December 2023

B.Tech (ENV) Re-Appear - III SEMESTER

Statistical Analysis and Environmental Modelling (PCC-ENV-303)

Max. Marks:75 Time: 3 Hours 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. Instructions: 2. Answer any four questions from Part -B in detail. 3. Different sub-parts of a question are to be attempted adjacent to each other. Use of calculator is allowed. PART -A (1.5)Q1 (a) Calculate the eigenvectors of the following: (b) Differentiate between t - distribution and Chi square distribution. (1.5)(c) What do you understand by Accuracy and Precision? Explain. (1.5)(1.5)(d) Define the following terms: 1. Local Maxima 2. F-test 3. Taylor series (e) From the following table, calculate the rank correlation coefficient. (1.5)16 40 33 48 15 23 24 13 (1.5)(f) State the Linearity property of Laplace transform. (1.5)(g) What do you understand by significant figures? Explain. (1.5)(h) Write any three limitations of Lotka Voltra Model. (i) A problem in Mathematics is given to three students A, B and C whose (1.5) chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ respectively. What is the

(j) Calculate $\int x\sqrt{2x+1} \ dx$

019302/30/111/694

probability that the problem will be solved?

	(D)	following data:									(-)		
		X	24	27	28	28	29	30	32	33	35		
		X	18	20	22	25					30		
Q5	(a)	Solve		en any fou		(r	$+v)^2 \frac{dy}{dy}$	$\frac{y}{a} = a^2$					(8)
		$(x+y)^2 \frac{dy}{dx} = a^2$											
	(b)	Solve the system of equations with the help of matrices:											(7)
						3x	+ y + 2	z = 3					
		2x - 3y - z = -3											
							+ 2y +						
Q6	(a)	the action 1.	ce of F ccount What p What p	er accorder	and a es are on of on of	standa norma the ac accou	ard devally dist count int is be	iation tribute s over tween	of Rs. d: Rs. 15 Rs. 10	40. As 0? 0 and	sumin Rs. 15	g that 0?	(8)
	[Given: Value of Z at 0.75 is 0.2735 Value of Z at 0.5 is 0.1915 Value of Z at 1.5 is 0.4332]												
(b) Find the volume of the solid generated by revolving the ellipse													(7)
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 , a > b \text{ be the major axis.}$													
Q7	,	1. Lo 2. Lo	otka Vo	e follow oltra Mo Matrix n Plume	odel Mode	1	.(Choo	ose any	one)				(15)

(b) Calculate the Karl Pearson's coefficient of correlation from the

(7)

Q2 (a) Calculate Mean, Median and Mode using following data:

Marks	Number of Students
Above 0	80
Above 10	77 ar crozingmon z si
Above 20	72
Above 30	65
Above 40	55
Above 50	43
Above 60	28
Above 70	16
Above8 0	10
Above 90	8
Above 100	0

(8)

(7)

(8)

(b) Fit a poisson distribution on the following:

X	0	1	2	3	4
F	192	100	24	3	and Interior

- Q3 (a) The average breaking strength of steel roads is specified to be 18.5 (5) thousands kg. For this a sample of 14 rods was tested. The mean and standard deviation obtained were 17.85 and 1.955 respectively. Test the significance of the deviation using t test.

 [Given, the value of t at 5% level of significance is 2.16]
 - (b) In a sample of 8 observations, the sum of square of deviations from mean is 94.5. In other sample of 10 observations, the sum of deviations from mean is 101.7. Test (using F test) whether there is a significant difference of variation.
 [Given, the value of F at 5% level of significance is 3.29]
 - Show that the maximum value of following is less than its minimum value.

$$x+\frac{1}{x}$$

Q4 (a) From the following data obtain the two regression equations using the method of least squares.

X	1	2	3	4	5	6	7
¥7	3	7	10	12	14	17	20