(a) Discuss the maxima and minima of

$$f(x, y) = x^3 y^2 (1 - x - y). (8)$$

- (b) Find the directional derivative of $\phi(x, y, z) = x^2yz +$ $4xz^2$ at the point (1, -2, -1). In the direction of the vector $2\vec{i} - \vec{j} - 2\vec{k}$.
- (a) For what values of k, the equations (7)

$$x + y + z = 1,$$

$$2x + y + 4z = k,$$

and
$$4x + y + 10z = k^2$$

have (i) Unique solution (ii) Infinite number of solutions (iii) No solution and solve them completely.

(b) If $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, then find A^n in terms of A and I.

(8)

Ro., No. Total Pages: 4

013101

December 2023

B.Tech. (Mechanical Engineering) 1st SEMESTER Mathematics-I (Calculus and Linear Algebra) (BSC-103A)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

(a) Test the convergence of the improper integral $\int \frac{dx}{x^2}$.

(b) What is relation between Beta and Gamma functions?

(1.5)

State Mean value theorems. (1.5)

(d) Explain "ALTERNATING SERIES" with example.

(1.5)

(e) Evaluate (1.5)

013101/410/111/275

254 [P.T.O.

(f) Test the convergence of the following infinite seque: (1.5)

$$\left\{\sqrt{n+1}-\sqrt{n}\right\}.$$

- (g) Find grad ϕ for the function $\phi(x, y, z) = 3xy + y^3z$ at the point (1, -2, 1). (1.5)
- (h) State Cayley-Hamilton Theorem. (1.5)
- (i) Find the Eigenvalues of the matrix $\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. Hence, find the matrix whose Eigenvalues are $\frac{1}{6}$ and -1. (1.5)
- (j) Prove that a square matrix A and its transpose A^T have the same eigenvalues. (1.5)

PART_B

- 2. (a) Find the evolute of the rectangular hyperbola $xy = c^2$. (8)
 - (b) The portion of the curve $y = \frac{x^2}{2}$ cut off by the straight line $y = \frac{3}{2}$ is revolved about the y-axis. Find the surface area of revolution. (7)

3. (a) Evaluate
$$\int_{0}^{x/2} \sin^{8}\theta \cos^{2}\theta \, d\theta.$$
 (5)

(b) Using Taylor's theorem, prove that

$$x - \frac{x^3}{6} < \sin x - \frac{x^3}{6} + \frac{x^5}{120}$$
, for $x > 0$. (10)

- 4. (a) Evaluate $\lim_{x\to 0} \frac{\tan x x}{x^2 \tan x}$. (5)
 - (b) Discuss the nature of the series (10)

$$\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^2 x^3 + \dots \infty, \text{ for } x > 0.$$

5. (a) If a_0 , a_1 , a_2 ,..., a_n are real numbers such that (5)

$$\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2} + a_n = 0,$$

then there exists at least one x in (0, 1) such that

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0.$$

(b) Find the Fourier series for (10)

$$f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}.$$

Deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
.