December 2022
 M.Sc. (Chemistry) - III SEMESTER
 Physical Chemistry Special-I (CH-325B)

Time : 3 Hours]

[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.
4. All the symbols represent usual meaning related to physical chemistry.

PART-A

1. (a) Describe Born-Oppenheimer approximation with its significance in quantum mechanics. [CO:1-4, PO:2-5]
(b) Write a short note on Density functional theory (DFT).
[CO:1, PO:2-5]
(c) Write Sackur-Tetrode equation and explain its significance in statistical thermodynamics.
[CO:3, PO:2-5]
(d) How many microstates are possible for the $\mathbf{3 d}^{2}$ electronic configuration?
[CO:1-2, PO:2-5]
(c) What are the possible term symbols for $\mathrm{p}^{3} \quad(1.5)^{4}$ configuration?
[CO:1-2, PO:2-5]
(f) Calculate vibrational contribution to the molar heat capacity of $\mathrm{N}_{2}(\mathrm{~g})$ at 1000 K . (The experimental value is $3.43 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
[CO:3, PO:2-5]
(g) Discuss 'orthonormality' in the quantum mechanics.
[CO:1-4, PO:2-5]
(h) Differentiate the term 'molecular partition function' and 'partition function'.
[CO:3, PO:2-5]
(i) Find the relation for the commutators $[\mathbf{L z}, \mathbf{L x}]$ and [Ly, Lz].
[CO:1-2, PO:2-5]
(j) Define 'Ladder Operator' and derive relationship for [$\hat{\mathrm{J}}_{+}, \hat{\mathrm{J}}_{-}$].
[CO:1-4, PO:2-5]

PART-B

2. (a) Describe n-bond and delocalization energies of cyclopropenyl system. Calculate HMO coefficients and sketch molecular orbitals to describe symmetry of each energy level.
[CO:4, PO:2-5]
(b) Find out the coefficients of atomic orbitals in $\mathbf{s p}^{2}$ hybrid orbitals.
[CO:1-2, PO:2-5]
3. (a) Describe π-bond and delocalization energies of 1,3-butadiene system. Calculate HMO coefficients and sketch molecular orbitals to describe symmetry of each energy level.
[CO:4, PO:2-5]
(b) Find out the coefficients of atomic orbitals in $\mathbf{~ s p}^{\mathbf{3}}$ hybrid orbitals.
[CO:1-2, PO:2-5]
4. (a) Prove variation theorem and its significance in multielectron system. Use the Φ_{1} and Φ_{2} as orthonormal trial functions and derive the relation for the ground state energy using variation method?
[CO:1-2, PO:2-5]
(b) Write a note on "vibrational partition function".
[CO:3, PO:2-5]
5. (a) Derive expression for first order perturbation and find the correction in wave function \& energy?
[CO:1-2, PO:2-5]
(b) Write a short note on 'Configuration Interaction'.

$$
[\mathrm{CO}: 1-2, \mathrm{PO}: 2-5]
$$

6. (a) Explain how the form of the Rotational Partition function of molecule depends on the shape of the molecule (with suitable examples)? [CO:3, PO:2-5]
(b) Calculate the contribution of each normal mode to the vibrational heat capacity of CO_{2} at 400 K $\left[\theta_{\text {vib }}=954 \mathrm{~K}\right.$ (Bending Mode), $\theta_{\text {vib }}=1890 \mathrm{~K}$ (Asymm. Mode), $\theta_{\text {vib }}=3360 \mathrm{~K}$ (Symm. Mode)].
[CO:3, PO:2-5]
(5)
7. (a) Sketch the molecular orbital diagram for the valence electron in $\mathbf{C H}_{4}$.
[CO:4, PO:2-5]
(b) Sketch the 'Walsh Correlation' diagram for the valence electron in a $\mathbf{A H}_{2}$ molecule.
[CO:4, PO:2-5]
