. This model is verified by test data 

and the 95.97 average percentage of accuracy is achieved. Therefore, it can be 

concluded that makespan calculation of the production system, by the proposed ANFIS 

with NEH heuristic rules can be used as a reliable approach in estimating the job 

completion time of the problem studied. ANFIS shows a good performance with a 

coefficient of determination (R2) is 0.9310 and RMSE of 0.0731. The root-mean-square 

error (RMSE) is a frequently used measure of the differences between values predicted 

by a model or an estimator and the values actually observed and coefficient of 

determination, describes how much of the variance between the two variables is 

described by the linear fit. Coefficient of determination of 0.9310 means that 93.10 

percent of the variance is predictable. Regression analysis between measured and 

predicted makespan is also shown in a graphical way (Figure 8.2). The value of 

correlation coefficient (R) is 0.9649. The results mutually differ less than ± 10%. The 

correlation coefficient is close to 1 i.e. 0.9649, it would indicate that the variables are 

positively linearly related and the scatter plot falls almost along a straight line with 

positive slope. 
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CHAPTER IX 

STUDY OF TOOL LIFE MANAGEMENT, ESPECIALLY 

FOR UNMANNED PRODUCTION SYSTEM  

 

9.1 INTRODUCTION  

In today’s manufacturing environment, many large industries have attempted to 

introduce flexible manufacturing systems (FMS) as their strategy to adapt to the ever-

changing competitive market requirements [273]. To ensure the quality of machining 

products and to reduce the machining costs and increase the machining effectiveness, 

it is very important to select the machining parameters in machining process. A FMS is 

an integrated, computer-controlled complex arrangement of automated material 

handling devices and numerically controlled (NC) machine tools that can 

simultaneously process medium sized volumes of a variety of part types. The main goal 

of development of monitoring systems is to increase productivity and finally enhance 

the performance of manufacturing system by maximizing tool life, minimizing down 

time, reducing scrappage and preventing damage.  

The traditional ability of the operator to determine the condition of the tool based on 

his experiences and senses is now the expected role of the monitoring system in the 

manual system but in unmanned production system it is not possible. The demand for 

reducing production costs has driven manufacturers to automate most operations 

previously controlled by skilled operators. Therefore, the FMS has been developed. In 

such automated and unmanned machining system, a computerized system must have 

capabilities for monitoring and controlling the machining process to perform the role 

of a human operator.  

One of the most important components in a machining system is the tool. If tool’s 

condition is good than it increases the productivity of the manufacturing system and 

 

From this chapter the following papers have been published. 

V. Jain and T. Raj, "Tool life management of unmanned production system based on surface 

roughness by ANFIS," International Journal of System Assurance Engineering and 

Management, 2016. Doi: 10.1007/s13198-016-0450-2. 
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scrap will be less. If a cutting tool is used within its design limits and does not fracture 

as a result of defects in the cutting tool material, its useful life can be estimated. The 

term tool life does not necessarily mean the length of time from when it is first used 

until the tool is finally scrapped, but refers to the length of time that a cutting edge will 

continue to cut before it needs to be resharpened [362]. As tool is damaged, by wear or 

fracture, it increases the surface roughness and consequently accuracy of the machined 

surface deteriorates. Eventually the tool must be changed. Some criteria must be 

developed to decide when to do this. In factories there is a tendency to adopt flexible 

criteria according to the needs of a particular operation, while in laboratories inflexible 

criteria are adopted to evaluate tool and work material machining capabilities [363]. 

The algebraic relationship between tool life and cutting speed is known as Taylor’s tool 

life equation and is defined in equation (9.1) as: 

nVT C=                                                          (9.1) 

Where V is the linear cutting speed of the tool (m/min), T is tool life (min) and n and C 

are constants. The most important conclusion to be drawn from Taylor’s relationship is 

that tool life is mainly a function of cutting speed rather than either depth of cut or feed 

rate. If cutting speed is significantly increased tool life shortens dramatically. However, 

Taylor’s equation has a drawback for example, it ignores the process parameters such 

as the depth of cut and the feed. From equation 9.2, it is found cutting speed is the most 

important process variable associated with tool life, followed by depth of cut and feed. 

For turning, equation (9.1) can be modified to equation (9.2) 

=yn xVT d f C                                    (9.2) 

where d is the depth of cut and f is the feed in mm/rev, as shown in Figure 9.1. The 

exponents x and y must be determined experimentally for each cutting condition. 

Taking n = 0.15, x = 0.15 and y = 0.6 as typical values encountered in machining 

practice [364]. 

A cutting tool should be used at the optimum cutting conditions till failure. If the tool 

failure is based on the maximum flank wear, the tool cannot be reused. However, if it 

is based on the maximum surface roughness, there is a possibility to reuse it by changing 

the cutting conditions [104]. Gorczyca [365] studied that cutting force increased rapidly 

as tool life finished or over and it is shown in Figure 9.2.  
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Cutting parameters are optimized by the soft computing or metaheuristics technique, 

i.e. genetic algorithm (GA) and teaching-learning based optimization (TLBO) 

algorithm. An ANFIS model of cutting force is developed from a set of data obtained 

during actual machining tests. The data are divided into training and testing set. The 

training set is used for learning purposes while the testing set is used for testing the 

model. In this chapter, an attempt to solve tool life management of unmanned 

production system by using the ANFIS is done to predict the cutting force as the 

indicator of the tool life management. 

The main objectives of this chapter are as follows: 

1. To develop an ANFIS model for cutting force prediction regarding tool life. 

2. To optimize cutting force by GA and TLBO. 

3. To discuss the ANFIS model result. 

 

 

Figure 9.1 Illustration of feed and depth of cut in turning [364] 

 

Figure 9.2 Relation between cutting force and tool life [365] 
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9.2 MACHINING PARAMETER FOR ANFIS MODELING 

The Lathe is a machine tool that removes material by rotating a workpiece against a 

single point cutting tool. The various motions involved in the turning operation are 

illustrated in Figure 9.1. 

These are the parameters of ANFIS model: 

1. Cutting speed: The rotating motion of the workpiece is called cutting motion. It is 

found that an increase of cutting speed generally improves surface finish. 

2. Depth of cut: The turning tool is set to the desired depth of cut and the thickness of 

the layer of metal removed in one cut is called depth of cut. It is always perpendicular 

to the direction of the feed motion. Increasing the depth of cut increases the cutting 

resistance and the amplitude of vibrations. As a result temperature also rises. Therefore, 

it is expected that surface quality deteriorates. 

3. Feed: The cutting tool moves forward at a uniform rate, causing a continuous removal 

of chips. This motion is known as feed motion and feed is the amount or tool 

advancement per revolution of job parallel to the surface being machined. It is 

expressed in millimeter per revolution. Low feed rate is used for finishing cuts, hard 

work materials and weak cutters. Normally feed rate varies from 0.1 to 1.5 mm for 

medium cuts [366]. 

4. Cutting force: The input machining parameters depth of cut, feed and speed may be 

used to predict cutting forces and may be adjusted to optimum value to achieve the 

desired goods cost and minimum time of machining. Cutting force is one of important 

characteristic variables to be monitored in the cutting processes. The cutting forces are 

normally increased by wear of the tool. The cutting forces generated in metal cutting 

have a direct influence on generation heat, tool wear, quality of machined surface and 

accuracy of the work- piece [367]. The literature results show that tool breakage, tool 

wear and workpiece deflection are strongly related to cutting force [368, 369]. A cutting 

force dynamometer have been used to measure cutting force accurately [370].  

Surface roughness (Ra): it is the output parameter of ANFIS modeling. There are many 

different roughness parameters in use, but Ra is the most common. The surface finish 

produced in a machining operation usually deteriorates as the tool life is over or nearly 
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over. The machining parameters speed, feed, depth of cut and cutting forces were taken 

as input parameters and the response parameter Ra was considered as output response. 

9.3 REGRESSION ANALYSIS 

Regression analysis is a statistical process for estimating the relationships among 

variables. Regression analysis is widely used for prediction. Minitab software has been 

used for regression analysis. Various scatter plots are drawn i.e. scatter plot of cutting 

force vs cutting speed, feed and depth of cut  and shown in Figures 9.3-9.5. It is very 

clear from all the graphs that optimum value for speed, feedand depth of cut for which 

cutting force is minimum is very difficult to identify by the graph. These graphs are 

merely showing the variation of different input parameter with cutting force, but not 

giving any optimum value. In order to get optimum value regression analysis completed 

and then it is optimized by various soft computing techniques. 

In linear regression analysis general form of the equation is  

C = p1x1 + p2x2 + p3x3 + constant. 

An experiment conducted and data collected and based on the experimental data 

regression equation developed by Minitab software and obtained the value of p1, p2, p3 

and the constant. 

Cutting Force (C) = -31.3 + 0.0141 s + 296 f + 394 d                                  (9.3) 

In this analysis, this equation is very strongly representing the relationship between 

input and output variable. This equation is very accurate and prediction will be very 

easy and it gives near optimal solutions.  

9.4 OPTIMIZATION OF CUTTING FORCE BY METAHEURISTICS 

In this study, optimum turning parameters at the lowest possible cutting force value was 

calculated using GA. Equation 9.3 derived by Minitab software was taken as the 

objective function to be minimized for the lowest cutting force value. The flowchart of 

the basic GA was given in Figure 2.10. In this study, although it can be seen as simple 

study, optimum turning parameters for minimum cutting force was obtained and 

equation 9.3 would provide turning parameter condition by using GA for the selected 

material. 
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   Figure 9.3 Scatterplot of cutting force vs speed 
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Figure 9.4 Scatterplot of cutting force vs feed 
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  Figure 9.5 Scatterplot of cutting force vs depth of cut 
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Taking the minimum and the maximum values of turning parameters into account, 

boundary conditions for the objective function are given in equation 9.4 - 9.6. 

167    ≤ s ≤ 261.1                     (9.4) 

0.075 ≤ f ≤ 0.15                       (9.5) 

0.10    ≤ d ≤ 0.2                    (9.6) 

Equation 9.3 was also taken as the fitness function for the optimization of cutting force 

value obtained from turning. The algorithm given in Figure 2.10 (chapter 2) was run in 

Matlab optimization toolbox by using single point, double point, uniform crossover, 

intermediate and different mutation operators. The best result for minimum cutting 

force was obtained by using intermediate crossover. Also, various values were 

examined for mutation and crossover possibilities. The input turning parameter levels 

were fed to the GA program. Taking population size 50 with 100 iteration numbers. 

Considering the optimum turning parameters in the GA, the minimum cutting force (C 

= 32.916 N) value was obtained at s = 181.559 m/min, f = 0.075 mm/rev and d = 0.1 

within 300 iteration. It was show that the results found by GA were in conformity with 

the experimental and theoretical ones. Fitness value and individual values of parameters 

found by GA is shown in Figure 9.6. GA tool window is used for this and it is shown 

in Figure 9.7. 

The TLBO algorithm is also applied in this optimization problem which is given in 

equation 9.3. Boundary conditions are taken into consideration as given by equations 

(9.4-9.6). Taking a population size of 50 with three numbers of design variables. The 

obtained results are less than 100 generations. Considering the optimum turning 

parameters in the TLBO, the minimum cutting force (C = 32.6547 N) value was 

obtained at s = 167 m/min, f = 0.075 mm/rev and d = 0.1. Fitness value found by TLBO 

is shown in Figure 9.8. 

9.5 ANALYSIS OF ANFIS MODELING 

Bartarya and Choudhury [371] found the effect of cutting parameters on cutting force 

and surface roughness during finish hard turning AISI52100 grade steel. They 

developed a force prediction model on a heavy duty Lathe, make of HMT by using hone 

edge uncoated cubic boron nitride (CBN) tool during finish machining of EN31 steel 

(equivalent to AISI 52100 steel) hardened to 60±2 HRC. A Kistler, piezoelectric lathe 

tool dynamometer was used to measures cutting forces. MATLAB is used for ANFIS  
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Figure 9.6 Fitness value from GA 

 

Figure 9.7 GA tool window 
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Figure 9.8 TLBO fitness value 

model development. ANFIS graphical user interface (GUI) is used for training and 

testing. Gaussian combination membership function was used in input and constant 

membership functions were used in output. ANFIS applies a hybrid learning method 

for updating the FIS parameters. The training process continues till the desired number 

of training steps (epochs) or the desired root mean squared error (RMSE) between the 

desired and the generated output is achieved. 

9.5.1 Analysis of Modeling of ANFIS for Cutting Force 

The analysis for the cutting force prediction by ANFIS model is as follows: 

Step 1: The architecture of ANFIS model is defined and shown in Figure 9.9.   

Step 2: The turning data sets summarized and used for training data into the ANFIS 

model. 

Step 3: In the turning process, the gaussian membership function with three 

membership function is used for distribution of the input variable. The Figure 9.10 

shows the initial membership function of the input parameter ‘cutting speed’ in turning. 

Figure 9.11 shows the fuzzy rule architecture of ANFIS when the gaussian membership 
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function is adopted. The architectures shown in Figure 9.12 consist of 27 fuzzy rules. 

ANFIS applies hybrid learning method for updating parameters. The input and output 

parameters are shown in Table 9.1. 

 

 

 

 

 

 

 

 

 

 

Figure 9.9 Architecture of ANFIS modeling 

 

Figure 9.10 Initial membership function plot for ‘cutting speed’ 
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Figure 9.11 FIS (Sugeno) 

 

Figure 9.12 FIS rules 
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Table 9.1 Input and output parameters 

Process parameter Input /output 

Cutting speed(V) 167-261 m/min Input 

Feed rate (F)  0.075-0.15 mm/rev Input 

Depth of cut (D) 0.1-0.2 mm Input 

Cutting force (F) N Output 

 

Step 4: The grid partition method is often chosen in designing a fuzzy controller, which 

usually involves only several state variables as the input to the controller. This partition 

method needs only a small amount of membership functions for each input.   ANFIS 

model structure is shown in Figure 9.13. 

Step 5: During the training of ANFIS model in turning, seventy five sets of 

experimental data were used to conduct of learning. 

The ANFIS learning scenario for prediction of the cutting force in turning is followed. 

No. of input     : 03 

No. of output     : 01 

Number of training data pairs  : 75 

Number of fuzzy rules   : 27 

Epoch     : 20 

The training error performance of ANFIS based on gaussian membership function is 

shown in Figure 9.14. 

Step 6: The turning data sets summarized and used for testing data into the ANFIS 

model. 

Step 7: During the testing of ANFIS model for the cutting force prediction in turning, 

experimental data were used to check the validity of the model. Table 9.1 shows also 

the parameter values used in testing.  

Step 8: Finally, the test output results obtained with ANFIS model are compared with 

the experimental results are shown in Table 9.2. 
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Step 9: This analysis is a statistical process for estimating the relationships among 

variables, i.e. output of ANFIS model and the actual data used for the testing. It is 

widely used for prediction. After the obtaining the output of ANFIS model, a plot is 

drawn between the outputs of ANFIS model and actual data set. Correlation coefficient 

of ANFIS model is shown in Figure 9.15. It uses training examples as input and 

constructs the fuzzy if - then rules and the membership functions (MF) of the fuzzy sets 

involved in these rules as output. This process is called a training phase. In this model, 

two different types of membership functions have been adopted for analysis in ANFIS 

training. Their difference regarding the accuracy rate of the cutting force prediction 

were compared. After training the model, its performance was tested under various 

cutting conditions. For premise parameters that define membership functions, ANFIS 

employs gradient descent to fine-tune them. For consequent parameters that define the 

coefficients of each output equation, ANFIS uses the least-squares method to identify 

them. This approach is thus called hybrid learning. 

 

 

 

Figure 9.13 ANFIS model structure 

http://en.wikipedia.org/wiki/Prediction
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Figure 9.14 Training error 

 

Figure 9.15 Correlation coefficient of ANFIS model for cutting force 
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Table 9.2 Partial results of ANFIS modeling 

Cutting 

speed(V) 

m/min 

Feed 

rate (F) 

mm/rev 

Depth 

of cut 

(D) mm 

Cutting 

force (F) N 

(actual) 

Cutting 

force (F) N 

(output) 

Error 

in % 

Accuracy 

in % 

167 0.075 0.10 32.63 33.45 2.51 97.49 

167 0.075 0.15 45.00 45.26 0.58 99.42 

167 0.075 0.20 74.50 74.90 0.54 99.46 

167 0.113 0.10 39.10 40.27 2.99 97.01 

167 0.113 0.15 54.55 53.70 -1.56 98.44 

167 0.113 0.20 80.55 79.93 -0.77 99.23 

167 0.150 0.10 53.90 55.54 3.04 96.96 

167 0.150 0.15 69.30 68.83 -0.68 99.32 

167 0.150 0.20 103.00 102.32 -0.66 99.34 

204 0.075 0.10 32.60 32.55 -0.15 99.85 

204 0.075 0.15 48.50 48.24 -0.54 99.46 

204 0.075 0.20 79.30 80.75 1.83 98.17 

204 0.113 0.10 44.50 47.71 7.21 92.79 

204 0.113 0.15 53.70 54.34 1.19 98.81 

204 0.113 0.20 86.00 84.19 -2.10 97.90 

204 0.150 0.10 51.90 53.35 2.79 97.21 

204 0.150 0.15 63.60 64.96 2.14 97.86 

204 0.150 0.20 98.70 94.35 -4.41 95.59 

261 0.075 0.10 36.50 38.36 5.10 94.90 

261 0.075 0.15 48.50 47.05 -2.99 97.01 

261 0.075 0.20 58.60 59.85 2.13 97.87 

261 0.113 0.10 39.86 44.53 11.72 88.28 

261 0.113 0.15 61.50 61.03 -0.76 99.24 

261 0.113 0.20 83.20 80.98 -2.67 97.33 

261 0.150 0.10 51.84 54.26 4.67 95.33 

261 0.150 0.15 87.10 85.08 -2.32 97.68 

261 0.150 0.20 111.09 108.95 -1.93 98.07 
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9.5.2 Analysis of Modeling of ANFIS for Surface Roughness 

The analysis for the Ra prediction by ANFIS model is as follows: 

Step 1: The architecture of ANFIS model was shown in Figure 9.9.   

Step 2: The turning data sets summarized and used for training data into the ANFIS 

model. 

Step 3: In the turning process, the gaussian combination - constant membership function 

is used for distribution of the input variable. Number of data should be greater than the 

number of modifiable parameters, so, two membership function is taken for each input 

in the model.  With more than two membership function to each input, a warning 

message shown, i.e. number of data is smaller than the number of modifiable 

parameters. The Figure 9.16 shows the initial membership function of the input 

parameter ‘cutting speed’ in turning. Figure 9.17 shows the fuzzy rule architecture of 

ANFIS when the gaussian combination - constant function is adopted. The architectures 

shown in Figure 9.18 consist of 16 fuzzy rules. ANFIS applies hybrid learning method 

for updating parameters. The input and output parameters are shown in Table 9.3. 

 

 Figure 9.16 Initial membership function plot for ‘cutting speed’ 
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Figure 9.17 FIS (Sugeno) 

 

Figure 9.18 FIS rules 
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Table 9.3 Input and output parameters 

Process parameter Input /output 

Cutting speed(V) m/min Input 

Feed rate (F) mm/rev Input 

Depth of cut (D) mm Input 

Cutting force (F) N Input 

Surface roughness (Ra)µm Output 

 

Step 4: The grid partition method is often chosen in designing a fuzzy controller, which 

usually involves only several state variables as the input to the controller. This partition 

method needs only a small amount of membership functions for each input. ANFIS 

model structure is shown in Figure 9.19. 

 

Figure 9.19 ANFIS model structure 

Step 5: During the training of ANFIS model in turning, seventy five sets of 

experimental data were used to conduct of learning. 

The ANFIS learning scenario for prediction of the surface roughness (Ra) in turning is 

followed. 
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Number of nodes    : 55 

Number of linear parameters   : 16 

Number of nonlinear parameters  : 32 

Total number of parameters   : 48 

Number of training data pairs  : 75 

Number of fuzzy rules   : 16 

Epoch     : 20 

Training error    : 0.02824 

The training and checking error performance of ANFIS based on gaussian combination 

- constant membership function is shown in Figure 9.20 and 9.21. 

 

 

Figure 9.20 Training error 
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Figure 9.21 Training and checking Error of ANFIS 

Step 6: The turning data sets summarized and used for testing data into the ANFIS 

model. 

Step 7: During the testing of ANFIS model for the surface roughness (Ra) prediction in 

turning, experimental data were used to check the validity of the model. Table 9.4 

shows the parameter values used in testing.  

Step 8: Finally, the test output results obtained with ANFIS model are compared with 

the experimental results. 

Table 9.4 Parameters used in testing 

Process parameter Values 

Cutting speed(V) m/min 167-261 

Feed rate (F) mm/rev 0.075-0.15 

Depth of cut (D) mm 0.1-0.2 

 

Step 9: Regression analysis is a statistical process for estimating the relationships 

among variables, i.e. output of ANFIS model and the actual data used for the testing. 

Regression analysis is widely used for prediction. After the obtaining the output of 
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ANFIS model, a plot is drawn between the output of ANFIS model and actual data set. 

Regression analysis of ANFIS model is shown in Figure 9.22.  

  

Figure 9.22 Regression analysis of ANFIS model for surface roughness 

9.6 ANFIS MODEL VERIFICATION 

9.6.1 ANFIS Model Verification for Cutting Force 

Twenty-seven random readings were used as the testing data set (Table 9.2). The plot 

of 27 actual cutting force values versus output cutting force values using the ANFIS 

model is shown in Figure 9.23. The figure presents a comparison of the actual cutting 

force values and output cutting force values of the testing data set of 27 following 

training using ANFIS. Appropriate assent is evident between the actual and ANFIS-

output cutting force values. This close assent obviously displays that the ANFIS model 

can be used to predict the cutting force values under unmanned production system 

consideration.  

To assess the ANFIS model, the percentage error Ei and average percentage error Eav 

defined in equations (9.7) and (9.8) [361], respectively, were used. 
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Where Ei is the percentage error of sample number i; and Eav is the average percentage 

error of m sample data. 

From Table 9.2 and Figure 9.24 show that the average percentage error for predicting 

cutting force values is 2.59%. Figure 9.24 presents the percentage error between the 

predicted and actual cutting force values. The error and accuracy values mean that the 

proposed model can predict cutting force values satisfactorily. 

9.6.2 ANFIS Model Verification for Surface Roughness 

Twenty random readings were used as the testing data set (Table 9.5). The plot of 20 

actual surface roughness values versus output surface roughness values using the 

ANFIS model is shown in Figure 9.25. The figure presents a comparison of the actual 

surface roughness values and output surface roughness values of the testing data set of 

20 following training using ANFIS. Appropriate assent is evident between the actual 

and ANFIS-output cutting force values. This close assent obviously displays that the 

ANFIS model can be used to predict the cutting force values under unmanned 

production system consideration.  

To assess the ANFIS model, the percentage error Ei and average percentage error Eav 

defined in equations (9.7) and (9.8), respectively, were used. 

From Table 9.5 and Figure 9.26 show that the average percentage error for predicting 

surface roughness values is 7.38%. Figure 9.26 presents the percentage error between 

the predicted and actual cutting force values. The error and accuracy values mean that 

the proposed model can predict cutting force values satisfactorily. 
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Figure 9.23 ANFIS testing diagram 

 

 

Figure 9.24 The error percentage 
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Table 9.5 Partial results of ANFIS modeling 

Cutting 

speed(V) 

m/min 

Feed 

rate (F) 

mm/rev 

Depth 

of cut 

(D) 

mm 

Cutting 

force 

(F) N 

Surface 

roughness 

(Ra) µm 

(actual) 

Surface 

roughness 

(Ra) µm 

(output) 

Error 

in % 

 

Accuracy 

in % 

167 0.075 0.10 32.66 2.83 2.55 -10.0 90.00 

167 0.075 0.15 44.99 3.35 3.72 11.10 88.90 

167 0.113 0.15 54.55 2.72 2.41 -11.3 88.62 

167 0.113 0.20 80.54 2.47 2.62 6.24 93.76 

167 0.150 0.10 53.88 1.97 1.92 -2.46 97.54 

167 0.150 0.15 69.32 2.30 2.41 4.65 95.35 

167 0.150 0.20 102.98 2.05 2.10 2.53 97.47 

204 0.075 0.15 48.55 2.49 2.65 6.43 93.57 

204 0.075 0.20 79.32 3.83 3.34 -12.9 87.07 

204 0.113 0.15 53.66 2.26 2.32 2.83 97.17 

204 0.113 0.20 85.98 2.28 2.15 -5.47 94.53 

204 0.150 0.10 51.88 1.89 1.70 -10.0 90.00 

204 0.150 0.15 63.65 2.56 2.29 -10.6 89.31 

204 0.150 0.20 98.65 1.95 1.93 -0.82 99.18 

261 0.075 0.10 36.55 1.11 1.08 -2.63 97.37 

261 0.075 0.20 58.66 5.01 4.55 -9.06 90.94 

261 0.113 0.15 61.54 1.95 1.62 -16.7 83.24 

261 0.113 0.20 83.21 1.92 2.00 4.06 95.94 

261 0.150 0.10 51.88 1.38 1.60 16.26 83.74 

261 0.150 0.15 87.09 1.43 1.45 1.37 98.63 
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Figure 9.25 ANFIS testing diagram 

 

 

Figure 9.26 The error percentage 
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9.7 RESULT AND DISCUSSION  

This section presents the analysis of results between the experimental data and ANFIS 

model output depending on the cutting parameters. The values of cutting parameters 

actual (experimental) and output of ANFIS are shown in Table 9.2. Figure 9.23 shows 

an ANFIS testing diagram of the actual and output of ANFIS cutting force values. This 

Figure shows that the online predicted values are a close match of the actual ones. 

Adaptive neuro-fuzzy interference system shows a good performance with a coefficient 

of determination (R2) is 0.9952 and RMSE of 0.0167. The root-mean-square error 

(RMSE) is a frequently used measure of the differences between values predicted by a 

model or an estimator and the values actually observed and coefficient of determination, 

describes how much of the variance between the two variables is described by the linear 

fit. Coefficient of determination of 0.9952 means that 99.52 percent of the variance is 

predictable. Regression analysis between actual and output cutting force is also shown 

in a graphical way in Figure 9.15. The value of correlation coefficient (R) is 0.9976. 

The results mutually differ less than ± 10%. The correlation coefficient is close to 1 i.e. 

0.9976, it would indicate that the variables are positively linearly related and the scatter 

plot falls almost along a straight line with positive slope.  

ANFIS modeling process starts by obtaining a data set (input-output data pairs) and 

dividing it into training and testing data sets. Training data constitutes a set of input and 

output data. The data is normalized in order to make it suitable for the training process. 

This normalized data was utilized as the inputs (machining parameters) and outputs 

(cutting force) to train the ANFIS. In other words, two types of data are formed in order 

to train the ANFIS. Input data are cutting speed, feed and depth of cutting. The output 

data is cutting force. So, tool life for unmanned production system is analyzed on the 

basis of cutting force. The increasing cutting force means the deterioration and the 

wearing of the tool. 

Figure 9.25 shows an ANFIS testing diagram of the actual and output of ANFIS surface 

roughness values. The figure shows that the online predicted values are a close match 

of the actual ones. Adaptive neuro-fuzzy interference system shows a good 

performance with a coefficient of determination (R2) is 0.9078 and RMSE of 0.0443. 

Coefficient of determination of 0.9078 means that 90.78 percent of the variance is 

predictable. Regression analysis between actual and output surface roughness is also 

shown in a graphical way in Figure 9.22. The value of Correlation coefficient (R) is 
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0.9528. The results mutually differ less than ± 10%. The correlation coefficient is close 

to 1 i.e. 0.9528, it would indicate that the variables are positively linearly related and 

the scatter plot falls almost along a straight line with positive slope. ANFIS modeling 

process starts by obtaining a data set (input-output data pairs) and dividing it into 

training and testing data sets. Training data constitutes a set of input and output data. 

The data is normalized in order to make it suitable for the training process. This 

normalized data has been utilized as the inputs (machining parameters) and outputs 

(surface roughness) to train the ANFIS. In other words, two types of data are formed in 

order to train the ANFIS. Input data are cutting speed, feed, depth of cut and cutting 

forces. The output data is surface roughness. So, tool life for unmanned production 

system is analyzed on the basis of surface finish. If the surface finish deteriorates, it 

means tool is going to wear out. The advantages of ANFIS system over the traditional 

estimation methods are simple complementing of the model by new input parameters 

without modifying the existing model structure, automatic searching for the non-linear 

connection between the inputs and outputs. After training, its performance was found 

satisfactory under various cutting conditions.  

9.8 CONCLUSION 

In this chapter, a model for tool life for unmanned production system by using an 

adaptive neuro-fuzzy inference system (ANFIS) is made to predict the cutting force and 

surface roughness as the cutting forces increases tool life and surface finish deteriorates. 

This model offers ability to estimate tool life for the unmanned production system 

related to cutting force and surface roughness. 

(1) It enables monitoring of unmanned production for tool life. 

(2) ANFIS model can predict ± 10% of output and it can achieve more accurate.  

(3) This modeling can estimate the cutting force and surface roughness, very fast 

and accurately on the basis of input cutting parameters like speed, feed and depth 

of cut and cutting force. 

(4) With reference to this model, any model can be designed to predict the data. 
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CHAPTER X 

SYNTHESIS OF THE RESEARCH WORK 

 

10.1 INTRODUCTION 

It is evident that performance enhancement is required in all manufacturing industries. 

So, there are some factors which effect the performance of a manufacturing system. 

Productivity, flexibility and quality are the three main factors of FMS which have been 

identified. Some variables are also identified from literature review which affect 

performance, productivity and flexibility of FMS. Evaluation of flexibility in FMS 

focus the impact of flexibilities in manufacturing system. Study of tool life for 

unmanned production system is necessary for manufacturing system. FMS assembly 

shop makespan estimation help the production manager for better planning and 

schedule of assembly.  

In this chapter, synthesis of research work mentioned in the previous chapters have 

been presented. The main objectives of this chapter are: 

i. To present overall picture of the research work. 

ii. To discuss different studies done in previous chapters. 

iii. To establish a link among all the studies carried out in this research work. 

  

10.2 SYNTHESIS OF THE RESEARCH WORK 

Research reported in this thesis concerns the investigation of some performance, 

productivity and flexibility variables of FMS. The research was carried out with 

objectives specified in the first chapter. The achieved objectives are as follows: 

i. The literature existing on FMSs has been studied, some issues of FMS constraint 

are discussed. 

ii. Major variables of performance, productivity and flexibility have been 

identified. 

iii.  ISM model has been developed for performance variables and the driving and 

dependence power of performance variables has been found by MICMAC 

analysis. 
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iv. ISM model has been developed for productivity variables and the driving and 

dependence power of productivity variables has been found by MICMAC 

analysis. 

v. TISM model has been developed for flexibility variables and the driving and 

dependence power of flexibility variables has been found by fuzzy MICMAC 

analysis. 

vi. ISM model of performance variables has been validated by structural equation 

modeling and the FMS performance index has been found by GTMA. 

vii. ISM model of productivity variables has been validated by structural equation 

modeling and the FMS productivity index has been found by GTMA. 

viii. TISM model of flexibility variables has been validated by structural equation 

modeling and the FMS flexibility index has been found by GTMA. 

ix. ISM model has been developed for types of flexibility of FMS and the driving 

and dependence power of flexibility has been found by MICMAC analysis. 

x. Evaluation of flexibility based on variables which affect the flexibility of FMS 

by combined MADM methods. 

xi. FMS assembly shop makespan is calculated by NEH algorithm and its 

estimation is done by soft computing technique i.e. ANFIS. 

xii. Tool life management of unmanned production system is also done by soft 

computing technique i.e. ANFIS. 

xiii. Cutting parameter optimized by metaheuristics i.e. GA and TLBO. 

For achieving the objectives, the methodologies used in the present research are 

presented in Table 10.1 and briefly discussed below: 

10.2.1 Literature Review 

An extensive literature review carried out through which some variables of FMS and 

some issues of FMS have been considered. A large number of research paper were 

studied to find the variables of performance, productivity and flexibility of FMS. Issues 

related to constraints of FMS are also studied. A detailed study of these are discussed 

in chapter 2. Methodologies which are used in this research to achieve the research 

objectives have also been discussed in this chapter. 
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10.2.2 Questionnaire Administration 

To understand the perception of FMS variables a questionnaire is developed and it is 

discussed in chapter 3. Questionnaire is developed separately for performance, 

productivity and flexibility variables. Fifteen variables for performance, twenty 

variables for productivity and fifteen variables for flexibility of FMS have been 

considered. According to survey result, automation has been ranked as the top most 

variable for performance of FMS. Use of automated material handling device has been 

ranked as top most variable for productivity of FMS. Flexible fixturing has been ranked 

as top most variable for flexibility of FMS. Performance, productivity and flexibility 

variables of FMS have been used for further modeling and analysis.  

10.2.3 Development of ISM Model 

Separate ISM models have been prepared for performance and productivity variables 

of FMS and flexibility of FMS in chapter 4, 5and 7 respectively. Through ISM model 

of performance variables it is found that automation, effect of tool life, use of automated 

material handling devices and rework percentage are placed in the bottom of model 

which are the key variables for performance of FMS. From the MICMAC analysis it is 

found that these are also independent variables which have strong driving power and 

less dependence power. 

Through ISM model of productivity variables it is found that training, financial 

incentive, trained worker and effect of tool life are placed in the bottom of model which 

are the key variables for productivity of FMS. From the MICMAC analysis it is found 

that training, trained worker, effect of tool life, automation and reduction in rework 

percentage are having high driving power. From this modeling, it is concluded that 

effect of tool life, automation and reduction in rework percentage are the common 

variables for performance and productivity of FMS. So, focus on these variables will 

increase productivity followed by the increase in the performance of FMS.  

Through ISM model of flexibility variables of FMS it is found that production 

flexibility, product flexibility, machine flexibility and material handling flexibility are 

placed in the bottom of model which are the key flexibility of FMS. From the MICMAC 

analysis found that these are also independent variables which have strong driving 

power and less dependence power.  
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Table 10.1 Methodologies used in the research 

Objectives Methodology 
Study 

No. 

To identify variables which 

affect FMS and constraints of 

FMS with some issues. 

Literature review and expert opinion 1 

To understand the perception of 

FMS variables 
Questionnaire based survey 2 

Modeling and analysis of 

performance variables of FMS 

Interpretive structural modeling, 

Structural equation modeling and 

Graph theory matrix approach 

3 

Modeling and analysis of 

productivity variables of FMS 

Interpretive structural modeling, 

Structural equation modeling and 

Graph theory matrix approach 

4 

Modeling and analysis of 

flexibility variables of FMS 

Total interpretive structural modeling, 

Structural equation modeling and 

Graph theory matrix approach 

5 

Ranking of flexibility in FMS 

Interpretive structural modeling, 

Combined multiple attribute decision 

making methods, i.e. AHP, TOPSIS, 

Modified TOPSIS, Improved 

PROMETHEE and VIKOR. 

6 

Makespan estimation of FMS 

assembly shop 
NEH Algorithm, ANFIS 7 

Tool life management for 

unmanned production system 

ANFIS, GA, TLBO,  

Regression analysis 
8 
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10.2.4 Development of TISM Model 

TISM model for flexibility variables has been discussed in chapter 6. Fifteen variables 

are taken for this modeling. Interpretation of the mutual relationship of variables is 

comparatively weak in ISM. Thus, an upgraded version of ISM i.e. Total interpretive 

structural modeling (TISM) methodology is used to develop the model and the mutual 

relationship of variables is identified in the TISM. This research is an application of 

TISM to interpret the mutual relationship with the ISM using the tool of interpretive 

matrix and leads to evolving the framework and find out driving and the dependence 

power of variables, using fuzzy MICMAC analysis. The result shows that use of 

reconfigurable machine tool, automation and flexible fixturing have strong driving 

power and weak dependence power and are at the lowest levels in hierarchy in the TISM 

model. Hence, superior performance of FMS can be achieved by improving the driving 

variables of flexibility.  

10.2.5 Development of SEM Model 

ISM and TISM model developed for performance, productivity and flexibility of FMS 

has a limitation that these models are not statistically validated. So, structural equation 

modeling is used to validate these models in chapter 4, 5 and 6 respectively for 

performance, productivity and flexibility modeling. Data analysis in SEM proceeds in 

two steps. First the Exploratory factor analysis (EFA) is used to identify the underlying 

dimensions of variables in FMS. Next is confirmatory factor analysis (CFA) to confirm 

the factor structure of the dimensions in FMS. Both are powerful statistical techniques. 

By performing EFA, factor structure is placed, whereas CFA verified the factor 

structure of a set of observed variables. CFA is carried by SEM statistical technique. 

EFA is applied to extract the factors in FMS by The statistical package for social 

sciences (SPSS) software and confirming these factors by CFA through analysis of 

moment structures (AMOS) software.  

The fifteen performance variables are identified through literature and three factors are 

extracted, which involves the performance of FMS. The three factors are quality, 

productivity and flexibility. SEM using AMOS was used to perform the first order three 

factor structure. Fit indices of this model show good model fit (CMIN (χ2) =185.888, 

df = 81, p =.000; CMIN/DF (χ 2/ DF) = 2.295 (< 5); CFI =0.964; TLI = 0.953; IFI = 

0.964; NFI = 0.938; RFI=0.920; GFI=0.913; and RMSEA = 0.07). The result of this 

model was discussed in chapter four. Quality factor includes the effect of tool life, scrap 
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percentage, rework percentage and automation. Productivity factor includes the 

variables unit manufacturing cost, unit labor cost, manufacturing lead time, throughput 

time, set up cost and setup time. Flexibility factor includes the equipment utilization, 

ability to manufacture a variety of product, capacity to handle new product, use of 

automated material handling devices and reduced work in process inventory.  

The twenty productivity variables are identified through literature and four factors are 

extracted which involves the productivity of FMS. The four factors are people, quality, 

machine and flexibility. SEM using AMOS was used to perform the first order four 

factor structures. Fit indices of this model show good model fit (CMIN (χ2) =397. 350, 

df = 159, p =.000; CMIN/DF (χ 2/ DF) = 2.499 (< 5); CFI =0. 964; TLI = 0.957; IFI = 

0.964; NFI = 0.941; RFI=0.930; GFI= 0.890; RMR= 0.05 and RMSEA = 0.069). The 

result of this model was discussed in chapter five. People factor include the training, 

financial incentive and unit labour cost. Quality factor include the effect of tool life, 

customer satisfaction, reduction in scrap percentage, reduction in rework percentage 

and reduction of rejection. Machine factor include the equipment utilization, trained 

worker, manufacturing lead time and setup time, unit manufacturing cost, throughput 

time and set up cost. Flexibility factor include the automation, use of automated 

material handling devices, reduction in material flow, reduced work in process 

inventory, capacity to handle new product and ability to manufacture a variety of 

product. 

Fifteen variables are identified through literature and four factors are extracted, which 

affects the flexibility of FMS in production flexibility, machine flexibility, product 

flexibility and volume flexibility. Structural equation modeling (SEM) using AMOS 

was used to perform the first-order four-factor structure of the FMS flexibility. Fit 

indices of this model show good model fit (CMIN (χ2) = 154.638, df =84, p= 0. 000, 

CMIN/DF (χ 2/ DF) =1. 841 (< 2); GFI = 0.937; RMSEA= 0.05; AGFI = 0.909; RMR= 

0. 03; NFI = 0.902; CFI = 0.924; TLI= 0.905; and IFI = 0.926). The result of this model 

was discussed in chapter six. Production flexibility factor include the combination of 

operation, reduced WIP inventories, reduction in material flow, use of reconfigurable 

machine tool and reduction in scrap. Machine flexibility factor include the increase 

machine utilization, ability to manufacturing a variety of product, manufacturing lead 

time and setup time reduction and quality consciousness. Product flexibility factor 

include the capacity to handle new product, flexible fixturing and flexibility in the 
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design of production system. Volume flexibility factor include the automation, use of 

automated material handling devices and speed of response.  

These structural models are further recommended for evaluation of index by graph 

theory matrix approach. 

10.2.6 GTMA for Evaluation of FMS Index 

Chapter 4, 5 and 6 presents a graph theory matrix approach to the FMS performance 

index, FMS productivity index and FMS flexibility index respectively. 

Performance variables are identified by literature review and explored by EFA. These 

variables are grouped into three factors i.e. productivity, flexibility and quality. The 

GTMA approach correlate these factors and quantified based on mutual 

interdependencies of their variables. This study propose a numerical value of 

performance known as FMS performance index for any industry. By knowing the FMS 

performance index, manufacturing industry can enhance their performance. 

Productivity variables are also identified by literature review and explored by EFA. 

These variables are grouped into four factors i.e. people, machine, flexibility and 

quality. The GTMA approach correlate these factors and quantified based on mutual 

interdependencies of their variables. This study propose a numerical value of 

productivity known as FMS productivity index for any industry. By knowing the FMS 

productivity index, manufacturing industry can enhance their productivity. 

Flexibility variables are identified by literature review and explored by EFA. These 

variables are grouped into four dimensions i.e. production, product, machine and 

volume flexibility. The GTMA approach correlate these factors and quantified based 

on mutual interdependencies of their variables. This study propose a numerical value 

of performance known as FMS flexibility index for any industry. By knowing the FMS 

flexibility index, manufacturing industry can enhance their flexibility. The flexibility 

and the productivity of the system increase, the performance of the system also 

increases. 

10.2.7 MADM for Ranking of Flexibility 

Combined MADM methods like AHP, TOPSIS, Modified TOPSIS, Improved 

Promethean VIKOR is shown in chapter 7 for ranking of types of flexibility based on 

flexibility variables. 
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Ranking of flexibilities is found out by a different methodology of combined multiple 

attribute decision making method such as an AHP, TOPSIS, Modified TOPSIS, 

Improved PROMETHEE and VIKOR. According to AHP product flexibility; TOPSIS 

production flexibility; modified TOPSIS production flexibility; improved 

PROMETHEE production flexibility; and by VIKOR is production flexibility. In this 

case, the rankings obtained by the different MADM methods for alternative i.e. FMS 

flexibility ranking are consistent but not the same. So, spearman’s rank correlation 

coefficients are calculated to check the consistency in the rankings given by different 

methods. It is observed that the rankings by different methods are consistent and all the 

methods can be considered for averaging of the ranks to find the adjusted ranks of 

alternative FMSs. All five MADM methods have good rank correlation with each other, 

hence the rankings given by any of the five MADM methods considered here has good 

similarity with the rankings given by other methods. Hence, ranking on the basis of 

average ranking values of all methods is carried out. The production flexibility is 

chosen as the top most FMS flexibility as per the FMS flexibility ranking. 

10.2.8 ANFIS Modeling for Makespan Estimation and Tool Life Management for 

Unmanned Production System 

ANFIS modeling is done for makespan estimation and tool life management for 

unmanned production system and shown in chapter 8 and 9 respectively. A case study 

for FMS assembly shop is discussed and found the makespan for assembly by NEH 

algorithm. Based on this, ANFIS model is developed to estimate the makespan for 

assembly shop in advance. So, production manager can plan and schedule the assembly 

accordingly. 

Secondly, two ANFIS model i.e. cutting force ANFIS model and surface roughness 

ANFIS model for tool life management is developed. Cutting force are based on cutting 

speed, feed and depth of cut.  Surface roughness are based on cutting speed, feed, depth 

of cut and cutting force. Cutting force and surface roughness are predicted from these 

models and these are the indicators of tool life. Tool life cannot be predicted directly 

for unmanned production system so cutting force and surface roughness are used to 

indicate tool life for unmanned production system. 
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10.2.9 Metaheuristic Optimization of Cutting Parameters 

Metaheuristics are used to optimize the cutting parameter like speed, feed and depth of 

cut to optimize cutting force in chapter 9. Two metaheuristics technique are used i.e. 

genetic algorithm and teacher learning based optimization. The optimum turning 

parameters in the GA, the minimum cutting force (C = 32.916 N) value was obtained 

at s = 181.559 m/min, f = 0.075 mm/rev and d = 0.1. The TLBO algorithm is also 

applied in this optimization problem. The optimum turning parameters in the TLBO, 

the minimum cutting force (C = 32.6547 N) value was obtained at s = 167 m/min, f = 

0.075 mm/rev and d = 0.1. Fitness value and individual values of parameters found by 

GA and TLBO are discussed in chapter nine. Both techniques have almost similar 

results. Objective function for optimization is created by regression analysis by Minitab 

software. The results of metaheuristics are also verified by ANFIS modeling. So, it is 

future direction for production manager to optimize cutting force to get better tool life. 

10.3 CONCLUSION 

This chapter focuses on the synthesis of the research reported in this thesis. The 

synthesis indicates that there is an agreement in the outcomes of different 

methodologies used in the present research work. Figure 10.1 illustrates the integration 

of methodologies used in this research. Further, the conclusion, key findings, 

implications and scope for future research have been presented in the next chapter. 
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CHAPTER XI 

SUMMARY, KEY FINDINGS, SCOPE FOR FUTURE 

WORK AND CONCLUSION   

 

11.1  INTRODUCTION  

The major causes to implement FMS in manufacturing firms are regularly changing 

customer demands, cut throat competition and globalization. During past few decades 

various issues of FMSs are extensively explored by the researchers but their capabilities 

are not fully exhausted. The reason behind this is the wide gap existing between the 

theoretical research and practical expectations of the manufacturing industries. The 

alternate forms of FMSs can be developed by pursuing the researcher to research in 

exploring and analyzing the FMSs in Indian context. 

11.2  SUMMARY OF THE WORK DONE 

The present research has developed and justified the FMSs for Indian industrial 

environment. In this section, the research carried out for achieving the research 

objectives is presented. The main work undertaken in this research includes the 

following 

i. Exhaustive literature review was conducted to identify some relevant issues and 

variables in the field of FMSs. 

ii. On  the  basis  of  the  literature  review  and  discussion  with  industry  personnel  

and academicians, a questionnaire  was designed to elicit responses from the 

manufacturing experts. The responses to the questionnaire-based survey helped 

to understand the inclination of the Indian industries towards performance, 

productivity and flexibility of FMSs.  

iii. Different issues handled in the questionnaire included for performance, 

productivity and flexibility of FMSs.  

iv. The questionnaire was analyzed for descriptive statistics testing. 

v. The statistical analysis of the questionnaire is followed by development of three 

models with the ISM methodology. This study has been focused on finding the 

driving and dependence power of the variables of performance, productivity and 
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flexibility of FMS by MICMAC analysis. The developed ISM models also help 

in understanding the mutual relationship of the variables. 

vi. SEM analysis is carried out for performance, productivity and flexibility 

variables of FMS. 

vii. The GTMA based framework was developed to quantify the performance, 

productivity and flexibility variables of FMS.  

viii. Ranking of flexibility is done by combined multiple attribute decision making 

methods, i.e. AHP, TOPSIS, Modified TOPSIS Improved PROMETHEE and 

VIKOR. 

ix. Makespan estimation of FMS assembly shop is done by NEH algorithm and 

ANFIS. 

x. Tool life management for unmanned production system is done by two ANFIS 

model  

a) Tool life management of unmanned production system based on surface 

roughness by ANFIS. 

b) Tool life management of unmanned production system based on cutting force 

by ANFIS and metaheuristics. 

11.3 MAJOR CONTRIBUTIONS OF THE RESEARCH 

The major contributions made through this research are given below 

i. The present research provides a comprehensive review of the literature and 

identifies the variables which affect performance of FMS. 

ii. Fifteen variables are identified which effect the performance of FMS. 

iii. Twenty variables which effect the productivity of FMS are recognized. 

iv. Fifteen variables which are the cause of the flexibility of FMS are detected. 

v. The driving and dependence power of variables have been analyzed and found 

the main variables which affect the FMS. 

vi. Major factors affecting the performance, productivity and flexibility of FMS 

have been identified. 

vii. The driving and dependence power of flexibilities have been analyzed by ISM. 

viii. FMS performance index, FMS productivity index and FMS flexibility index has 

been proposed by GTMA framework which help any industry to know its own 

index value to upgrade them. 
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ix. Combined multiple attribute decision making methods are used for ranking of 

flexibility based on fifteen variables. Spearman’s rank correlation coefficients 

observed that the rankings by different methods are consistent. 

x. NEH algorithm found the makespan and made a model by ANFIS for industry 

to predict the makespan of FMS assembly shop. 

xi. Optimization of cutting parameters by metaheuristics i.e. G.A and TLBO and 

discussed the method to optimize parameters.  

xii. ANFIS model is proposed for surface roughness and cutting force for tool life 

management in industries. 

11.4 KEY FINDING OF THE RESEARCH 

The key finding, emerge from this research are as follows 

i. Mainly responding companies are interested to enhance the performance, 

productivity and flexibility of FMS. 

ii. Survey result showed that automation is the most important as a performance 

variable of FMS. Use of automated material handling devices is the most 

important as a productivity variable of FMS. Flexible fixturing is the most 

important as a flexibility variable of FMS.  

iii. An insight into the ISM model of performance variables of FMS indicates that 

automation, effect of tool life, use of automated material handling devices and 

rework percentage are the highest driving power. It means automation and effect 

of tool life plays a significant role for affecting performance of FMS. 

iv. With the ISM modeling and MICMAC analysis of productivity variables of 

FMS training, trained worker and effect of tool life variables have the most 

driving power. These are the key variables to enhance the productivity of FMS. 

v. Flexibility variables of FMS are evaluated by TISM and found that use of 

reconfigurable machine tool variable is main variable. Focusing on this variable 

increase the flexibility of the manufacturing system. 

vi. Use of reconfigurable machine tool, automation and flexible fixturing have the 

highest driving power and it is evaluated by fuzzy MICMAC analysis. 

Therefore focuses on the said variable will increase the flexibility of system.  

vii. The framework developed by graph theory matrix approach suggests a 

numerical value of feasibility which is termed as FMS performance index for 

any industry. By evaluating FMS performance index value for different 
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industries, their manufacturing system can be compared for their suitability to 

FMS environment. 

viii. Another framework is also developed by graph theory matrix approach to 

quantify productivity variables of FMS. This study suggests the way to evaluate 

productivity variables of FMS. A framework for flexibility variables of FMS is 

also developed by graph theory matrix approach to quantify flexibility variables 

of FMS.  

ix. The three main factors are identified for FMS performance like quality, 

productivity and flexibility. 

x. The four main factors are evaluated for FMS productivity like quality, machine, 

people and flexibility. 

xi. Four flexibility i.e. production, machine, product and volume flexibility are 

identified as dimensions in FMS. 

xii. Exploratory factor analysis (EFA) identify factors from all available variables 

of performance, productivity and flexibility. 

xiii. To confirm the relationships between variables, structural equation modelling 

(SEM) is used. This is used for specification and estimation of direct as well as 

indirect relationship between variables. 

xiv. Ranking of flexibility is identified by combined MADM methods and 

concluded that production flexibility is the most important flexibility of FMS.  

So, production manager can analyze their organization. 

xv. FMS assembly shop makespan estimation is done by soft computing technique. 

Makespan represents the minimum time required to complete all the jobs. A 

model based on ANFIS is used for estimation of makespan. With this model, 

production manager can plan the production schedule. 

xvi. Tool life management for unmanned production system is also done by soft 

computing technique. Two model are prepared one for cutting force and another 

for surface roughness. 

xvii. Cutting force is estimated on the three parameters - speed, feed and depth of cut. 

In this cutting force is the indicator of tool life. The cutting forces are normally 

increased by wearing of tool. As per literature also, tool breakage or tool wear 

are strongly related to cutting force. 
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xviii. Optimization of cutting force, based on speed, feed and depth of cut takes place 

by metaheuristics i.e. G.A and TLBO. The optimum values are the mostly same. 

Production manager can find the optimum parameters values to find the 

optimum value of cutting force. 

xix. Surface roughness is estimated on the four parameters like speed, feed, depth of 

cut and cutting force. In this surface roughness is the indicator of tool life. The 

surface finish produced in a machining operation usually deteriorates as the tool 

life gets over or nearly over. 

xx. ANFIS as soft computing technique, enables the production system to monitor 

the unmanned production system tool life. 

11.5 IMPLICATION OF THE RESEARCH 

The findings of this research have made some important contributions to the literature. 

These findings deal with some important issues related to the performance of FMSs in 

Indian industrial environment. 

Other major contribution of this research are as follows: 

i. An important contribution of this research to the literature is the identification 

of gaps in this present research in the areas of FMS. To the best of our 

knowledge such a consolidated list of gaps in research area of FMS has not been 

reported earlier. 

ii. A large number of performance variables have been identified and analyzed in 

this research work. 

iii. A large number of productivity variables have been identified and analyzed in 

this research work. 

iv. A large number of flexibility variables have been identified and analyzed in this 

research work. 

v. The perceptions of Indian companies towards the variables of performance, 

productivity and flexibility of FMS have been captured by administering 

questionnaire. 

vi. Variables of performance, productivity and flexibility of FMS are developed by 

ISM model and MICMAC analysis. 

vii. These models are statistical validated by SEM and highlighted the finding of 

performance, productivity and flexibility of FMS. 
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viii. Evaluation of flexibility done by MADM methods and found the ranking of 

flexibility based on some variables. 

ix. FMS performance index, FMS productivity index and FMS flexibility index 

have been proposed in this research through which any industry can calculate 

its index to their organization. Such type of numerical values have not been 

reported earlier. 

x. FMS assembly shop makespan can be estimated in advance for the planning of 

production schedule. 

xi. Tool life management for unmanned production system judged by cutting force 

and surface roughness values because there is no direct measurement of tool 

life. So, with the help of ANFIS cutting force and surface roughness model tool 

life can be predicted on line monitoring purpose for unmanned production 

system. 

xii. Cutting parameter can be optimized by metaheuristics to find the optimum 

values.  

11.5.1 Implications for the Managers 

Some important managerial implications have also been emerged from this research. 

Managers in the area of manufacturing may drive useful insight from the empirical 

study presented in this research. Production Manager often feels handicapped in 

differentiating machine flexibility, process flexibility, product flexibility, operation 

flexibility and production flexibility. They also face problems in manufacturing system 

like how to measure the level of flexibility and how to quantify them. Researchers have 

not been able to develop any universally accepted technique on which the 

manufacturing people can rely. Though a lot of research work has been reported 

regarding flexibility in the FMS, yet its real-life implications are not encouraging. In 

this research, the definitions of different flexibilities are tried to define as given in the 

literature. The research work concluded that production flexibility has the most impact 

on flexible manufacturing system. It is helpful to the production manager for analyzing 

this for their organization. Based on this ranking, they can conclude that on which 

flexibility should focus to reduce costs or increase the performance of the 

manufacturing system. As the flexibility increases, the result productivity of the system  
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increases. Flexibility is not a strictly defined phenomenon and consequently any 

measure proposed for it will be inapplicable in many situations. Managers should study 

the measures carefully and modify them, or possibly reconstruct them, to best suit their 

needs. However, in the specific case, the type and amount of flexibility needed to be 

established, as well as the means for achieving that type of flexibility, focusing on the 

specific sales, cost and asset issues that are relevant to the company and manufacturing 

situation. Practicing manager should ensure the driving and dependence power of 

variables to enhance the flexibility, productivity and performance of FMS. To ensure 

better tool life, optimum parameters should be used.  

The GTMA methodology has very high industrial relevance in its application like 

quantification of the factors. In advance, industries can know the strength of various 

variables which affect the performance/productivity/flexibility of FMS and steps can 

be taken to increase it. Industries should calculate their index according to their 

requirements in FMSs. Intensity of flexibility/ performance/productivity will be 

different for different organizations because some organization may be simple 

implanted FMS or others may be complicated (fully) FMS.  

11.5.2 Implications for the Industries 

The present research is beneficial for all sorts of Indian manufacturing industry. FMS 

use robots and AGVs for material handling purposes. This will boost the employee for 

safe working like as robots are used for hazardous and complicated work like painting 

and welding of assembly shop. The GTMA methodology has very high industrial 

relevance in its application like quantification of the factors. In advance, industries can 

know the strength of various variables which affect the performance / productivity / 

flexibility of FMS and steps can be taken to increase it. Industries should calculate their 

index according to their requirements in FMSs. Intensity of flexibility / performance / 

productivity will be different for different organizations because some organization 

may be simple implanted FMS or others may be complicated (fully) FMS. To improve 

the performance, productivity and flexibility of FMS certain variables and factors are 

discussed.  So, management should focus the key variables to enhance the performance, 

productivity and flexibility of FMS. 
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Industries can schedule their production plan as the estimation of makespan of assembly 

shop is done by ANFIS modeling in advance. So, they can schedule the production plan 

effectively. 

Industries can optimized the cutting parameters like speed, feed and depth of cut to get 

the optimum cutting force. Cutting force mainly effect the tool life while tool life is 

important variable in FMS to increase the productivity and performance of FMS. Tool 

life can be managed for unmanned production system by using ANFIS modeling 

because directly online monitoring of tool life is not possible. 

11.5.3 Implications for the Academicians 

There are some important implications in the present research which are for the 

academicians. The study on various issues related to FMS and identified gaps from the 

literature will be helpful to the researcher carried out future research in this area. The 

questionnaire presented in this research can be used as an instrument to carry out future 

research in the area of performance, productivity and flexibility of FMS. The developed 

ISM and TISM model help to impose model and the mutual relationship of variables 

and find out driving and the dependence power of variables, using fuzzy MICMAC 

analysis.  It is further analyzed by structural equation modeling, but it may be extended 

for higher degree analysis. Graph theory matrix approach motivate the researcher to 

develop the framework to indicate the numerical index of variables. MADM method 

motivates evaluation of any variable in FMS. To predict the values, ANFIS model can 

be designed according to their requirement.       

11.6 LIMITATIONS AND SCOPE FOR FUTURE WORK 

This research has provided substantial insights into the FMS performance issues. There 

is a need to further explore the role of these variables in a flexible manufacturing system 

and carry out case studies to examine the impacts of these variables in different practical 

situations. For the sake of simplicity the sub-systems within each system of risks were 

not considered. This is one of the major limitations in the present work. In the present 

study, limited implication have been identified for their analysis. Experts help can be 

sought to develop the contextual relationships for the ISM model, which may have 

introduced some element of bias. 
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However, the research work can be extended to following directions: 

i. The initial model has been generated using ISM methodology for performance, 

productivity and flexibility of FMS. The ISM models generated in the present 

research work are validated by using structural equation modeling (SEM) as it 

has a capability to validate such ISM models. The SEM  has  a  capability  to  

utilize  the  already  existing  model  as  ISM  and  SEM  are complimentary in 

nature. But SEM model used in this research has some limitation as: 

a) The present study applies SEM to a first order three factor structure for 

fifteen performance variables. SEM could be applied to a more advanced 

model incorporating a greater number of variables. 

b) The present study applies SEM to a first order four factor structure for 

twenty productivity variables. SEM could be applied to a more advanced 

model incorporating a greater number of variables. 

c) The present study applies SEM to a first order three factor structure for 

fifteen flexibility variables. SEM could be applied to a more advanced 

model incorporating a greater number of variables. 

ii. More number of variables affecting the FMS’s performance, productivity and 

flexibility can be identified to develop ISM and GTMA based models 

iii. ISM has been developed to analyse the interactions in different flexibilities in 

FMS. It identifies the hierarchy of actions to be taken in handling different 

flexibilities, which affect the FMS. This model has not been statistically 

validated. Structural equation modelling (SEM), also commonly known as 

linear structural relationship approach, has the capability of testing the validity 

of such a hypothetical model. 

iv. The ranking of flexibility is based on fifteen variables using the MADM. But 

the relative importance of the outcomes should be discussed with some case 

study, because it could be a major concern in decision making. The present 

study applies only fifteen factors for ranking of flexibility, a greater number of 

factors may be considered for this purpose. 

v. Research is further required in this area to further explore these outcomes in 

practical scenarios and by different more MADM methods.  
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vi. Case study is carried out to estimate the makespan of FMS assembly shop with 

ANFIS. But it may be required more training to find the correlation coefficients 

of the makespan of assembly shop.  

vii. Tool life management of unmanned production system is based on cutting force 

and surface roughness. There are some limitations of this research like there can 

be more than three variables to predict the tool life of unmanned production 

system. Secondly, this model cannot be optimal for another cutting force 

because further re-training may be necessary for other model.  

11.7 CONCLUSION 

This research, focuses on the performance analysis of FMS. The aim of this study is to 

recognize some factors which effect performance, productivity and flexibility of FMS. 

A comprehensive literature review and issues of constraints of FMS like machine tool, 

tool management, material handling system, robots and fixtures have been addressed. 

A questionnaire has been developed and survey of Indian industries has been conducted 

to understand the perspective and inclination of Indian industries towards the FMS. 

Variables affecting the performance, productivity and flexibility of FMS are included 

in the questionnaire.  

In the present research work, two ISM model of variables affecting the performance 

and productivity of FMS and one model for types of flexibilities have been prepared. 

After analysis of two model of variable of performance and productivity it is found that 

variables such as automation, effect of tool life, use of automated material handling 

system, rework percentage, setup time and scrap percentage are the key variables 

affecting the performance and variables such as automation, effect of tool life, reduction 

in rework percentage, training and trained worker are the key variables for productivity 

of FMS. It is observed that automation, effect of tool life and rework percentage are the 

common key variables affecting the performance and productivity of FMS. Therefore 

industrial manager should focus on these variables for effective utilization of FMS. 

From the third ISM model of flexibility, it is observed that production flexibility, 

product flexibility, material handling flexibility, machine flexibility, process flexibility 

and routing flexibility are the key flexibilities which are affecting the utilization of 

FMS. 

Another framework of variable of flexibility of FMS has been prepared by TISM. From 

this framework it is observed flexible fixturing, automation, use of the reconfigurable 
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machine tool, use of automated material handling devices and flexibility in production 

are the key variables which affect the flexibility of FMS. From the above models of 

ISM and TISM, it can be concluded that automation is the major variable which affect 

the performance, productivity and flexibility of FMS. Hence, industrial expert should 

focus on the automatic operation of all component of FMS and it is also main 

requirement in unmanned operation especially for the third shift of manufacturing 

industries.  

Further ISM and TISM model prepared for performance, productivity and flexibility of 

FMS have been validated by SEM. Exploratory factor analysis (EFA) and confirmatory 

factor analysis (CFA) are used for SEM. EFA is applied to extract the factors in FMS 

by SPSS software and three factors are identified which effect performance of FMS i.e. 

productivity, flexibility and quality. These factors are confirmed by CFA through 

AMOS software. Four factors are identified by EFA through SPSS software which 

effect the productivity of FMS i.e. people, machine, flexibility and quality and these 

factors are confirmed by CFA through AMOS software. Four dimensions are clearly 

defined i.e. production, product, machine and volume flexibility by EFA through SPSS 

software and confirmed by CFA through AMOS software.  Quantification is done by 

GTMA for performance, productivity and flexibility factors of FMS. In this quantitative 

analysis of performance of FMS, it is found that productivity factor has the maximum 

index value which means that these variables are the major variables affecting the 

performance of FMS and some of these variables are aligned with the qualitative 

analysis of performance of FMS.  In this quantitative analysis of productivity of FMS, 

it is found that flexibility factor has the maximum index value which means that these 

variables are the major variables affecting the productivity of FMS and some of these 

variables are aligned with the qualitative analysis of productivity of FMS. In this 

quantitative analysis of flexibility of FMS, it is found that production flexibility has the 

maximum index value which means that these variables are the major variables 

affecting the flexibility of FMS and some of these variables are aligned with the 

qualitative analysis of flexibility of FMS. 

Another framework for ranking the different types of flexibilities of FMS has been 

prepared by combined MADM methods. From the framework, production flexibility is 

the major flexibility affecting the performance of FMS. This is also confirmed with the 
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ISM model of types of different flexibilities in which production flexibility is the key 

flexibility in FMS. 

FMS assembly shop makespan is calculated by NEH algorithm and makespan 

estimation is done by soft computing technique i.e. ANFIS. ANFIS model is a 

combination of neural network and fuzzy rules. The purpose of this research is to gain 

the advantage of the capabilities of both Fuzzy systems, which is a rule-based approach 

well as neural network which focus on the network training. This model has been 

verified and the good average percentage accuracy achieved. Therefore, it is concluded 

that makespan calculation of the production system, by the proposed ANFIS with NEH 

heuristic rules can be used as a reliable approach in estimating the job completion time 

of the problem studied. 

As the tool life has been found one of the major variables affecting the performance 

and productivity of FMS (as depicted from the ISM model of performance and 

productivity of FMS). Therefore tool life management for unmanned production system 

is analyzed by two ANFIS models taking into the account of effects of cutting force 

and surface roughness on tool life. Cutting force is one important characteristic variable 

to be monitored in the cutting processes to determine tool life regarding tool breakage, 

tool wear and surface roughness (Ra) of the workpiece. The principal presumption was 

that the cutting forces are normally increased by the wear of the tool. Surface roughness 

is also the indicator of tool life. The surface finish produced in a machining operation 

usually gives higher finish with a good tool and it deteriorates as the tool life gets over 

or nearly to be over. ANFIS method is used to extract the features of tool states from 

cutting force signals. ANFIS model for cutting force shows a good performance with a 

good correlation coefficient and average percentage error for predicting cutting force. 

The ANFIS model for surface roughness also achieved good correlation coefficient and 

average percentage error for predicting surface roughness. Hence these models provide 

ability to estimate tool life for the unmanned production system related to cutting force 

and surface roughness. Tool life of tool is good at the optimized parameters of cutting 

force. Optimization of cutting forces based on speed, feed and depth of cut is taken by 

GA and TLBO algorithm and found the optimum parameter values. The same 

parameters values are examined in ANFIS model and the results are appropriate. So, 

production manager can design any model to predict the data based on these models.     
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APPENDIX-A 

QUESTIONNAIRE 

Mechanical Engineering Department 

YMCA University of Science and Technology, Faridabad  

Sub: - Filling questionnaire for Dissertation (Ph.D.) work   on                   

Performance analysis of Flexible manufacturing System. 

Dear Sir/Madam, 

I am pursuing for research degree (Ph.D.) in Mechanical Engineering under   the 

guidance   of Prof. (Dr.) Tilak Raj, Professor in Mechanical Engineering at YMCA 

University of Science and Technology, Faridabad. 

A flexible manufacturing system (FMS) is an integrated, computer-controlled  

complex arrangement of automated material handling devices and numerically 

controlled (NC) machine tools that can simultaneously process medium- 

sized volumes of a variety of part types. FMS can be very rapidly adjusted to part 

variety according to the changing market demands. It can respond quickly and smoothly 

to unexpected changes in the market and recently, it is setting new trends in the 

manufacturing world. The purpose of my present research work under-taken is to 

develop a hierarchical model and to establish a methodology for modeling and analysis 

of performance, productivity and flexibility variables. 

In this regard a questionnaire covering issues related to Performance, Productivity and 

flexibility variables of the Flexible Manufacturing system is being sent to your reputed 

organization. As the answers to these questions provided by you, will be of utmost value 

towards achieving the objective, we earnestly request you to kindly spare some of your 

valuable time for giving answers to various questions as observed in your organization. 

The purpose of the survey is purely academic. Therefore, all responses will be kept 

strictly confidential and will be used only for this academic work. 

I request  you  to kindly  spare  your  valuable  time  to fill up  this questionnaire and  

return through the email / post as  per  your  convenience.  I assure you that it will be 

kept strictly confidential. 

Thanks with warm regards 

Yours Sincerely, 

Vineet Jain (Research Scholar) 
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QUESTIONNAIRE 

Section 1: Organisation Profile 

1. (A) Name of organization……………………………………. 

    (B) Type of business…………………………………………. 

2. Please indicate the number of employees at your organization: 

    (A) Less than 100    []         (B) 101 to 500           []       (C) 501 to 1000   [] 

    (D) 1001 to 3000     []         (E) More than 3000   []        

3. Please indicate the total turnover of your organization in US$ millions: 

    (A) Less than 10   []        (B) 10 to 50         []        (C) 50 to 100    [] 

    (D) 100 to 500      []        (E) 500 to 1000   []         (D) More than 1000 [] 

 

Section II: FMS Performance Variables 

4. Please indicate the level of following variables which affect the Performance of FMS 

in your company (1- strongly disagree, 2 - disagree, 3- slightly disagree, 4 - neither 

disagree nor agree, 5 - slightly agree, 6- agree, 7 - strongly agree):          

Sr. 
No Performance Variables 1 2 3 4 5 6 7 

1 Unit manufacturing cost         

2 Unit labor cost          

3 Manufacturing lead time         

4 Effect of tool life         

5 Throughput time         

6 Set up cost         

7 Scrap percentage         

8 Rework percentage         

9 Setup time         

10 Automation         

11 Equipment utilization         

12 Ability of manufacturing of variety of product         

13 Capacity to handle new product         

14 Use of automated material handling devices         

15 Reduced work in process inventory         
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Section III: FMS Productivity Variables 

5. Please indicate the level of following variables which affect the productivity of FMS 

in your company (1- strongly disagree, 2 - disagree, 3- slightly disagree, 4 - neither 

disagree nor agree, 5 - slightly agree, 6- agree, 7 - strongly agree):         

      

 
 

 

Sr. 
No Productivity Variables 1 2 3 4 5 6 7 

1 Training        

2 Financial incentive        

3 Unit labor cost        

4 Effect of tool life        

5 Customer satisfaction        

6 Reduction in scrap percentage        

7 Reduction in rework percentage        

8 Reduction of rejection        

9 Equipment utilization        

10 Trained worker        

11 Manufacturing lead time and setup 

time 

       

12 Unit manufacturing cost        

13 Throughput time        

14 Set up cost        

15 Automation        

16 Use of automated material handling 

devices 

       

17 Reduction in material flow        

18 Reduced work in process inventory        

19 Capacity to handle new product        

20 Ability of manufacturing of variety of 

product 
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Section IV: FMS Flexibility Variables 

6. Please indicate the level of the following factors which affect the flexibility of FMS 

in your company (1- strongly disagree, 2 - disagree, 3- slightly disagree, 4 - neither 

disagree nor agree, 5 - slightly agree, 6- agree, 7 - strongly agree):   

Sr. 
No Performance Variables 1 2 3 4 5 6 7 

1 Ability to manufacture a variety of products         

2 Capacity to handle new products         

3 Flexibility in production         

4 Flexible fixturing         

5 Combination of operation         

6 Automation         

7 Use of automated material handling devices         

8 Increase machine utilization         

9 Use of the reconfigurable machine tool         

10 Manufacturing lead time and set up-time reduction        

11 Speed of response         

12 Reduced WIP inventories         

13 Reduction in material flow         

14 Quality consciousness         

15 Reduction in scrap         

 
  Respondent Profile 

1. Name (If you please): 

2. Designation: 

(a) CEO  []      (b) Sr. Manager  []   (c) Manager  []      (d) Supervisor   []    

(e) Junior staff   [] 

3. Your functional area: 

(a) Production  [] (b) Marketing  [] (c) Maintenance  [] (d) Quality Control   []   

(e) Any other  []  (please specify) 

4. Your association in years with current organization: 

(a) Less than 5   []      (b) 5-7    []   (c) 8-10    []      (d) More than 10      []   

Thank you very much for your valuable feedback           
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APPENDIX-B 

BRIEF PROFILE OF THE RESEARCH SCHOLAR 

 

NAME   :     Vineet Jain 

ADDRESS  :  141/ 9, Shiv Puri, Gurgaon-122001. 

Mobile: 08901510570; E-Mail: vjdj2004@gmail.com 

WORK EXPERIENCE:  Total        : 17 years 

    Industry   :  05 years 

    Teaching  : 12 years 

EDUCATIONAL QUALIFICATION: 

 Pursuing Ph. D in Mechanical Engineering from YMCA University of Science and 

Technology Faridabad.  
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