August/September 2022
 B.Sc. (Chem.) IV SEMESTER Physical Chemistry-IV (BCH-403)

Time : 3 Hours]

[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) What is the EMF of a Concentration Cell consisting of Zn electrodes, one immense in a solution of 0.01 molar concentration and the other in a solution of 0.1 molar concentration of its ions at 298 K ? (If two solutions are connected by a salt bridge.)
[PO:1-4, CO:1] (1.5)
(b) A substance when dissolved in water at 0.001 M concentration absorbs 10% of an incident radiation in a path length of 1 cm length. What should be the concentration of the solution to absorb 90% using the same radiation.
[PO:1-4, CO:4]
(c) Calculate the energy (in J) associated with (i) one photon and (ii) one Einstein of radiation of wavelength 640 nm . [PO:1-3, CO:4] (1.5)
(d) Explain 'Quantum Yield' and give any two suitable examples of high and low quantum yield reactions.
[PO:1-5, CO:3] (1.5)
(e) What is the role of photochemical reactions in biochemical processes? Explain.

> [PO:1-3, CO:4]
(f) The molar ionic conductivity of $\mathrm{NH}_{4}{ }^{+}$and OH^{-}at infinite dilution are 72 and $198 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ respectively. The molar conductivity of a centimolar $\mathrm{NH}_{4} \mathrm{OH}$ solution at the same temperature is found to be $9 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$. Find the percentage dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ at this concentration?
[PO:1-4, CO:1]
(g) A certain quantity of the electricity is passed through an aqueous solution of AgNO_{3} and cupric salt solution connected in the series. The amount of Ag deposited is 1.08 g , then what will be the amount of copper deposited?
[PO:1-4, CO:1] (1.5)
(h) Rewrite the below statement in corrected form (if stated 'false')
A catalyst makes the equilibrium constant of the reaction more favorable for the forward reaction compared to backward reaction.
[PO:1-4, CO:3]
(i) Explain the significance of Eadie Plot. Sketch the Eadie Plot and describe all measurable quantities.
[PO:1-4, CO:3]
(j) Rewrite the below statement in corrected form (if stated 'false')
A catalyst does not take part in the reaction mechanism but accelerate the reaction. [PO:1-4, CO:3] (1.5)

PART-B

2. (a) Let the reaction $\mathbf{a A} \rightarrow$ product have the rate law $r=\mathrm{k}[\mathrm{A}]^{2}$. Write down the equation that gives r of this reaction as a function of time. [PO:1-3, CO:2]
(b) (i) Describe Lambert's Law and derive Beer-Lambert expression. What are the limitations of Beer-Lambert law? [PO:1-5, CO:4]
(ii) What is the physical significance of absorption coefficients. Sketch 'Transmittance' versus 'Concentration' Plot and explain the nature of typical observable plot. [PO:1-4, CO:4]
3. (a) Write expression for the Debye-Hückel-Onsager equation and explain the Debye-Falkenhagen effect with suitable example.
[PO:1-4, CO:1]
(b) The rate constant for the reaction

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g})
$$

is $1.22 \times 10^{-6} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 575 K and 2.50×10^{-3} $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 716 K . Estimate the Ea from these data.
[PO:1-4, CO:2]
3
[P.T.O.
(c) Sketch the nature of typical plot obtained for conductometric titration using a suitable example for (i) Strong Acid-Weak Base, (ii) Weak Acid - Strong Base. [PO:1-4, CO:1]
4. (a) Sketch kinetic plot for a first-order chemical reaction
(i) $[A]$ is plotted as a function of time t for the values of the rate constant k of $0.0125 \mathrm{~s}^{-1}, 0.0250 \mathrm{~s}^{-1}$, $0.05 \mathrm{~s}^{-1}$ and $0.1 \mathrm{~s}^{-1}$. (ii) The same is plotted for \ln [A] versus t [PO:1-4, CO:2] (4+4=8)
(b) Write a short note on Michaelis-Menten Catalysis.
[PO:1-4, CO:3]
(c) State any four limitation of Arrhenius theory of electrolytic dissociation. [PO:1-4, CO:1]
5. (a) Describe photosensitization and Quenching with) two suitable examples. Differentiate photosensitization and Quenching by depicting a suitable reaction. [PO:1-4, CO:4]
(b) For the reversible reaction $\mathrm{CO}+\mathrm{Cl}_{2} \rightarrow \mathrm{COCl}_{2}$, the mechanism is believed to be

$$
\begin{aligned}
& \text { Step-1: } \mathrm{Cl}_{2}+\mathrm{M} \rightleftharpoons 2 \mathrm{Cl}+\mathrm{M} \\
& \text { Step-2: } \mathrm{Cl}+\mathrm{CO}+\mathrm{M} \rightleftharpoons \mathrm{COCl}+\mathrm{M} \\
& \text { Step-3: } \mathbf{C O C l}+\mathrm{Cl}_{2} \rightarrow \mathrm{COCl}_{2}+\mathrm{Cl}
\end{aligned}
$$

(i) Idencity the initiation. proparation and termination step
(ii) Assume step 1 \& 2 each to te in equitibrium, and find the rate law for the forward reaction?
(iii) What is the rate law for the revense reaction?

$$
[\mathrm{PO}: 1-1, C O: 2] \quad(2+3+3=8)
$$

6. (a) For the decomposition of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ (species A) at 777 K . the time required for $[A]_{0}$ to fall $0.69[A]_{0}$ as a function of $[A]_{0}$ is

$10^{3}[\mathrm{~A}]_{0} /\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	8.13	6.44	3.10	1.88
$0.69 / \mathrm{s}$	590	665	900	1140

(i) Find the order of the reaction (justify)
(ii) Find k_{A} in $d[A] / d t=-k_{A}[A]^{n}$.

$$
\begin{equation*}
[\mathrm{PO}: 1-4, \mathrm{CO}: 2] \tag{4}
\end{equation*}
$$

(b) Find out the rate law for

$$
A+B \rightleftharpoons C+D
$$

(\mathbf{k}_{1}, rate constant for forward reaction; $\mathbf{k}_{\mathbf{2}}$, rate constant for backward reaction)

$$
D+E \rightarrow F+B
$$

(k_{3}, rate constant for rate determining step)
[PO:1-4, CO:2]
(c) Explain Moving Boundary methods for determination of Hittorf Number with a suitable example diagrammatically.
[PO:1-5, CO:2]
7. Describe the following with any-one/two suitable examples :
(a) Parallel reactions and their rate law.
[PO:1-5, CO:2]
(b) Catalyst Poisoning versus Enzyme inhibition. [PO:1-4, CO:3]
(c) Walden's rule.
[PO:1-4, CO:1]

