Roll No.

Total Pages: 3

015504

December 2023 B.Tech. (ENC) - V SEMESTER Integrated Circuit Design (ECP-502)

Time: 3 Hours]

[Maximum Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Implement XNOR gate using pass transistors (1.5)
 - (b) Discuss the photolithographic process with the help of an example. (1.5)
 - (c) Explain accumulation region in MOS transistor with the help of diagram. (1.5)
 - (d) What is the minimum amount of voltage required to operate MOSFET? Write the boundary conditions for linear and saturation region. (1.5)
 - (e) Discuss the advantages & disadvantages of NORA CMOS logic circuits. (1.5)

015504/100/111/245

45 [P. T. O.

- At $V_{GS} = 0$, what happens to the channel of Depletion MOSFETs?
- What is Noise Margin? Explain the method to determine Noise Margin. (1.5)
- (h) What happens when the PMOS and NMOS are interchanged with one another in an inverter? (1.5)
- (i) With the help of band diagram, explain the concept of surface inversion.
- Differentiate between pass transistor and transmission

- 2. (a) Implement the transistor level circuit for NMOS Full Adder and draw its stick diagram.
 - Discuss the various short channel effects in detail.
- Implement the following logic: (a)

$$Y = A\overline{B} + B\overline{C}D + ABC$$

using (i) Complementary CMOS Logic (ii) Domino CMOS Logic. Also mention number of transistor required. (8)

- (b) Discuss the VTC characteristics of a resistive load inverter in detail. (7)
- (a) Consider a CMOS inverter circuit with the following parameters:

 $V_{DD} = 4 \text{ V}, V_{T0,n} = 1.5 \text{ V}, V_{T0,p} = -1.5 \text{ V}, k_n = 290$ $\mu A/V^2$ kp = 140 $\mu A/V^2$. Calculate the low noise margin of the circuit.

- (b) For 50µm MOS technology, two CMOS inverters are cascaded having equal & minimum feature size of load & driver transistors. Find the power dissipation of a CMOS inverter with $C_1 = 0.5$ fF.
- Calculate the delay of a NMOS inverter having feature 5. size:

Stage 1 :
$$(W/L)_{Load} = 2\lambda/4\lambda$$
, $(W/L)_{driver} = 2\lambda/2\lambda$
Stage 2 : $(W/L)_{Load} = 2\lambda/8\lambda$, $(W/L)_{driver} = 2\lambda/2\lambda$. (8)

- Derive the drain current equation with channel length modulation effect.
- For an enhancement type MOS transistor the following parameters were measured: $V_{TO} = 1.5V$, $K' = 80 \mu A/$ V^2 , $V_{GS} = 3.2V$, $V_{DS} = 5V$, $V_{RS} = 0V$, $I_D = 0.48$ mA. Find W/L.
 - (b) Define depletion region charge density. Derive it and explain its importance in terms of threshold voltage.

(7)

Discuss the various steps to fabricate the p type depletion transistor in detail. (15)