- (b) A planar LED is fabricated from GaAs which h. a refractive index of 3.6. (i) Calculate the optical power emitted into air as a percentage of the internal optical power for the device when the transmission factor at the crystal-air interface is 0.68. (ii) When the optical power generated internally is 50% of the electric power supplied, determine the external power efficiency.
- (a) What are the underlying principles of the WDM techniques?
 - (b) Summarize the main categories of nonlinear effects that occur in optical communication systems. (15)

Rt

Total Pages: 4

008702

December 2023

B.Tech. (ECE) - VII SEMESTER

Fiber Optic Communication

(ECEL-704)

Time: 3 Hours] [Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Describe the function of core and cladding in optical fiber. (1.5)
 - (b) Calculate number of modes of an optical fiber having diameter of 50 μ m & nl = 1.48 & n2 = 1.46 having operating wavelength 0.82 µm. (1.5)

- (c) Define direct bandgap materials and indirect bandgap materials. (1.5)
- (d) Calculate the refractive indices of the core and the cladding of an optical fibre whose NA = .204 and Δ = 0.01.

(1.5)

- (e) What will be the transmission length caused by the fiber loss if $P_{in} = 1 \text{ mW}$ and $P_{out} = 0.75 \text{ mW}$ with fiber attenuation a = 0.5 dB/Km? (1.5)
- (f) A photo diode has a quantum efficiency of 65% when photons of energy of 1.5×10⁻¹⁹ J are incident upon it. (i) Find the operating wavelength of the photodiode, (ii) Calculate the incident optical power required to obtain a photo current of 2.5 nA when the photodiode is operating as described above. (1.5)
- (g) Explain the need of isolator in optical network. (1.5)
- (h) Write the working Principle of OTDR. (1.5)
- (i) List the advantages and disadvantages of using WDM in optical fiber communication system. (1.5)
- (j) Narrate the characteristics of Solitons along with its advantage. (1.5)

PART-B

2. (a) Differentiate between step index and Graded index fiber.

How the rays do propagates in graded index fiber?

(10)

(b) Draw a block diagram of fibre optic communication system and describe the function of each component.

(5)

- (a) A long single mode fiber has an attenuation of 0.5 dB/Km, when operating at a wavelength of 1.55 μm. The fiber core diameter is 6 μm and laser source bandwidth is 400 MHz. Compare the threshold optical powers for Stimulated Brillouin and Raman Scattering within the fiber for the wavelength of 1.55 μm.
 - (b) Explain the surface emitters and edge emitter LEDs.

(10)

- **4.** (a) Develop the expression for total dispersion in single mode fiber.
 - (b) What is a fiber coupler? Explain about three and four port couplers. (15)
- 5. (a) Why is erbium used in EDFA? Describe the structure of an EDFA & explain the function of each component.

(5)

- (b) Explain in detail the operation of Avalanche Photo Diode with its structure. (10)
- 6. (a) Explain in detail the operation of Avalanche Photo Diode with its structure. (10)