6.	(a)	Describe the pure rotational Raman spectrum of a
		diatomic molecule with suitable transition diagram.
		(5) Zeeman effect.
	(b)	In the vibrational Raman spectrum of HF, there
		are adjacent Raman lines of wavelength 2670 Å
		and 3430 Å. What is the fundamental vibrational
		frequency of the molecules? (c = 3.0×10^{10} cm/sec)
		(5) of a normal triplet state have separation 20
	(c)	The force constant of vibrating CO molecule is
		about 1870 newton/metre. Calculate the frequency
		of vibration of the molecule and the spacing
		between its vibrational energy levels in eV.
		Given: $h = 6.63 \times 10^{-34} \text{ Js}, 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J},$
		$\mu_{\rm CO} = 1.14 \times 10^{-26} \text{ kg.}$ (5)
7.	(a)	Describe the principle features of the electronic band
		spectrum of a diatomic molecule. (5)
	(b)	What is Franck-Condon Principle? Explain the
		intensity distribution in Absorption Bands from
		Franck-Condon Principle. (5)
	(c)	Write short notes on any one:
		(i) Intensity alternation in Raman Spectra. (5)
		(ii) Stark effect.
		(b) Discuss the fine structure of infra-red

Roll No.	01/198
	9-

Total Pages :

752301

December 2023 M.Sc. (Physics) III SEMESTER Atomic and Molecular Physics (MPH-301)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of scientific calculator is allowed.

PART-A

- 1. (a) What do you understand the term spin-orpit interaction? (1.5)
 - (b) Calculate the possible orientations of the orbital angular momentum vector L corresponding to $\ell=2$ with respect to a magnetic field along the z-axis.

(1.5)

- (c) Find the possible values of J for 'sd' configuration using j-j coupling. (1.5)
- (d) What is the difference between normal and anomalous Zeeman effect? (1.5)

752301/80/111/80

9 [P.T.O.

- (e) Calculate the magnetic moment of the ground state of the term ${}^{3}P_{2}$. Also find the how many sub-states the ground state will split in a weak as well as strong magnetic field. (1.5)
- (f) What is the Paschen-back effect and how is it different from Zeeman effect? (1.5)
- (g) The nuclear spin of bismuth atom is 9/2. Find the allowed values of hyperfine structure quantum number of the term ${}^{2}D_{5/2}$. (1.5)
- (h) What is the difference between continuous and characteristics X-Rays? (1.5)
- (i) What do you mean by Raman effect? (1.5)
- (j) Define dissociation energy in molecular spectra.

(1.5)

PART-B

- 2. (a) Drive an expression for the Larmor precessional frequency. What is its importance? (5)
 - (b) Briefly discuss about the Stern-Garlach experiment and why this experiment is used only for atoms not ions. (5)
 - (c) Determine the spectral terms configuration of carbon atom for the term '2p3p' using L-S coupling and then arrange these terms in order of the increasing energy. (5)

- 3. (a) Drive an expression for the magnetic interaction energy for a single valence electron for anomalous Zeeman effect. (5)
 - (b) Calculate the Zeeman pattern for the spectral line arising from ${}^2D_{5/2} {}^2P_{3/2}$ transition in one electron atom. (5)
- (c) In an atom obeying L-S coupling, the component of a normal triplet state have separation 20 cm⁻¹ and 40 cm⁻¹ between adjacent components. There is a higher state for the separations are 22 cm⁻¹ and 33 cm⁻¹.

 Determine the terms for the two states. (5)
- 4. (a) What is Moseley's law? Describe and explain the fine structure observations in X-ray emission spectrum.
 - (b) Discuss the salient features of pure rotation spectra and write down the expression for the energy of a rigid-rotator model of a diatomic molecule and predict the pure rotational spectrum of the molecule. (7)
- 5. (a) In the far infra-red spectrum of HCl molecule, the first line falls at 20.68 cm⁻¹. Calculate the moment of inertia and bond length of the molecule. Given: $h = 6.62 \times 10^{-34}$ Js, $c = 3.0 \times 10^{8}$ m/sec, and $N_A = 6.023 \times 10^{23}$ mol⁻¹. (5)
 - (b) Discuss the fine structure of infra-red bands of diatomic molecules with suitable diagrams. Why are they all degraded towards red (longer wavelength side)? (10)