Roll No. Total Pages: 3

013305

December wow	D	ece	m	ber	2023
--------------	---	-----	---	-----	------

B.Tech. [ME/ME(Hindi Medium)]- IIIrd SEMESTER **Engineering Mechanics (ESC-203A-21)**

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
 - 2. Answer any four questions from Part-B in detail.
 - 3. Different sub-parts of a question are to be attempted adjacent to each other.
 - 4. Symbols have their usual meanings.

1.	(a)	Define Coplanar and Concurrent Forces.	(1.5)
	(b)	What is Rigid Body equilibrium of forces?	(1.5)
	(c)	What is limiting friction?	(1.5)
	(d)	Define wedge friction.	(1.5)
	(e)	What is Zero force member in truss?	(1.5)
	(f)	What is centre of gravity?	(1.5)
	(g)	What is conservative force?	(1.5)
	(h)	Define rectilinear motion.	(1.5)

013305/430/111/350

101 [P.T.O.

- (i) Differentiate between Frames & Machines. (1.5)
- (j) What is virtual work?

PART-B

2. (a) Two concurrent 50 N forces and 150 N act on the body along directions at 0° and 60° to X-axis respectively. Find the magnitude and direction of the resultant.

(10)

- (b) Explain the concepts of Particle equilibrium in 2-D and 3-D.
- 3. A body of weight W is placed on a rough inclined plane having an inclination angle oc to the horizontal. The force P is applied to the horizontal to drag the body. If the body is on the point of motion up the plane, prove that P is given by P = W tan (α + Φ). Where Φ = Angle of friction. (15)
- 4. Calculate forces in members in the plane truss loaded as shown below in figure: (15)

- 5. (a) Derive a relationship for finding the moment of inertia of a triangle. (10)
 - (b) Explain the principle of virtual work for particles and ideal system of rigid bodies. (5)
- 6. (a) Explain the impulse-momentum theorem with a suitable example, (10)
 - (b) State newton's 2nd law of motion. (5)
- 7. A body starts from rest with an acceleration given by $a = 10 0.006 \text{ S}^2$. Find the velocity of the body when it has travelled 20 m. also, find the distance covered by the body when it comes to rest Here $a = \text{acceleration (m/s}^2)$, S = distance (m).