- 7. (a) Define power system angular, voltage and frequency stability. Also explain synchronous and asynchronous links. (10)
 - (b) Define multi-terminal and multi-infeed DC systems. Discuss types of MTDC systems and their comparisons.

Transient over-voltages.

Roll No. Total Pages: 4

Simple redding to sample of 007702

December 2023

B.Tech. - VII SEMESTER (Electrical Engineering) HVDC Transmission Systems (ELPE-712)

Time: 3 Hours [Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- (a) What is the need of Smoothing Reactor? (1.5)
 - (b) What are advantages and disadvantage of Equidistant Pulse Control (EPC) regarding Individual Phase Control (IPC)? (1.5)
- (c) Describe evolution phases of National Grid. What are benefits of one nation-one grid-one frequency? (1.5)
 - (d) Sketch Mono polar, bipolar and homopolar Jinks.

(1.5)

007702/70/111/164

424 [P.T.O.

- (e) Define short circuit ratio (SCR). Discuss its significance in HVDC system. (1.5)
- (f) What is the purpose of Snubber circuit? (1.5)
- (g) What are advantages of IGBT based voltage source converter? (1.5)
- (h) Obtain expressions for peak inverse voltage (PIV) and peak-to-peak ripple voltage (PPR) in 6-pulse converter configuration with $\alpha = 0^{\circ}$. (1.5)
- (i) Explain the necessity of VDCOL and CCA controls in HVDC system. (1.5)
- (j) What are the advantages of STATCOM over SVC? (1.5)

PART-B

- 2. (a) Describe difference between HVAC and HVDC transmission systems. Discuss economics, technical performance and reliability aspects. What are the limitations and advantages of HVDC over HVAC?(10)
 - (b) Describe components of a HVDC system using detailed figure. (5)
- 3. (a) Define gate (phase) control of valves. Sketch voltage and current waveforms in a 3-phase 6-pulse bridge converter (Graetz's circuit) with $\alpha = 30^{\circ}$. Derive expression for DC output voltage with phase control.

(10)

(b) A transformer secondary line voltage to a 3-phase bridge rectifier in 365 kV. Calculate the DC voltage output with $\mu = 15^{\circ}$, when $\alpha = (a) 0^{\circ}$, (b) 15° , (c) 30° , and (d) 45° .

(5)

- 4. (a) In a DC line, define: Corona and Corona loss, Radio interference, Audible noise, Space charge field, and Transient over-voltages. (10)
 - (b) The AC line voltage of a 3-phase bridge rectifier is 150 kV when delivering a DC power of 400 MW. Assume a delay angle of 30° and commutating reactance of 10 ohms, find the value of the DC current in the circuit and the DC voltage on load. (5)
- 5. (a) What is the necessity of control in case of a DC link? Define inverter control. Explain constant β control and constant γ control with waveforms and figures. (10)
 - (b) Define PWM methods with wave forms. Why it is used in HVDC transmission? Compare CSC and VSC methods in HVDC system.(5)
- 6. Derive and explain the complete Equivalent Circuit of a HVDC Link. (15)

3