
Design and Implementation of a Parallel Hidden Web

Crawler

THESIS

Submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

Sonali Gupta

Registration No: YMCAUST / Ph09 / 2010

Under the Supervision of

DR. KOMAL KUMAR BHATIA

ASSOCIATE PROFESSOR

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science &Technology

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

MAY, 2015

 ii

 DEDICATION

 I dedicate this thesis to the almighty GOD

 who

 gave me strength and patience to complete this research work.

 iii

DECLARATION

I hereby declare that this thesis entitled “DESIGN & IMPLEMENTATION OF

PARALLEL HIDDEN WEB CRAWLER” by MS. SONALI GUPTA, being

submitted in fulfillment of the requirement for the award of Degree of Doctor of

Philosophy in the Department of Computer Engineering under Faculty of Engineering

and Technology of YMCA University of Science and Technology, Faridabad, during

the period May 2011 to January 2015, is a bonafide record of my original work carried

out under the guidance and supervision of DR. KOMAL KUMAR BHATIA,

ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING

and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other

university.

(SONALI GUPTA)

Registration No. YMCAUST/Ph09/2010

 iv

CERTIFICATE

This is to certify that this thesis entitled “DESIGN & IMPLEMENTATION OF

PARALLEL HIDDEN WEB CRAWLER” by MS. SONALI GUPTA, being

submitted in fulfillment of the requirement for the award of Degree of Doctor of

Philosophy in the Department of Computer Engineering under Faculty of Engineering

and Technology of YMCA University of Science and Technology, Faridabad, during

the period May 2011 to January 2015, is a bonafide record of my original work carried

out under my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain any part

of any work which has been submitted for the award of any degree either in this

university or in any other university.

Dr. Komal Kumar Bhatia

ASSOCIATE PROFESSOR

Department of Computer Engineering

Faculty of Engineering & Technology

YMCA University of Science & Technology, Faridabad

Dated:

 v

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my Supervisor Dr. Komal Kumar

Bhatia for giving me this opportunity to work in this area. It would never be possible

for me to take this thesis to this level without his innovative ideas and his relentless

support and encouragement.

I am thankful to him for his aspiring guidance, invaluable constructive criticism and

friendly advice during the research work. I am sincerely grateful to him for sharing

his truthful and illuminating views on a number of issues related to the work. I also

want to thank you for letting my defense be an enjoyable moment, and for your

brilliant comments and suggestions, many thanks to you!!

Before I acknowledge the contributions made by other people, I would be failing in

my duty both as a teacher as well as a student; if first and foremost, I do not perceive

the opportunity to pay my homage to the seat of learning and wisdom that is YMCA

University of Science & Technology. My head bows in deep respect and humility to

this great institution which has shaped many minds and nurtured seeds of intellect in

others. I have been among those fortunate ones who have received a big milestone in

their developed career by not only gaining skills and knowledge in the best possible

way but also the values that will inspire me for a lifetime.

Over the last six years that I have been associated with YMCAUST, I have made

many great friends and found support from many of my colleagues, both within and

outside of the Computer Engineering department. I would like to express my sincerest

appreciation to Dr Manjeet Singh for his valuable technical discussions. It has been

my privilege to know and work with him.

Also, I would like to express my sincerest admiration for Dr C K Nagpal, Dr Naresh

Chauhan, Dr. Atul Mishra, Dr. Neelam Duhan, Dr. Jyoti , Dr. Anuradha, Dr. Payal,

Ms. Deepika, Ms. Shilpa Munjal, Mr. Sushil , Mr. Vedpal and other faculty

members for their useful and kind cooperation.

I would also like to thank my sincere students of M.Tech, who directly or indirectly

helped me.

Every challenging work needs self-efforts as well as the guidance of elders especially

those who are very close to our heart. Words cannot express how grateful I am to my

father-in-law, Mr. Ashok Kumar Gupta , mother-in-law Mrs. Premlata, my father

 vi

Mr. K.L.Goel and my mother, Mrs. Saroj Goel , for all of the sacrifices that you’ve

made on my behalf. Your prayer for me was what sustained me thus far. It is my

radiant sentiment to place on record my heartily thanks for their unwavering support

and encouragement over the last four years. I would like to express my gratitude to

my brother Dr. Varun Goyal, Dental Consultant, PGIMS Rohtak, sisters Ms.

Mahima, Lecturer DAVPS and Dr.Monika, Senior Consultant ESI Hospital, Gurgaon

and my relatives too.

Finally, my deepest gratitude to the most important individuals in my life, my

husband Vishal ji for his care, concern, personal support and great patience at every

inch and step in pursuing this noble task and my sons Aarush & Aaditva for always

relieving me of my tensions with their beautiful and inspiring smiles. Love you all!

I can’t end without thanking and appreciating my friends for their constant

encouragement and love I have relied throughout my research work.

Above all, I must thank the Almighty, the all-knowing and omnipresent God for

giving me all these wonderful gifts of my lifetime and carrying me safely in his arms

all these years with the hope that you will continue to do so forever.

(SONALI GUPTA)

Registration No. YMCAUST/Ph09/2010

 vii

Abstract

World Wide Web (WWW) is the largest repository of information that covers data

from almost all the areas known to mankind. It is a source of information that is most

frequently accessed publicly. This information over the WWW comprises of the

hypertext markup language (HTML) documents interconnected through hyperlinks.

The Surface Web or the Publically Indexable Web (PIW) includes the content that can

be accessed by purely following the hyperlink structure and thus can be crawled and

indexed by popular search engines. On the other hand, the Hidden Web refers to the

content that is stored in Web databases and distributed through the creation of

dynamic web pages. These dynamic web pages are generated based on the results

retrieved in response to queries specified at the interface offered by the underlying

web database.

Crawling the contents of the hidden Web is a very challenging problem especially

because of the fundamental reasons of its scale and restricted search interfaces offered

by the Web databases. To overcome the issue of scale, a parallel architecture of the

Hidden Web crawler that seems to be an improved option in comparison to the single-

process crawler architecture, has been proposed in this work. The proposed crawler is

also targeted to automatically extract and integrate the search environment by

modelling the search forms and filling them in to retrieve the Hidden Web contents

from databases in different domains like Books, travel, Auto etc. But, when multiple

instances of the crawler run in parallel, the same web document might be downloaded

multiple times as one instance of the web crawler may not be aware of another having

already downloaded the page. Thus, it is very important to minimize such multiple

downloads to save network bandwidth and increase the crawler’s effectiveness by

coordinating the parallel processes must be coordinated to minimize overlap.

However, the coordination between individual crawling processes needs

communication which consumes network bandwidth. So, an important objective is to

minimize the communication and the network bandwidth consumption while still

achieving the advantage of scalability.

Thus, in this thesis, a novel framework for a parallel Hidden Web Crawler has been

designed and implemented. The proposed work not only effectively but also

efficiently crawls and extracts the contents in the Hidden web databases. The

 viii

proposed work also adopts a domain-specific approach to overcome the problem of

heterogeneity across numerous domains and minimize the communication overhead

along with reduced network bandwidth consumption. The proposed crawler offers

scalability in design as new instances of the various components may be incorporated

in the system as per the requirements. In addition, the proposed crawler is also

extensible in the sense that third party components or modules can be added as per the

requirements.

 ix

TABLE OF CONTENT

CHAPTER 1. INTRODUCTION ... 1

1.1. GENERAL ... 1
1.2. MOTIVATION ... 4
1.3. RESEARCH OBJECTIVES OF THE PROPOSED WORK ... 6
1.4. CONTRIBUTION .. 7
1.5. ORGANIZATION ... 8
1.6. CONCLUSION ... ERROR! BOOKMARK NOT DEFINED.

CHAPTER 2. WWW AND INFORMATION RETRIEVAL TOOLS : A REVIEW 10

2.1. INTRODUCTION .. 10
2.2. INFORMATION RETRIEVAL ... 11

2.2.1. Analysis of Web Content ... 13
2.2.2. Information Retrieval Tools ... 15

2.2.2.1. Web Directories ... 15
2.2.2.2. Search Engines ... 15
2.2.2.3. Meta-Search Engines ... 18

2.3. WEB CRAWLERS .. 19
2.3.1. Robot.txt: Standard for Robot Exclusion ... 20

2.3.1.1. User-Agent ... 21
2.3.1.2. Disallow ... 22

2.4. CHALLENGES FOR A WEB CRAWLER ... 23
2.4.1. Information Retrieval Terms And Performance Metrics .. 24

2.5. CLASSIFICATION OF WEB CRAWLERS .. 26
2.5.1. Focused Crawlers ... 26
2.5.2. Parallel Crawlers .. 29

2.5.2.1. Challenges faced with Parallel Crawling Architectures .. 31
2.5.2.2. Advantages of Parallel Crawler Architecture .. 32

2.5.3. High-performance Crawlers ... 33
2.5.3.1. Issues and Challenges with High-Performance Crawlers .. 38

2.6. THE PROBLEMS WITH THE SEARCH ENGINE LANDSCAPE ... 39
2.7. CONCLUSION ... ERROR! BOOKMARK NOT DEFINED.

CHAPTER 3. HIDDEN WEB: A REVIEW .. 41

3.1. INTRODUCTION .. 41
3.2. CHARACTERISTICS OF THE HIDDEN WEB .. 42
3.3. USER-INTERACTION IN THE HIDDEN WEB ... 43

3.3.1. Automatic Approach to Access the Hidden Web ... 44
3.3.2. Difference between a Conventional crawler and Hidden Web crawler 47

3.4. CRAWLING THE HIDDEN WEB ... 48
3.5. RELATED WORK IN HIDDEN WEB CRAWLING ... 50

3.5.1. Breadth-Oriented Hidden Web crawlers for Resource Discovery 50
3.5.1.1. Automated Discovery of Search Interfaces on the Web .. 51
3.5.1.2. Crawling For domain Specific Hidden Web Resources ... 51
3.5.1.3. ACHE : An adaptive crawler for locating hidden Web Entry points 55

3.5.2. Depth-oriented Hidden Web crawlers for content Extraction 56
3.5.2.1. HiWE .. 57
3.5.2.2. Hidden Web crawler for the Hidden Seek .. 59
3.5.2.3. AKSHR: A Domain-specific Hidden web crawler. ... 61

3.6. COMPARISON OF THE VARIOUS HIDDEN WEB CRAWLERS .. 63
3.7. PROBLEM STATEMENT ... 65

 x

CHAPTER 4. DESIGN OF A PARALLEL HIDDEN WEB CRAWLER 68

4.1. INTRODUCTION .. 68
4.1.1. Proposed Design of the Parallel Hidden Web Crawler ... 70

4.2. PHASE I: CREATING A URL FRONTIER FOR PARALLEL ACCESS. ... 73
4.3. PHASE II: WEB PAGE COLLECTION AND ANALYSIS ... 74

4.3.1. URL Allocator .. 75
4.3.2. A Multi-threaded document Downloader ... 77
4.3.3. Web page Analyzer .. 77
4.3.4. URL Ranker ... 79

4.3.4.1. Domain Score .. 81
4.3.4.2. Link Score .. 85

4.4. PHASE III: CREATION AND MAINTENANCE OF DOMAIN-SPECIFIC DATA REPOSITORIES 87
4.4.1. Page Classifier .. 88
4.4.2. Page Content Extractor ... 93

CHAPTER 5. PHASE IV: DISCOVERING THE HIDDEN WEB RESOURCES IN A

DOMAIN 100

5.1. INTRODUCTION .. 100
5.1.1. Form Extractor ... 101
5.1.2. Label Extractor ... 101
5.1.3. Match Value Generator .. 103

5.2. PHASE V: PARALLEL CONTENT EXTRACTION FROM THE HIDDEN WEB 110
5.3. PHASE VI: RESPONSE ANALYSIS .. 116

5.3.1. Size extractor .. 118
5.3.2. The Page Content extractor .. 120

5.4. QUERY RANKER ... 120

CHAPTER 6. IMPLEMENTATION & RESULT ANALYSIS OF PARALLEL HIDDEN

WEB CRAWLER ... 131

6.1. GENERAL ... 131
6.2. PERFORMANCE METRICS ... 132

6.2.1. Data Sets ... 133
6.3. EXPERIMENTS & RESULTS ... 135

6.3.1. Finding the Form Pages and the PIW Pages ... 135
6.3.2. The Page Classifier and the Page Content Extractor .. 137
6.3.3. Form analyzer ... 149
6.3.4. Parallel Processing of Search Forms .. 158

6.4. COMPARASON OF ALL DOMAINS ... 165
6.5. COMPARASION OF THE PROPOSED PARALLEL HIDDEN WEB CRAWLER WITH EXISTING WEB

CRAWLERS .. 167

CHAPTER 7. CONCLUSION & FUTURE SCOPE ... 170

7.1. CONCLUSION ... 170
7.2. FUTURE WORK .. 171

BIBLIOGRAPHY ... 173

APPENDIX A .. 183

APPENDIX B .. 185

 xi

LIST OF TABLES

Table Page No.

Table 2.1: Percentage of web pages with words in HTML Tags 14
Table 3.1: Comparison of various Hidden Web Crawler 63
Table 4.1: Extracted Back-links for the child URL and their associated domains. 85
Table 4.2: Relevance Score Calculation for new/child URL. 86
Table 4.3: Sample Domain-Specific databases. 93
Table 4.4: A sample of the Form Element Table as generated by the Form Analyzer for Figure 4.16 95
Table 5.1: Parsed Representation for the above form as Form Element Table (FET) 102
Table 5.2: Match value computation using edit distance method for the label ‘ Name’ and other key

terms included in different Domain Definitions. 104
Table 5.3: Match Value Computation based on relationship in Domain-Specific Thesaurus 105
Table 5.4: An example of a Match Value Matrix 107
Table 5.5: Labels and type of input associated with them for the Search Interface Form in Figure 5.6

 109
Table 5.6: Sample Domain-Specific Database showing the 3 attributes or controls of the search form

and the domain of each such attribute. 122
Table 5.7: Set of 8 possible query combination 122
Table 5.8: The query space Q and the assigned query id’s 123
Table 5.9: Computation of random rank values using equation 5.6 for the first run of the crawler 125
Table 5.10: The contents of the page statistics repository for the queries 126
Table 5.11: The static rank of the queries for the second run of the crawler 127
Table 5.12: Dynamic rank values for the second run using equation 5.7 127
Table 5.13: Computation of random_rank for the queries for the second run using equation 5.7 127
Table 5.14: Number of records retrieved by each query 128
Table 5.15: QRS and the dynamic_rank values for the next run of the crawler 129
Table 5.16: Computation of random_rank for the queries for the second run using equation 5.7 129
Table 6.1: Biases and Activation Functions Used 140
Table 6.2: Experimental Results Obtained for the Page Classifier 142
Table 6.3: A sample of candidate values with their occurrences in the web pages in the DSPR 147
Table 6.4: Number of candidate values and valid values generated for the label ‘departure city’ using

the six extraction patterns. 148
Table 6.5: Results of the Form Analyzer 157
Table 6.6: Experimental Evaluation of the Query Ranker 163
Table 6.7: Number of Form submissions: Valid, Invalid and Failures 165
Table 6.8: Precision, Recall and F-measure values averaged over all the search forms processed in a

domain. 166
Table 6.9: Comparison of proposed parallel hidden web crawler with the existing crawlers 168

 xii

LIST OF FIGURES/ GRAPHS

Figure Page No.

Figure 1.1: A typical search form and a dynamic (or hidden) web page 2
Figure 1.2: Example of user interaction with a hidden web database. 4
Figure 2.1: The overall organization of the World Wide Web 11
Figure 2.2: HTML Document 13
Figure 2.3: Elements of a Basic Search Engine 16
Figure 2.4: Basic Architecture of a Meta-Search Engine. 18
Figure 2.5: Control process of a crawler for the Surface Web 19
Figure 2.6: Algorithm of a crawler. 20
Figure 2.7: a) A standard crawler following each link. b) A focused crawler trying to identify the most

promising links 27
Figure 2.8: Focused Crawler Architecture 28
Figure 2.9: Generic Architecture of a Parallel Crawler. 30
Figure 2.10: The architecture of Mercator Crawler 34
Figure 2.11: The UbiCrawler. 36
Figure 3.1: An example of user-interactive search form that offers online search of books. 41
Figure 3.2: The principle of using server-side CGI Programs 43
Figure 3.3: User interaction with a search form interface 44
Figure 3.4: A crawler interacting with the search form interface 45
Figure 3.5: Keyword-based Search Interface 46
Figure 3.6: A multi-attribute search form interface for an online book store 46
Figure 3.7: Principle behind a traditional crawler and the Hidden Web Crawler. 47
Figure 3.8: Architecture of Hidden Web Crawler 53
Figure 3.9: Classes of HTML forms 54
Figure 3.10: The Form Focused crawler (FFC) 55
Figure 3.11: ACHE Architecture 56
Figure 3.12: Crawler Form Interaction 57
Figure 3.13: Architecture of HiWE. 58
Figure 3.14: Algorithm for crawling Hidden Web Site. 59
Figure 3.15: Algorithm for selecting the next query term 61
Figure 3.16: Architecture of a Domain-specific Hidden Web Crawler (AKSHR) 61
Figure 3.17: Two examples Query Interfaces from Books domain and their Hierarchical representation

 62
Figure 4.1: A Search Engine with several crawling threads to achieve parallelism. 69
Figure 4.2: Architecture of the proposed Parallel crawler for the Hidden Web. 72
Figure 4.3: Structure of the Prioritized URL Queue for a domain. 74
Figure 4.4: Example of a domain-specific priority queue 76
Figure 4.5: URL Allocator Algorithm 76
Figure 4.6: Multi-threaded Document downloader Algorithm 77
Figure 4.7: Example of a web page having new or child URLs 79
Figure 4.8: The Page Type Identifier Algorithm. 79
Figure 4.9: Example web page containing hyperlinks (Source: www.placetoseeindelhi.wordpress.com)

 83
Figure 4.10: HTML tag structure of the web page in Figure 4.9. 83
Figure 4.11: Integration of the Page classifier and the Page content Extractor for the creation of

Domain-Specific data repository. 88
Figure 4.12: The proposed system for domain identification and page classification. 89
Figure 4.13: Block Diagram of a basic Neural Network (back propagation) [79] and the abstract

architecture of the same as used by the proposed system. 90

 xiii

Figure 4.14: Algorithm for selecting initial input and their weights for the neural network 92
Figure 4.15: The Page Content Extractor 94
Figure 4.16: A sample search form 95
Figure 4.17: Google web page for the query “departure city like” 97
Figure 4.18: Algorithm for Pattern Search and Validator. 99
Figure 5.1: The Form Analyzer 100
Figure 5.2: Algorithm for Form Extractor 101
Figure 5.3: Example search form 102
Figure 5.4: Match Value Generator 103
Figure 5.5: Schematic diagram of Match Value Matrix 107
Figure 5.6: A sample search form from Books domain 109
Figure 5.7: Working of Phase V of the crawler 110
Figure 5.8: Sample of the Domain-Specific search interface repository in Books domain 111
Figure 5.9: Algorithm to distribute load by the SIMs to the associated FPEs 113
Figure 5.10: Algorithm of a Form Processing Element (FPE). 113
Figure 5.11: A sequence diagram showing interaction between the SID, SIM, FPEs and the Web server.

 114
Figure 5.12: The working of the Response Analyzer 116
Figure 5.13: A valid response page or a multi-match page from a hidden database in ‘travel’ domain

 117
Figure 5.14: A dead Response page or a no-match page from the same hidden database of ‘travel’

domain. 118
Figure 5.15: Example of a search form to a structured database 121
Figure 6.1: Initial list of URLs for ‘Food’ domain 134
Figure 6.2: Interface of the Parallel Hidden Web Crawler 134
Figure 6.3: Interface of the Web Data Extractor employing URL Allocator, Multi-Threaded Document

Loader and the Web Page Analyzer. 135
Figure 6.4: Initialization of the Web Data Extractor for URL extraction. 136
Figure 6.5: A snapshot of the list of hyperlinks extracted from downloaded web pages 136
Figure 6.6: The number of pages of each type as identified by the Page Type Identifier 137
Figure 6.7: Initialization of the key term extraction process in (a) with a sample of the input file

urlforwde.txt in (b). 139
Figure 6.8: A snapshot during term extraction 139
Figure 6.9: Snapshot of extracted title and keywords from the META tag. 139
Figure 6.10: Training the neural network 140
Figure 6.11: Performance of the Neural Network (error vs iteration) 141
Figure 6.12: Performance of the Page Classifier 143
Figure 6.13: The generated Extraction Patterns in the Travel Domain 144
Figure 6.14: Result page when the extraction pattern ‘departure city like’ was raised on Google. 145
Figure 6.15: Snapshot of .mdb file when analyzing the instances of candidate values in PIW pages

stored in the DSPRs. 146
Figure 6.16: Graphical representation of the number of candidate and valid instances by the PSV 148
Figure 6.17: A Sample Search Interface with Labels and Values 149
Figure 6.18: HTML Source Code of the Sample Search Form of Figure 6.17 150
Figure 6.19: The Interface of the LET. 151
Figure 6.20: Layout of the Form Analyzer during the process of label extraction. 151
Figure 6.21: Performance of Form Analyzer when extracting labels. 152
Figure 6.22: Snapshot of the temporary sheet created during label extraction 152
Figure 6.23: The number and Percentage of Labels Extracted in each domain 153
Figure 6.24: Performance of Form Analyzer when extracting values. 154
Figure 6.25: Performance of the Form Analyzer when extracting values of control elements. 155
Figure 6.26: Domain Wise performance of Form Analyzer when extracting labels and values both. 156

 xiv

Figure 6.27: Overall %age Accuracy of Form Analyzer when extracting labels and values. 156
Figure 6.28: Accuracy of the Form Analyzer while discovering search forms in various domains 157
Figure 6.29: Sample search form from travel domain that is processed and the corresponding response

page retrieved 159
Figure 6.30: Parallel Processing of search forms in Travel domain with the query round-trip flights

from Delhi to Mumbai on specified dates. 160
Figure 6.31: Parallel downloading of response pages from the Hidden web databases behind the search

forms in Figure 6.30. 160
Figure 6.32: Parallel Processing of search forms in Auto domain. 161
Figure 6.33: Parallel downloading of response pages in Auto domain 162
Figure 6.34: Comparison of different Query ranking approaches 164
Figure 6.35: Precision, Recall and F-Measure values in each domain and average over all domains. 166

 xv

LIST OF ABBREVIATION

ANN- Artificial Neural Network

API- Application Programming Interface

CGI- Common Gateway Interface

C-Proc- Crawling Process

DNS-Domain Name System

DOM- Document object model

DRP- Dead Response Page

DSDR- Domain Specific Data Repository

DSPR- Domain Specific Page Repository

EP- Extraction Pattern

FET- Form Element Table

FIFO- First In First Out

FPE- Form Processing Element

HTML- Hyper text Markup Language

HTTP- Hyper text Transfer Protocol

HW- Hidden Web

IDF- Inverse Document Frequency

IR- Information Retrieval

MVM-Match Value Matrix

ODP- Open Directory Project

PC- Page Classifier

PCE- Page Content Extractor

PIW-Publicly Indexable Web

PSV- Pattern Searcher and Validator

QRS-Query Response Size

 xvi

REP- Robots Exclusion Principle

SID- Search Interface Distributor

SIM-Search Interface Manager

TF- Term Frequency

URL-Uniform Resource Locator

VRP- Valid Response Page

WWW- World Wide Web

 1

CHAPTER 1.

INTRODUCTION

1.1. GENERAL

World Wide Web (WWW) [1] is a system of hyperlinked documents containing

useful information that can be accessed via the internet. Since its inception in 1990,

WWW has become many folds in size and now it contains more than 50 billion

publicly accessible web documents [1, 8, 16], distributed all over the world on

thousands of web servers and is still growing at an exponential rate. Thus, WWW has

a unique nature with distinctive properties like massive size, geographically

distributed, much less coherent, extremely complex and rapidly changing due to

which searching and retrieval of information from the Web efficiently and effectively

has become challenging task. This problem resulted in the evolution of a branch of

information retrieval [2, 4, 12] that is different from traditional IR in the sense that it

searches the required information within the new or latest document collection.

Most of the user population takes help of search engines or other similar kind of

information retrieval tools to find his or her specific information of interest from the

WWW. From a user perspective, a search engine is a query interface, which allows

the user to locate the documents of his interest in the WWW. The user can access the

knowledge (relevant web pages) behind the query interface by using keywords as

queries. Most search engines search for Hypertext Markup Language (HTML)

documents from the Internet and store them into an index database. A hypertext

document consists of both, the contents and the links to related documents. The

content can be either in the form of text, images, videos or any other multimedia. And

the links embedded within the document are commonly known as hyperlinks or

Uniform Resource Locators (URLs).

But, current search engines cannot index everything the Web has to offer because of

certain technical complications offered by the Web and the current search engine

technology. These complications precisely divide the Web into two sections: the

Surface Web and the Hidden Web.

The Surface Web is the section containing the static web pages that can be crawled

and indexed by the search engines while the Hidden Web comprises of the abundant

 2

information that is hidden behind the search forms in back-end web databases. Hidden

Web comprises of the structured data often published as web pages that are

dynamically generated based on the database contents. For example, if a user wants to

search information about some flight, then in order to get the required information,

he/she must go to airline site and fill the details in the search form acting as an

interface to the web database. As a result he/she gets the details of the flights available.

These types of pages are often referred to as dynamic or hidden web pages. Figure

1.1(a) shows an example of such a search form that offers a search over the flights

between two cities. Figure 1.1(b) shows an example of a dynamic or hidden web page.

(b)(a)

Figure 1.1: A typical search form and a dynamic (or hidden) web page

These dynamic web pages can hardly be accessed by web crawlers and are denied

from inclusion in the search engine indexes and if not so, they corrupt the search

result with outdated information which is not worthwhile in case of virtual

marketplaces or real-time information systems [29].The alternative names for the

Surface Web include the Publicly Indexable Web (PIW) whereas those for the Hidden

Web include the Deep Web or the Invisible Web.

 3

With the help of search engines, typical users in search of the information swim at the

surface of the Web leaving an enormous amount of the high quality information that

is stored in web databases which can often be found in the depths of the Hidden Web.

A study by Bergman [28] estimated that the content in the Hidden Web is 500 times

larger than the Surface Web and approximately 7,500 terabytes of data resides inside

the Hidden Web databases. Studies in [9, 10, 11] estimate that the Hidden Web

consists of about 91,000 terabytes while the survey conducted and published by

Madhavan [16] identified over 647,000 Hidden web resources. The survey in [16] was

based on a small fraction of 25 million randomly selected web pages taken from

Google’s index. In contrast, the Surface Web only contains 167 terabytes of data.

Hence, the typical search engines are only capable of accessing 20% of the Web [28],

ignoring the structured and high quality data lying in the hidden web databases.

Below are some of the characteristics that mention and explain the importance of

accessing the Hidden Web:

1) Distributed and Diverse: The hidden Web being a part of the WWW blindly

follows the idea of decentralized publishing and hence does not own any

single organization dedicatedly responsible for maintaining its content. As

Web was developed in a decentralized democratic way, so are the Web

databases drawn out of many sources, each with its own organization [32].

2) Dynamic Nature: The dynamic nature of the Hidden Web can be witnessed

from the fluid nature of the WWW itself. The World Wide Web takes the form

of an ever-evolving information source and, over time, webpage and even

whole websites, appear and disappear, are updated or restructured etc. leading

to the ‘broken link’ problem denoted by the HTTP Error 404 of which most

of the Web users are aware.

3) Size: The Hidden Web is estimated to contain 91,000 terabytes of information

compared to 167 terabytes of information in the Surface Web [16, 29, 30, 39].

And increasingly, the content rich databases from universities, libraries,

associations, businesses and government agencies are being made available

online, using Web interfaces as front end.

4) Content Quality: The content on this part of the Web is believed to be

authentic and of very high quality as it is contained within authorized

 4

databases. The Hidden Web now exists as an inherently reliable source for

supporting research and personal communication and thus, increasing the Web

usage for finding prints and papers in online repositories, for participating in

various ongoing online discussions and for various other purposes like e-

marketing & e-shopping (ordering product delivery online).

Also, the documents on the Hidden Web are not reachable by following the

hyperlinked structure of the Web graph. This content is accessible only through

the search tools purposely designed for that site allowing searching in real time

and retrieving the information that is current, up-to-minute. Figure 1.2

schematically depicts a user interaction, in which a user searches for flights via

one of the interfaces on makemytrip.com and gets a web page with search results.

Airline

database

Response page

Fills search form

Submit the filled

 search form

Dynamic web page

 with embedded

result records

Figure 1.2: Example of user interaction with a hidden web database.

1.2. MOTIVATION

The increasing prevalence of online databases has influenced the structure of the web

and the capabilities of information retrieval and search tools. As the WWW continues

to grow at an exponential rate, the problem of accurately retrieving information from

 5

this ever expanding Hidden Web also continues to exacerbate. Crawling the Hidden

Web is a very challenging problem especially because of following reasons:

• Access to these databases is provided only through restricted search interfaces,

intended to be filled manually. Manually filling each and every search form is

not only infeasible but cumbersome task due to the huge and ever increasing

nature of the Hidden Web.

• To automatically process any arbitrary search form, issuing a query is

extremely complex for a crawler which neither possesses knowledge nor is

intelligent enough to bypass these search forms that are primarily designed for

human understanding and use. The lack of knowledge of the underlying

database schema, makes the task further more complicated.

• The Hidden Web Crawler should not only be capable of automatically

processing the search forms but also of making an optimal choice among the

candidate queries to be raised by it.

• Moreover, the scale and the size of the Hidden Web is very large. As the

volume of information in the hidden-web grows, it is expected to complete the

crawl of the portion of the web for a particular domain within the expected

time. This makes the current Hidden Web crawlers inefficient to crawl the

Hidden Web. The Hidden Web crawler must target itself to achieve the

desired download rate which can either be done by employing several

processes or by making the crawler capable enough to find an optimal query

among the candidate queries to be used for filling the search forms.

Thus, the parallel architecture of Hidden Web crawler seems a better option as

compared to simple crawler architecture as the parallel crawlers are capable of

performing the job in a much shorter span of time and cover more and more

information from Hidden websites [23, 84, 85]. Therefore, in this work, a hidden-

web crawler has been developed with in view to resolve the problem faced by a

simple Hidden Web crawler. The proposed parallel crawler for the Hidden Web is

targeted to automatically extract and integrate the search environment by retrieving

the hidden web contents from different domains like Books, Travel, Automobile etc.

 6

1.3. RESEARCH OBJECTIVES OF THE PROPOSED WORK

In the light of the above motivation factors, the main objective of the proposed work

is to develop a parallel crawler for the Hidden Web. The specific objectives of the

present work are as follows:

1) Search Form representation: A search form allows the users to type a query

in order to search some items on the web without changing them. These

searchable forms serve as the entry point for the hidden-web. So, in order to

efficiently process form, an important objective of the proposed work is to

create a parsed internal representation of the searchable forms.

2) Scalability: To efficiently extract information on different topics/ domains,

another important objective of the proposed work is to design a crawler that

scales its performance in accordance to the increase in information, number of

databases and number of domains on the WWW.

3) Domain specific Approach: To get the best information out of different

domains and provide comprehensive coverage of the Hidden Web contents, a

domain-specific approach that overcomes the problem of heterogeneity must

be adopted for crawling.

4) Creating a domain specific repository: Since the Hidden Web content

contains very large amount of information in the form of heterogeneous

databases for different domains and to automate filling of the search forms

from different domains, another objective of the proposed system is to create

various domain specific repositories that facilitate filling and processing of

search forms in a domain.

5) Synchronizing Parallel tasks/processes: It is very important to minimize the

multiple downloads of the same page by the multiple parallel processes of the

parallel crawler as this saves network bandwidth and increase the crawler’s

effectiveness. So, the processes must be coordinated to minimize overlapping

of Hidden Web documents.

 7

6) Politeness policy: A crawler should not overload web servers by issuing a

large number of requests in a small interval of time. Individual requests arising

from the various crawling processes should not be issued to the same server to

avoid overloading or burdening it. An objective of the proposed work is to

design a crawler obeying this policy of being polite.

7) Appropriate Precision, Recall and F-measure: Precision is defined as the

ratio of relevant documents to the number of retrieve documents whereas

recall is defined as the ratio of relevant documents that are retrieved to the

total number of relevant documents. The metric F-measure trades off precision

versus recall and is weighted harmonic mean of precision and recall. Another

objective of the proposed work is to obtain better values for the stated three

measures.

8) Reduced Network Bandwidth Consumption: To minimize the overlap and

maintain the quality of downloaded collection of the web pages, the

coordination between individual crawling processes needs communication that

consumes network bandwidth. So, an important objective of the proposed

work is to minimize communication overhead and thus the network bandwidth

consumption while maintaining the quality of crawling.

1.4. CONTRIBUTION

The following contributions have been made in this work to address the above

challenges.

• An effective and efficient technique to crawl and extract the content in the

Hidden web databases has been proposed in this thesis. More specifically, a

parallel crawler for the Hidden Web has been designed and implemented to

tackle the problems as mentioned earlier.

• A match logic has been designed to identify the relevant search forms in each

domain. This helps in creating the various domain-specific search interface

repositories to store the relevant forms in each domain.

• An approach that automatically identifies the domain of web pages for their

classification has been developed. Different domain-specific page repositories

 8

are used to store the web pages as per their domain after classification. A

framework that helps the crawler to automatically process the search forms

has been designed. Domain-specific databases have been created and used for

storing the labels and the values needed to fill in the search forms.

• A Query Ranker that ranks the queries in the domain-specific databases to be

used by the crawler for filling the search forms has been used to suggest the

most optimal query at the time of filling forms.

• Following the domain-specific approach helps the crawler in minimizing the

communication overhead and save the network bandwidth consumption while

maintaining the quality of crawling.

• A scalable and extensible architecture has been designed in the sense that third

party components or modules can be added as per the requirements.

• The proposed parallel Hidden Web Crawler has been implemented using .NET

technology and SQL Server. For the conducted experiments, high values of

Precision, Recall and F-measure were obtained which indicates that the

proposed work efficiently crawls the hidden web pages.

1.5. ORGANIZATION

This thesis is worked out to propose a design of a Parallel Hidden Web Crawler to

access the Hidden Web contents and get the most information from it. The thesis is

divided into seven chapters. The content of each chapter is summarized as under-

• Chapter 1 introduces the theoretical aspects of the Hidden Web and the

concepts that motivated this research work. The chapter also briefly presents

the contributions made by the presented work and organization of thesis.

• Chapter 2 reviews the related publications related to the WWW and tools for

information retrieval from the WWW. The chapter provides an insight into the

search engine architecture & behaviour along with the details on the type of

crawlers that can be incorporated to provide the search functionality. It also

gives a review of the problems of the current search engine landscape.

• Chapter 3 discusses the various ways to access the contents in the Hidden

Web resources. It lists the differences in the basic approach of a conventional

crawler for the Surface Web with that of Hidden web crawler It provides the

 9

state of art in Hidden Web Crawlers through the detailed working of each with

a brief comparison among them. The chapter finally presents a comparison

among these existing crawlers based on the features provided by each. The

Chapter also provides a description of the problem statement that is

undertaken in this thesis.

• Chapter 4 presents the proposed architecture for the parallel Hidden Web

Crawler. The working of the proposed crawler has been divided into six

phases. This chapter gives the details of the working of the first three phases of

the proposed crawler.

• Chapter 5 discusses the detailed working of the remaining three phases of the

proposed crawler architecture. It also explains the scalability and extensibility

of the proposed crawler architecture. The chapter presents how the various

phases and components of the proposed crawler, collaborate together to

provide the desired functionality of the proposed Parallel Hidden Web Crawler.

• Chapter 6 presents the implementation details of the proposed design of the

Parallel Hidden Web crawler. It also covers the results obtained from the

proposed design and also explains the results with observations. The presented

results justify the inter-relation among the various phases of the proposed

crawler and the suitability of the architecture to the specified objectives.

• Chapter 7 concludes the research work and provides directions for extending

the research in this area in future.

• In Appendix A, the various domain-definitions needed for the proposed work

are provided.

• In Appendix B, a list of stopwords that are used by the proposed system has

been provided.

• Finally, the bibliography includes references to publications in this area.

A survey of existing search engines and crawlers is given in next chapter.

 10

CHAPTER 2.

WWW AND INFORMATION RETRIEVAL TOOLS : A

REVIEW

2.1. INTRODUCTION

World Wide Web, also known as the Web or WWW [1], is a huge repository of

information resource that is served by numerous anonymous websites. The role of the

WWW as the main source of information is becoming more and more significant day

by day. It was developed as a collection of human generated information that allows

researchers on remote sites to share their thoughts, ideas and all aspects of a common

issue project. It was Tim Berners Lee who introduced the idea and created the World

Wide Web at the CERN laboratories (one of Europe's largest Research laboratories) in

Switzerland in December 1990 [1]. Moreover, the ability to scale its size with respect

to content allowed the Web to expand rapidly, across the Internet irrespective of

boundaries of nations or disciplines.

The resources on the WWW have been organized and structured in a way so as to

allow the user an easy navigation from one resource to another. The navigation over

the WWW is done by using an application called the WWW client often known as the

browser. The task of the browser is to present the formatted text, images, videos,

sound, or other objects like hyperlinks etc. in the form of a webpage on the user’s

computer screen. The user clicks on a hyperlink to navigate different webpages. But

due to the hasty growth of the web data or information resources and the changing

web technologies it becomes very tedious and difficult to search the information

required by the users. This encouraged the researchers to develop web tools that can

be used to acquire this information either by searching, querying, extraction,

classification or characterization. Therefore, this chapter discusses about the research

work that has been done to solve the indicated problem. The description of the related

research work done in this area has been classified into following three parts:

• WWW and IR tools: The terms World Wide Web (WWW) and the Internet [8]

are often used interchangeably without much difference. However, there is a

lot of difference between these two terms. Internet is a global data

communication medium or a system infrastructure that provides connectivity

between computers. In contrast, the WWW is one of the services

 11

communicated and offered via the Internet. WWW allows access to the

available information over the medium of the Internet. It, thus, acts as a model

that is built on the top of the Internet for sharing of information. A set of

Information retrieval tools [11, 12] are now available to the users for finding

the information on the Web easily in a very fast manner.

• Surface Web and Traditional Crawlers: Surface Web is the part of the web that

consists of an immense and interlinked collection of hypertext documents

which can be searched and indexed by information retrieval tools. A web

crawler is an important component of such information retrieval tool that

collects the documents from the web by recursively following the hyperlinks.

• Classification of Web crawlers: Due to enormous volume of information and

the dynamic nature of World Wide Web, it is not possible to cover the entire

web using a single instance of the crawler. Also, it is not possible to provide

specialized type of information to the information retrieval tool for indexing.

Therefore, various types of crawlers like focused crawlers, scalable crawler,

parallel crawlers etc. have been designed in the research.

2.2. INFORMATION RETRIEVAL

WWW is based on a client-server system in which millions of servers exist with

world-wide distribution. An organization of the WWW showing the client interaction

with the Web servers via a special browser application has been shown in Figure 2.1.

2. Get document
request

OS 3. Server fetches
document from local file

4. Response

Client machine Server machine

OS

Web ServerBrowser

User

1. makes
request

Server’s local
database of
documents

Figure 2.1: The overall organization of the World Wide Web

Each server is responsible for maintaining a collection of documents where each

document is stored as a file. The browser typically accepts input from a user which is

a reference to a document at the server’s site. The server accepts the requests for

 12

fetching the document and transfers it to the client where the browser holds the

responsibility for displaying the document. The server is also responsible for

processing the requests for storing new documents. Some of the most common terms

used in context of the WWW include the following:

1. Uniform Resource Locators (URLs) are the strings used as addresses of

objects like documents, images on the Web [1, 38]. It is the simplest way to

refer to any document on the Web. Each URL includes the DNS of its

associated server specifying the location of the document and a filename by

which the server can look up the document in its local file system. For

example, The URL of the main page for the WWW project happens to be

http://info.cern.ch/hypertext/WWW/TheProject.html

in which the string “info.cern.ch” refers to the web server at the CERN

laboratories that hosts the requested HTML document “TheProject” which

contains information about the origins of the WWW . The location of this html

document on the web server is specified by the path mentioned in the

substring “hypertext/WWW/”.

2. A network Protocol (HTTP) [38] used by native Web servers giving

performance and features not otherwise available. The communication on the

Web is based on a client-server architecture where the client makes a request

to the server and waits for a response from the respective server. This

communication is typically based on a network protocol typically the

Hypertext Transfer Protocol (HTTP). Moreover, HTTP is based on TCP, thus

need not be concerned about lost requests and responses assuming that their

messages make it to the other side [8, 38].

3. A document must be properly structured to express the informational content.

This is usually done with the help of a mark-up language like HTML [8, 12]

that provides keywords/ tags to structure a document into different sections. It

also provides features to distinguish headers, tables, forms and lists All the

HTML documents include a heading section and a main body. Other objects

like images or animations can also be inserted at specific positions in a

document. Even more, the HTML also provides various keywords that specify

the instructions to the browser on presentation of a document.

 13

For example, there are keywords to select a specific font or font size, to

present text in italics or boldface, to align parts of text, and so on. For example,

consider a simple HTML document shown in Figure. 2.2.

Figure 2.2: HTML Document

When this Web page is requested for display in the browser, the user finds the

text “DESIGN A HTML DOCUMENT” when interpreted. When any HTML

document is internally parsed for a Document Object Model or DOM [9] , it is

represented by a rooted tree, typically called as the parse tree, where each

node of tree represents an element of that document. The element is one of the

types from a predefined collection of the various types of elements. Similarly,

each node is required to implement a standard interface containing methods

for accessing its content, returning references to parent and child nodes, and so

on. Every www client is required to understand this markup language so that

the transmission of information across the internet takes place.

2.2.1. ANALYSIS OF WEB CONTENT

The textual content is the most straightforward feature of a web page that is also

considered for retrieval of information as it is directly available in the page. But an

obvious feature that appears in HTML documents and not in plain text documents

is HTML tags. It has been demonstrated that using information derived from these

tags can significantly boost the search efficiency. [75] derived significance

indicators for textual content in different tags. In their work, four elements from

the web page are used: title, headings, metadata, and main text. A linear

combination of these four elements is used to classify the web pages according to

their domains. The work proposed in [105] and [106] discusses a similar approach

for classifying the web pages using a modified k-Nearest Neighbour algorithm by

assigning weights to terms present in different tags. But they have divided all the

HTML tags into three groups and assigned each group an arbitrary weight so that

the terms within different tags are given different weights. Thus, utilizing tags can

<HTML>
<BODY>
<H1> DESIGN A HTML DOCUMENT </H1>
</BODY>
</HTML>

 14

take advantage of the structural information embedded in the HTML files, which is

usually ignored by plain text approaches.

The result of a survey that was conducted on a sample of 19195 web sites in [107] to

estimate the number of words that are often used in the content attribute of the

<TITLE> tags , the <META name=‘‘keywords’’> and the <META

name=‘‘description’’> tags and in the free text found within the <BODY> tag,

excluding all other HTML tags. For each tag type, the percentage of web sites with

the number of words within a certain range is shown in Table 2.1.

Table 2.1: Percentage of web pages with words in HTML Tags

The body of a web page acts as the major and most important source of text. As

shown in last column of 1st row, nearly 17% of chosen web pages contain only

images, frame sets or plug-ins with no usable body text. A maximum fraction of web

pages contained more than 50 words with just a quarter of web pages containing 11-

50 words. The amount of textual content that exist in the title tags is relatively small

(only 1-10 words) for almost 89% of the web sites despite of their so common use, as

can be depicted from the entry 3rd row of the second column . Moreover, the title tags

typically contain the names or terms like “home page”, which are not of much help in

classifying the subject of the web page.

Although only about one-third of the web sites were found to contain the Meta-tags

for keywords and descriptions, still these tags play a major role in ranking and display

of search results generated by the several major search engines. It was also observed

that the Meta tags often include the content that is specifically intended to aid in the

identification of the subject area of the web page so prove to be of great help in

 15

classification. For most of the web sites these meta-tags contained between 11 and 50

words, with a smaller percentage containing more than 50 words (in contrast to the

number of words in the body text which tended to contain more than 50 words).

2.2.2. INFORMATION RETRIEVAL TOOLS

To organize and locate the information present on the WWW, a collection of

information search and retrieval tools are now available on the Web, the most popular

of which are the web directories, search engines and meta search engines. Each of

these systems is explained as follows:

2.2.2.1.Web Directories

Typically, the directories on the Web are topic-oriented catalogs that contain a

hierarchical representation of Internet web sites in which the web pages have been

classified by topics or subjects. This hierarchy can be broken down into topics and

subtopics upto any number of levels depending on the categorization of the topic.

However, classification of the web pages and the topic levels that are to be added to

the web directory typically involves human intervention. Moreover, these topics vary

according to the scope of each Web directory and are never standardized. The Web

directories are often carefully evaluated and annotated by human experts in their

respective areas or topics.

By using a Web directory, the user can select a suitable category for a topic of his

interest and can move down through the hierarchy, selecting the subcategory and thus

narrowing the search at each level until a list of hyperlinks relevant to his topic are

offered. While traversing the directory structure downwards, the user moves towards

more specific topics whereas while traversing upwards the user moves towards more

general topics. But these directories being manually edited may not have been

correctly classified and thus, the user can only search using the broad or general terms

and on the basis of what that is visible (topics, titles, subject categories, descriptions,

etc.). Some examples of Web directories are ‘Google Directory’, ‘Yahoo! Directory’

and ‘Open Directory Project (ODP)’.

2.2.2.2. Search Engines

A search engine [6, 10] is an information retrieval tool that minimizes the user’s time

required to find the relevant information over the vast Web of hyperlinked documents.

It is a tool that:

 16

1) Enables its users to submit a query consisting of a string or phrase that

describes his/her criteria about the information of interest.

2) Searches its locally maintained databases for matches against the query.

3) Returns a set of web pages that matches with the query.

4) Allows the user to refine and re-formulate the query as per the requirement.

CRAWLING

QUERY

ENGINE

RANKING

MODULE

WEB

CRAWLER

 / CRAWL

ENGINE

CRAWLED DOCUMENT

REPOSITORYWWW

INDEXER /

INDEX

ENGINE

INDEX DATABASE

INDEXING

QUERY PROCESSING

USER QUERY
RANKED

RESULTS

QUERY

QUERY

RESPONS

E

Figure 2.3: Elements of a Basic Search Engine

All the search engines share a common set of activities and components [11, 12]. The

various components of a basic search engine are illustrated in Figure 2.3. Based on

these components, the various functionalities performed by a search engine can be

divided in the following manner:

1. Crawling: This is the process by which a search engine gathers pages

from the WWW, in order to index them and support the search engine. The

component responsible for the process is known as a Crawl Engine or

more typically as a Web crawler [11, 12]. The crawler when given a set of

seed Uniform Resource Locators (URLs) as input downloads all the web

pages addressed by the URLs, extracts the hyperlinks contained in the just

downloaded pages and recursively downloads the web pages

corresponding to the extracted hyperlinks. The objective of crawling is to

quickly and efficiently gather as many useful web pages as possible

together with the link structure that interconnects them.

2. Indexing: Indexing refers to the task of creating a data structure that

allows easy and quick searching of content [12]; or the act of assigning

index terms to documents for their efficient retrieval where an index term

 17

is a word which can semantically represent the main subject or theme of

the document [12]. The storage space is commonly termed as the index or

the database and the element responsible for building the search engine’s

index is termed as the Index Engine or typically as an Indexer.

3. Query Processing: This is another important task to be carried out by a

search engine. It includes receiving a query from the user, describing the

web documents that suit the interest to the user, searching the index data

structure for relevant document entries, and presenting the results to the

user. These results are thereafter ranked in the order of their relevance to

the query. The component responsible for processing the user queries is

often termed as a Query Engine.

A search engine can either be a general- purpose search engine or a specialized search

engine. The general- purpose search engine are basically used for general queries and

index all kinds of web pages. These do not focus on any specific kind of web content

thus not limiting itself to particular domain. For example: Google, Yahoo!, AltaVista

etc are some of the popular search engines for generic search. These kinds of the

search engines are the most popular among the users that answer millions of queries

per day.

The specialized search engines focus on a specific topic or domain, like the Search

Engines attributed to medical research databases (MedHunt.Com, Pubmed.inc);

search engines offering travel catalogues to help users plan their travel via the web

(TripAdvisor.com, Expedia.com) etc. The search technology used by these IR tools

target to deliver only the results that seem most relevant and popular by filtering out

any irrelevant search results. This helps to obtain a fewer number of hits as the

content that does not belong to the topic has been eliminated from the search results.

This increases the chances of fetching more precise and relevant results with a big

savings in user’s time needed for searching.

Moreover, due to the limited domain or topic for access, the crawling process can be

more frequent facilitating more current and updated index.

 18

2.2.2.3. Meta-Search Engines

A meta-search engine is generally used to send the user query to multiple data sources

or search engines in order to present the combined results in a formatted manner. The

data sources are generally the indexes of web search engines. More clearly, a meta-

search engine forwards the keywords of the user query to several individual search

engines simultaneously for obtaining the results from all the search engines. The

results obtained thereof are combined together in a common representation by the

meta- search engine for presenting them to the user. Here, it may be observed that the

meta-search engines do not possess their own index of Web pages. They completely

rely on the indexes of other search engines. The examples of various meta-search

engines are: Profusion [10], MetaCrawler [15] etc.

A good meta-search engine is not only capable of accepting complex queries,

integrating the results in a well planned way but is also capable to eliminate any

duplicate result record hits, and rank the results as per their relevance in an intelligent

manner. The working of a typical meta-search engine is shown in the Figure 2.4.

Query

Results

Search Engine 1 Search Engine 2 Search Engine 3
User InterfaceUser Interface

Query
Dispatcher

Result Merging
and Ranking

Query
Query

Q
uery

R
es

ul
ts

ResultsResults

Figure 2.4: Basic Architecture of a Meta-Search Engine.

The main disadvantage of these meta-search engines is that, they are mainly

dependent on the general purpose search engines and the accuracy of retrieval

depends on the efficiency of the general purpose engines. Also, these search systems

must keep up with the changes like search algorithms, indexing techniques etc. in the

dependent search engines.

 19

2.3. WEB CRAWLERS

The crawler downloads the web pages to be used by a search engine. These web pages

are later processed by the search engine in order to create and maintain an index. The

crawler traverses the web by following the hyperlinks embedded in the web page and

recursively downloading the documents [7]. Technically, crawler is defined as

“Software programs that traverse the World Wide Web information space by

following the hypertext links extracted from hypertext documents” [32]. Web crawlers

are also known as spiders, or wanderers, or robots, or worms etc. These names may

be misleading as the terms "Spider" and "Wanderer" gives false impression that the

crawler itself moves, and the term "Worm" implies that the crawler multiplies itself,

like the infamous Internet worm [5, 6, 22]. Figure 2.5 shows the process of a

conventional crawler to download web pages.

Select URL
Download

Page

Parse Page to

Extract Links

Add Links to

Queue of URLs

Queue of Seed

URLs

Crawl Loop

Figure 2.5: Control process of a crawler for the Surface Web

The following are some of the basic terms used in the context of web crawlers:

1. Seed URLs: A crawler traverses the Web by following hyperlinks recursively

within its downloaded web pages. It starts by choosing a URL from a given set

of initial URLs. This starting URL set is the entry point though which any

crawler starts searching procedure. These initial URLs in the set are known as

the “Seed URLs” for crawling. The selection of a good seed set is the most

important factor in any crawling process.

2. Frontier: The crawling method starts with a given URL (from the seed URLs),

downloading the associated web page, extracting links from it and adding

them to an un-visited list of URLs. This list of un-visited links or URLs is

known as, frontier. This frontier is implemented by using Queue, Priority

Queue Data structures. The maintenance of the Frontier is also a major task of

any Crawler.

 20

3. Parser: Once a page has been fetched, its content is then parsed to extract

information that is used to guide the future path of the crawler. The job of the

parser is to parse the fetched web page to extract list of new URLs to be added

to the Frontier.

Thus, crawlers are mainly used by web search engines to gather the data for indexing.

Since, a crawler identifies a document from its URL, it picks up a seed URL and

downloads corresponding Robot.txt file, which contains downloading permissions and

the information about the files that should be excluded by the crawler. On the basis of

the host protocol, it downloads the document and stores the related pages in its

database. It then repeats the whole process as per the algorithm in Figure 2.6 :

Figure 2.6: Algorithm of a crawler.

The Robot.txt is an important file housed on every server. A detailed discussion on

this file is given in the next section.

2.3.1. ROBOT.TXT: STANDARD FOR ROBOT EXCLUSION

The crawlers or robots traverse many pages in the WWW by recursively retrieving

linked pages [25]. In 1993 and 1994, there were occasions when crawlers visited

WWW servers where they were not welcomed for various reasons such as given

below:

• Certain robots (crawler) swamped servers with rapid fire requests

Step1: Read a URL from the seed set of URLs

Step2: determine the IP address of the host name.

Step3: download the Robot.txt file that carries the downloading permissions for

 different files.

Step4: determine the protocol of underlying host like http, ftp etc. for

 downloading the file.

Step5: identify the document format like doc, html, or pdf etc.

Step6: check whether the document has already been downloaded or not

Step7: if the document is fresh one

 read it and extract the links to the other cites from that document;

else

 continue;

Step8: convert the URL links into their absolute URL equivalents.

Step9: add the URLs to set of seed URLs

 21

• Some robots retrieved the same file repeatedly

• Robots traversed parts of WWW servers, which were not suitable such as very

deep virtual trees, duplicate information, temporary information, access to

CGI scripts etc.

The above mentioned points necessitated the need for established mechanisms for

WWW servers to indicate the crawlers as to which parts of their servers should not be

accessed. Therefore, a concept to have a file named as "/robots.txt" came into

existence that will specify the access policy for these robots.

The format and semantics of the "/robots.txt" file is as follows:

• The file consists of one or more records separated by one or more blank lines

terminated by CR, CR/NL, or NL

• Each record contains lines of the form:

▪ "<field>: <optional space> <value> <optional space>"

▪ The field name is case sensitive.

• Comments can be included in file using UNIX borne shell conventions. The

"#" character is used to indicate that preceding space (if any) and the

remaining part of the line up to the line termination is discarded.

• The record starts with one or more user-agent lines, followed by one or more

Disallow lines as detailed below.

2.3.1.1. User-Agent

• The name of the field is the name of the robot for which the record is

describing access policy.

• If more than one user agent field is present, the record describes an identical

access policy for more than one robot. At least one field needs to be present

per record.

• The robot should be liberal in interpreting that field. A case sensitive sub

string match of the name without version information is recommended.

• If the value is "*" the record describes the default access policy for any robot

that has not matched any of the records. It is not allowed to have multiple such

records in the "/robots.txt" file.

 22

2.3.1.2. Disallow

• The value of this field specifies a partial URL that is not to be visited. This can

be a full path, or a partial path; Any URL that starts with this value will not be

retrieved.

For Example: Disallow: /help disallows both /help.html and

 /help/index.html

• Whereas Disallow /help/ would disallow /help/index. html but allow help.html.

• Any empty value indicates that all URLs can be retrieved.

• At least one disallow field needs to be present.

Example: The following server:

 # Go away

 User-agent: *

 Disallow :/

 Indicates that no crawler should visit this site further.

Example: The following server:

 # robots.txt for http://www.exampleworld.com

 User-agent: *

 Disallow: /internetcity/map/

 Disallow: /temp/

 Disallow: /cyber.html

indicates that no crawler or robot should visit any URL starting with

"/internetcity/map" or “/temp/” or “/cyber.html”.

 23

Thus, "/robots.txt" specifies which parts of the server URL space should be avoided

by the robots. This facility can be used to warn crawlers or robots for black holes.

This standard is voluntary but is very simple to implement.

2.4. CHALLENGES FOR A WEB CRAWLER

Though the Web crawler algorithm seems to be a simple recursive traversal of the

hyperlinks and the associated web pages, but is complicated by the demand of high

quality of the retrieved document collection. Following are some of the issues and

challenges generic to web crawlers:

1. Robustness: A web server might create malicious spider traps (during

website development) by hosting and linking to web pages that mislead the

crawlers to get stuck by fetching an infinite number of pages repeatedly. The

crawlers designed must be flexible enough to handle such traps.

2. Politeness: Web servers have both implicit and explicit policies regulating the

rate at which a crawler can visit them. A crawler should not overload web

servers by issuing a large number of requests in a small interval of time. This

can be done by avoiding issuing the requests to the same server. A crawler

must be designed with the view to respect this policy of being polite.

3. Scalable: The crawl of a portion of the web must be completed within a

limited time. A search engine that requires daily updates to its index cannot

use a crawler that takes weeks or months to harvest the data from the web. The

download rate of the crawler must suit the requirements of the application that

will process the downloaded collection. The crawler architecture should

provide support to scale up the crawl rate either by adding extra machines or

bandwidth in the existing one.

4. Distributed: The crawler should have the ability to execute in a distributed

fashion across multiple machines.

5. Extensible: Crawlers should be designed in such a way that it may cope with

new data formats, new fetch protocols, and so on. The information

downloaded by a crawler would have little use if it could not be processed by

other applications. Thus, a crawler should be designed to operate as a

component of broader systems. This demands that the crawler architecture be

modular so that third party modules can be added as per the requirements.

 24

6. Performance and efficiency: The crawler should utilize the available

resources such as processor, storage and network bandwidth in the best

manner possible.

2.4.1. INFORMATION RETRIEVAL TERMS AND PERFORMANCE

METRICS

As the WWW contains huge amount of data distributed over the different

geographical locations and still growing at an exponential rate, information retrieval

tools are needed that allows the users to find the information on the web quickly and

in a rapid manner. Some basic definitions that introduce the area of information

retrieval and thus help in evaluating the performance of any information retrieval tool

are given below:

1) The most basic unit of Information Retrieval is the term [4] which can be

defined as a word in any known language like English, Japanese, French etc.

2) A query [12] is a phrase consisting of one or more than one term that specify

the ad hoc information need of the user.

3) A document [32, 38] is generally defined as a large set of terms that are

arranged usually in a meaningful manner, to form sentences. A set of

documents is often termed as the document collection or corpus.

4) The terms are often weighed to measure their expressive or descriptive power.

The measure term frequency (TF) [2, 4, 12] specifies the number of times a

particular term appears in a document.

5) The metric Inverse Document Frequency (IDF), is used to find how common

or how frequently a word exists in a collection [4, 12]. The words that have a

high frequency of occurrence are called Common words and thus have a low

value of IDF whereas the terms that occur rarely have a high value of IDF.

IDF is calculated by using the formula:

𝑰𝑫𝑭 = 𝐥𝐨𝐠
𝒄𝒐𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒔𝒊𝒛𝒆

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒕𝒉𝒆 𝒕𝒆𝒓𝒎
 2.1

If a document has been represented as a one-dimensional array or vector that

contains the term frequency of every word in the document then for each term

 25

in the document vector, its TF is multiplied by IDF to get the score TF-IDF [2,

4, 12] which is the most popular method of weighing terms i.e.

 TF − IDF = TF × IDF 2.2

6) Relevance [6, 17] is a measure of how well a document satisfies the need of its

user. The IR tool or system takes a query from the user and returns a set of

documents that are relevant to that query.

7) The following are the standard measures [12, 19] that are used to evaluate the

performance of any IR tool in returning relevant documents:

➢ Precision: It is the ratio of number of relevant documents retrieved by

the IR tool divided by the total number of documents retrieved:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 2.3

➢ Recall: It is the ratio of the number of relevant documents retrieved

divided by the total number of relevant documents that exits in the

collection:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 2.4

As different users have different information needs, a document which might be

relevant to one user may not be of much use to other. Therefore, the definition of

relevance is difficult to quantify and the above metrics used for calculating are purely

subjective. The information retrieval tool should not only target to achieve 100%

precision but also maximize recall as the former is only possible if the system

retrieves just a single document [18, 22]. Giving more weight to common documents

is one method of improving precision [37]. Similarly, a 100% value of recall can only

be obtained if the information retrieval tool returns all the documents. Thus, the

system should also try to maximize precision as well [22, 24]. Recall can be improved

by selecting those document collections that help in retrieving different relevant

documents [37].

 26

2.5. CLASSIFICATION OF WEB CRAWLERS

A crawler typically follows the links in the order in which they are encountered i.e. in

a FIFO manner where the process begins by a particular web page and then explores

all its linked web pages that are reachable by following a single hyperlink from the

home page. After exploring all the web pages at the first level, it starts exploring the

other web pages. Thus, a breadth-first crawl targets to maximize the coverage of the

web content in the search engines index. The strategy works well in a situation if a

small number of web pages exist over the Web and have to be traversed. However,

the WWW has millions of pages linked to one another. The enormous size of WWW

makes it almost impossible to crawl the contents of entire Web as the index of a

search engine cannot accommodate all the pages. The ultimate goal of search engines

is not only to cover WWW as much as possible in the minimum time period but also

to download the quality web pages. Thus, practically, a crawler does not need to look

into every corner of the Web if it is to acquire information on a particular topic of

interest. Therefore, many types of Web Crawlers came into the picture. Few of the

important web crawlers are discussed as follows:

2.5.1. FOCUSED CRAWLERS

WWW is a collection of hypertext documents from all possible domains. It is very

difficult for any general purpose crawler to download such a large collection of

documents from diversified areas. Focused crawlers restrict the crawling process on a

specific set of topics that represent a narrow domain of the Web. A focused or a

topical web crawler attempts to efficiently download web pages relevant to a set of

pre-defined topics and guide the search based on content and link structure of the Web.

It does not collect all the related and reachable web pages as the general purpose

crawlers do, yet have higher efficiency as the URLs that point to low quality or

irrelevant pages have been avoided. Crawlers taking this approach have more relevant

documents, compared to their “store everything” counterpart.

 27

Standard Crawling Focus Crawling

Figure 2.7: a) A standard crawler following each link. b) A focused crawler trying to identify the most

promising links

Figure 2.7 graphically illustrates the difference between an exhaustive crawler and a

typical focused crawler. A standard crawler follows each link, typically applying a

breadth first strategy. If the crawler starts from a document which is i steps from a

target document, all the documents that are up to i-1 steps from the starting document

must be downloaded before the crawler hits the target. Whereas, a focused crawler

tries to identify the most promising links, and ignores off-topic documents. If the

crawler starts from a document which is i steps from a target document, it downloads

a small subset of all the documents that are up to i-1 steps from the starting document.

If the search strategy is optimal the crawler takes only i steps to discover the target.

The focused strategy is based on an assumption that a page under a certain topic (or

region) is likely to be linked from another page with the same topic, thus link context

forms an important part of web based information retrieval task. Before fetching the

web document, focused crawlers try to predict whether the target URL is pointing to a

relevant and high quality document or not.

Focused crawling method collects web pages following these steps. A set of keywords

is defined prior to the crawling. Start pages are chosen, and the crawling starts. If a

scanned page contains a word from the keyword set, then this page is saved in the

database, and links from this page are added to the queue. Crawling goes on until the

queue is empty or no page has been collected for over certain length of time.

 28

Seed Set

Training

WWW

Frontier URLs
Priority Queue

Classification

Topic
taxonomy

Crawler Database

Distiller

Newly
Crawled
Page

URLs

Parameters

Binary Classifier

CrawlerCrawler

Figure 2.8: Focused Crawler Architecture

According to the Chakrabati [18], as shown in Figure 2.8, the key components of a

focused crawler are a Document Classifier and a Document Distiller. The task

performed by classifier is to evaluate the documents (that are linked to the current

document thus henceforth called children) with respect to the focused topic and that

of a distiller is to identify for the best URLs for the crawl frontier. The classifier is

either provided by the user in the form of query terms, or can be built from a set of

seed documents. Each link is assigned the score of the document to which it leads.

More advanced crawlers adapt the classifier based on the retrieved documents, and

also model the within-page context of each hyperlink. However, ensuring flexibility

in the classifier without simultaneously corrupting it is difficult [22]. Precision and

recall are two basic parameters to measure the performance of focused crawlers.

Designing a focused crawler poses a number of challenges like:

• High Quality Training Data: The best URLs are those that can serve as great

access points to many relevant pages within a few links. Thus, maintaining the

quality of the training data is of utmost importance to keep the crawl on focus

which acts as a main bottleneck for the effective performance of the focused

crawler.

 29

• Restricted Search: Since the links on the Web are unidirectional, the search is

restricted to ‘forward crawl’ or ‘top-down traversal’ for the focused crawlers.

Moreover, the websites frequently have large components that are organized

as trees, entering a website at a leaf can result in a serious barrier to finding

closely related pages.

Once the challenges and issues related with their design mechanism are tackled, it

offers several advantages that are mentioned as follows.

• More Relevant Pages: By limiting web pages to those containing predefined

keywords, the resulting set of web pages is expected to have higher

concentration of relevant pages, despite ambiguities in place names.

• Fresh Content: Focused crawlers can cover the specialized topics in depth and

keep the crawl database fresher as they are limited to a specific topic or region

of the WWW.

• Efficiency in Crawling: Because crawler does not collect all pages but those

containing predefined keywords, it has higher efficiency in collecting desired

pages, compared to “store everything” crawling system. This saves both

hardware and network resources.

• Avoidance of Ambiguity: By tracing down links only when there was a

keyword found in the page, only the pages that are linked by another relevant

page are collected. This reduces ambiguity, since the page under consideration

is guaranteed to be linked from the page related to the topic because of the

semantic relationships represented in the links.

2.5.2. PARALLEL CRAWLERS

The amount of information presented over the WWW and the number of pages

providing this information have reached to such a level that it is difficult, if not

impossible, to crawl the entire web by a single processor. Thus, current search engines

use multiple parallel processors to maximize the download rate of the crawler. When

multiple processes are used to simultaneously download the web pages, the type of

the crawler is referred to as a parallel crawler. Nevertheless, in order to design an

efficient parallel crawler, major techniques applied in parallel crawlers and the

challenges to be faced must be analyzed. This section thus presents the various

 30

considerations to be taken in mind when designing the internal structure of parallel

crawlers.

WWW

C-procC-proc

C-procC-proc

Local connect

Local connect

Collected

Pages

Queues of URLs

to visit

. . . .

. . . .

Figure 2.9: Generic Architecture of a Parallel Crawler.

The general architecture of a parallel crawler is as shown in the Figure 2.9. In a

parallel crawler, multiple crawling processes (typically termed as the C-procs)

working in parallel are used to download the web pages and perform all the tasks that

are basically performed by any crawler. Each C-Proc maintains a local database of the

web pages collected by it. The C-Proc also owns a queue of URLs that are yet to be

visited by it. Once the C-Proc finishes its task, the pages collected by each C-Proc are

added to a central or common repository maintained by the search engine. If the target

download rate has not been achieved by the crawler and needs to be increased further,

number of C-procs can be added to the system.

An augmentation to hypertext documents by including a Table of Links (TOL) for

parallel crawling was developed by A.K.Sharma et al [35]. According to this method

if the links contained within a document become available to the crawler before an

instance of crawler starts downloading the documents itself, and then downloading of

its linked documents can be carried out in parallel by other instances of the crawler.

But in the traditional crawling scenario, the links become available to the crawler only

after a document has been read by the downloader. Therefore, providing meta-

information in the form Table of Links (TOL) consisting of the links contained in a

 31

document was proposed. This TOL is stored external to the document such that it can

be retrieved separately by the crawler. The storage may be in the form of a file with

the same name as the document but with different extension (say as .TOL). Extraction

of TOL is a one-time process that can be done at the time of creation of the document.

In [36], the architecture of a scalable parallel crawler based on their extraction of TOL

has been proposed. Their crawler partitions the task into two stages: At the first stage,

they have divided the document retrieval system into two parts: the crawling system

and the hypertext (augmented) documents system. The augmented hypertext

documents provide a separate TOL for each document to be downloaded by the

crawling process. Once the TOL of a document becomes available to the crawler, the

linked documents, housed on external sites, can be downloaded in parallel by the

other instances of the crawler. Moreover, the overlapped downloading of the main

documents along with its linked documents on the same site also becomes possible. In

the second stage, the crawling system has been divided into two parts: Mapping

Process and Crawling Process. The Mapping process resolves IP addresses for a URL

whereas the Crawling Process downloads and processes documents.

The main advantage of the Parallel crawling architecture is that it increases the

efficiency of any search engine. But using several crawling processes that work in

parallel raises certain problems or issues that need to be dealt with. These issues are

described in the following section.

2.5.2.1. Challenges faced with Parallel Crawling Architectures

• Risk of Overlapping Web pages: The problem arises when multiple

crawling processes running in parallel download the same web page multiple

times due to the reason that a process may not be aware that another process

has already downloaded the page. Also, to avoid overloading of a single Web

server, many organizations put duplicate copies of their documents on many

different servers. This increases the chances that many copies of the same web

page are downloaded by the crawler. This necessitates that such multiple

downloads be avoided or reduced to minimum in order to preserve network

bandwidth for increasing the effectiveness of the crawler.

• Quality of downloaded web pages: To maximize and maintain the quality of

the web page collection downloaded by the crawler, it must download

“relevant” pages earlier during the process. However, in a parallel crawler

 32

framework, to download such relevant or important pages first, multiple

crawling processes running in parallel must be familiar with the portion of the

Web that is stored in the common or centralized repository so that redundancy

among the duplicate web pages may be eliminated.

• Network or Communication bandwidth: The crawling processes need to

communicate among themselves for coordinating with each other. This

coordination helps to reduce the overlap and thus improve the quality of web

page collection. However, if the number of crawling processes working in

parallel is too large, the traffic generated due to communication increases

significantly and results into a huge consumption of network bandwidth.

Thus, implementation of a framework based on parallel crawling in a search engine is

a big challenge.

2.5.2.2. Advantages of Parallel Crawler Architecture

Though the parallel crawling framework is challenging to implement but yields many

important advantages [23] in comparison to the single process or sequential crawler.

These advantages are mentioned below:

• Scalability: Due to the huge size of the Web, downloading the web pages in

parallel by the crawling processes prove highly useful in achieving the target

download rate and thus providing efficient coverage.

• Network-load Dispersion: Multiple crawling processes of a parallel crawler

may run at geographically distant locations, each downloading

“geographically-adjacent” pages. For example, a process in Sweden may

download all European pages, while another one in India crawls all Asian

pages. In this way, one can easily disperse the network load to multiple

regions. In particular, this dispersion might be necessary if a single network

cannot handle the heavy load from a large-scale crawl.

• Reduction in Network-load: In addition to the dispersing load, a parallel

crawler may actually reduce the network load also. For example, assume that a

crawler in India retrieves a page from Europe. To be downloaded by the

crawler, the page first has to go through the network in Europe, then the

Europe-to-Asia inter-continental network and finally the network in India.

Instead, if a crawling process in Europe collects all European pages, and if

 33

another process in Asia crawls all pages from Asia, the overall network load

will be reduced, because pages go through only “local” networks Thus, it can

be concluded that Parallel Crawler Architecture is a better option as compared

to single crawler architecture. Also the number of web pages around the globe

is huge. Thus, in order to cover the whole web, only parallel crawlers can do

this job in short span of time by keeping in consideration the issues listed

above.

2.5.3. HIGH-PERFORMANCE CRAWLERS

Many search engines have implemented their own versions of high- performance

crawlers to index the Web. They consist of a number of crawler threads, which run on

distributed sites and interact in a peer-to-peer fashion. Each such thread entity has the

knowledge of its URL subset, as well as mapping from URL subset to network

address of corresponding peer crawler thread. Whenever any crawler thread

encounters a URL from a different URL subset, it is forwarded to the appropriate peer

thread based on URL look up table. Each crawler thread maintains its own database,

which only stores the documents from the URL subset assigned to that particular

thread. The databases are disjoint and can be combined offline when the crawling task

is complete.

Ubicrawler [20] and Mercator [24] are the few popular examples of high-performance

web crawlers. Scalability and fault tolerance are the primary features apart from other

features such as balanced load distribution, politeness, fully distributed, high

performance, and portability for any web crawler. A detailed discussion on the design

of these crawlers is as follows:

(a) Mercator[24]: It is a scalable and extensible crawler, that is used by the AltaVista

search engine. Multiple crawler threads are used to accomplish the task of

crawling where each thread repeatedly performs the steps needed to download and

process a document. Figure 2.10 shows the major components of the Mercator

crawler. In the first step, the crawler thread takes an absolute URL from the URL

frontier for downloading.

 34

Protocol Module
DNS Resolver

Internet

Content
Seen?

URL Frontier

URL Filter

HTTP FTP Gopher

RIS

Processing Module

Link
Extractor

Tag
Counter GIF Stats

URL Seen?

LogLog

URL Set

Queue Files

Doc FPs

Figure 2.10: The architecture of Mercator Crawler

In Mercator, the network protocols to be used during the crawl are specified in terms

of protocol modules. These specifications are listed in the configuration file that is

supplied by the user at the start of the crawl. The default configuration includes

protocol modules for HTTP, FTP, and Gopher. Also, there is a separate instance of

each protocol module per thread, which allows each thread to access local data

without any synchronization.

Based on the URL’s scheme, the crawler instance selects the appropriate protocol

module from the Mercator’s configuration for downloading the document. It then

invokes the protocol module’s fetch method, which downloads the document from the

Internet into a per-thread RewindInputStream (RIS). A RIS is an I/O abstraction that

is initialized from an arbitrary input stream, and that subsequently allows that

stream’s contents to be re-read multiple times.

 35

Once the document has been written to the RIS, the worker thread invokes the

content-seen test to determine whether this document, even if associated with a

different URL, has been seen before. If so, the document is not processed any further,

and the worker thread takes the next URL from the frontier. Every downloaded

document has an associated MIME type. The Mercator’s configuration’s file not only

associates schemes with protocol modules but also the MIME types with one or more

processing modules. Like protocol modules, there is a separate instance of each

processing module per thread. For example, the Link Extractor and Tag Counter

processing modules in Figure 2.10 are used for text/html documents, and the GIF

Stats module is used for image/gif documents. By default, a processing module for

extracting links is associated with the MIME type text/html.

A processing module is basically an abstraction for a typical parser that is used to

process the downloaded documents. It does the tasks like extraction of links from

HTML pages, counting the tags in HTML documents, or collects statistics about GIF

images. Based on the downloaded document’s MIME type, the crawler thread invokes

the process method of each processing module that corresponds to the associated

MIME type which then extracts all the links from the downloaded hypertext

document. Each extracted link is converted into an absolute URL, and tested against a

user-supplied URL filter to determine if it should be downloaded. If the URL passes

the filter, the thread performs the URL-seen test, which checks if the URL has been

seen before, i.e. if it is in the URL frontier and has already been downloaded. If the

URL is new, it is added to the frontier else is simply discarded. In short, Mercator

offers the following distinguishable features:

(i) Mercator is designed to scale up to the entire Web so as to fetch the

web of documents efficiently.

(ii) It is designed in a modular way, keeping in mind the expectation for

extensibility by adding new functionalities that might be specified by

third parties.

(iii) The architecture of Mercator suggests the use of pluggable components

so that it can be reconfigured to use different versions of its various

components like URL Frontier, URL Filter etc. This allows

customizing the behavior by plugging in the various components

dynamically.

 36

(b) UbiCrawler[20]: It is a high performance fully distributed crawler in terms of the

crawling processes with a prime focus on distribution and fault tolerance. Its

design has been partitioned into two major components - Crawling System and

Crawling Application. The Crawling System itself consists of several specialized

components, in particular a crawl manager, one or more downloader’s, and one or

more DNS servers. All of these components, plus the crawling application, can

run on different machines (and operating systems) and can be replicated to

increase the system performance.

The crawl manager is responsible for receiving the URL input stream from the

applications and forwarding it to the available downloader’s and DNS resolvers while

enforcing rules about robot exclusion and crawl speed. A downloader is a high-

performance asynchronous HTTP client capable of downloading hundreds of web

pages in parallel, while a DNS resolver is an optimized stub that forwards queries to

local DNS servers. Figure 2.11 presents the architecture of the UbiCrawler with the

main focus on how the data flows through such a distributed system.

Downloader

URL
reques

Downloader

Downloader

DNS
Resolver

Crawl
Application

Crawl

Manager

URL’s

Downloaded Files

Robots.txt

Figure 2.11: The UbiCrawler.

The main components of UbiCrawler are discussed below:

A. Crawl Manager

The crawl manager is the central and the first component of the system that is started

up. Afterwards, other components start and register themselves with the manager to

offer or request services. The manager is the only component visible to the other

 37

components. It receives requests for URLs from the application, where each request

has a priority level and a pointer to a file containing several hundred or thousand

URLs and located on some disk accessible via NFS. The manager enqueues the

request, and eventually loads the corresponding file in order to prepare for the

download, though this is done as late as possible in order to limit the size of the

internal data structures. In general, the goal of the manager is to download pages in

approximately the order specified by the application, while reordering requests as

needed to maintain high performance without putting too much load on any particular

web server.

After loading the URLs of all request files, the manager queries the DNS resolvers for

the IP addresses of the servers, unless a recent address is already cached. The manager

then requests the file robots.txt in the web server’s root directory, unless it already has

a recent copy of the file. After parsing the robots files and removing excluded URLs,

the requested URLs are sent in batches to the downloader’s, making sure that a certain

interval between requests to the same server is observed. The manager later notifies

the application about the various web pages that have been downloaded and are

available for processing. The manager is also in charge of limiting the overall speed

of the crawl and balancing the load among Downloaders and DNS resolvers, through

monitoring and adjusting the DNS resolver load long with the downloader speed as

needed. The manager performs periodic tests of its data structures, and after a crash, a

limited number of pages may have to be re-crawled. It is up to the application to

detect these duplicate pages.

B. Downloaders and DNS resolver

The downloader component, implemented in Python, fetches files from the web by

opening up to 1000 connections simultaneously to different servers, and polling these

connections for Data signal. The downloaded or arrived data is then collected into

files located in a directory determined by the crawling application. Since a

downloader often receives more than a hundred pages per second, a large number of

pages have to be written out in one disk operation. The way pages are assigned to

these data files is unrelated to the structure of the request files sent by the application

to the manager. Thus, it is up to the application to keep track of which of its URL

requests have been completed. The crawl manager may ad-just the speed of a

downloader by changing the number of concurrent connections that are used.

 38

C. Crawling Application

The crawling application is breadth-first crawl starting from a set of seed URLs, in

this case the URLs of the main pages, which are initially sent to the crawl manager.

The application then parses each downloaded page for hyperlinks, checks whether

these URLs have already been encountered before, and if not, sends them to the

manager in batches of a few hundred or thousand. The downloaded files are then

forwarded to a storage manager for compression and storage in a repository. The

following two important points were observed: First, since each page contains on

average about 8 hyperlinks, the set of encountered URLs grows very quickly beyond

the size of main memory, even after eliminating duplicates. Thus, after downloading

20 million pages, the size of this set reaches above 100 million. Second, at this point,

any hyperlink parsed from a newly downloaded page and sent to the manager is only

downloaded after several days. Thus, there is no reason for the manager to

immediately insert new requests into its dynamic data structures.

2.5.3.1. Issues and Challenges with High-Performance Crawlers

The following challenges have been observed with high-performance crawlers:

1. Assignment of URL’s among different agents: The major challenge in

distributed crawler is the way URLs are assigned efficiently and dynamically

to download among the crawler threads. The assignment must take into

consideration the various constraints like minimum rate of requests to Web

servers, appropriate location of the crawler threads on the network, and the

effective exchange of URLs.

2. Priority in Crawling: The URL collection in the Frontier must be effectively

partitioned in such a way that only those URLs that seem to be useful are

processed for fetching answers to any query and not by processing all the

URLs. Also, this chosen subset should be able to provide a high number of

relevant documents. Considering the dynamic nature of the Web, a criterion

that orders the URLs based on certain priorities and must be brought into

existence. Hence, an important challenge is to find effective ways of

partitioning the URL collection so as to process the smallest possible subset

when answering any user query.

 39

3. Load Balancing: The next challenge is to determine an effective way of

balancing the load among the different index servers. There must be a good

strategy to distribute the data in order to balance the load as much as possible.

4. Network bandwidth consumption: Network bandwidth is a scarce resource and

is a big challenge. Therefore, when queries are resolved in a distributed

fashion, the servers that should be contacted must be determined efficiently.

5. Efficient cache design: The next challenge is to design an effective cache that

have high hit ratio and also overcomes the network constraints

2.6. PROBLEMS WITH THE SEARCH ENGINE LANDSCAPE

The Search Engines and their employed crawlers offer a lot of advantages as

mentioned in the earlier sections. Different type of crawlers (focused crawlers,

parallel crawlers etc.) are used by different search engines to serve the differing needs

of the users. The most common and important of these advantages is the ease of user-

search process. Likewise, the various search engines that are in practice typically

suffer from a common set problem that get in their ways while providing service.

Some of these are discussed as follows:

1) The most basic thing that is required to retrieve the information from the

WWW is the URL. However, when accessing information via a search form

using the HTTP GET request method or HTTP POST request method, certain

optional parameters need to be specified in the URL. The parameters are

included as part of the URL in the case of HTTP GET, but not in the case of

HTTP POST. In such a case of HTTP POST when no parameters have been

specified, it is not possible to publish the resulting page through a link or URL.

Hence, those pages cannot be crawled in the conventional way of following

hyperlinks.

2) The contents of a page are typically assumed to have changed if a request

yields different contents upon re-issuing the same request. For example, in

booking sites or shopping sites, the availability or number of items in stock

may change rapidly. Also, new products are repeatedly added and old ones

removed. In such cases of dynamic content, if it is to be included in the index

of a search engine, then it should then also be crawled and updated frequently

and regularly.

 40

3) The recent studies have shown that the coverage of a single search engine is

very limited [31], [32], [33], [34]. Therefore, it is not completely satisfactory

to search for information on the Web by using only one search engine even if

this search engine is most powerful. In addition, users do not know the

capabilities of a search engine, due to lack of user interface support by these

engines. On the WWW, there are a lot of search engines, but majority of the

Web users, make use of only several famous ones like Google, Yahoo! etc.

This makes users unable to judge and know where they can find the search

engines that might provide the best answers for their queries. However, some

special-purpose search engines can better answer users’ specific information

needs than the general-purpose ones can do.

4) The existing search engines typically define relevance of a document based on

the count of links (forward links and back links) and words (term frequencies)

with a little consideration to the semantics.

5) The crawlers working in parallel suffer from overlapping problem in the sense

that multiple copies of the same web documents may be downloaded multiple

times, leading to wastage of crawler’s time, network bandwidth and other

resources such as storage at the Search engine side.

Thus, in the light of above discussion, it may be noted that there is a need to modify

the existing architecture of web crawlers, with a view to improve the quality of

downloaded web documents, within time constraints.

The next chapter brings an insight into the Hidden Web and the various crawlers

existing in the literature for the same.

 41

CHAPTER 3.

HIDDEN WEB: A REVIEW

3.1. INTRODUCTION

A traditional web crawler simply crawls through the web pages by following

hyperlinks but a huge amount of the data is contained inside the web databases behind

interactive search forms, which is not easily ‘crawlable’. Based on this, the WWW

has been categorized into the following two parts:

1) Surface Web [11, 28] includes the former category of web pages i.e. the

portion of the Web that can be crawled by conventional web crawlers and

indexed by general-purpose search engines.

2) Hidden Web [39, 81] refers to the second category that includes the abundant

information hidden behind user-interactive search forms and is not directly

accessible to crawlers. A search form typically consists of various control

elements like text boxes, labels, buttons etc. An example of such a search

forms that allows online search of books is as shown in Figure 3.1.

Figure 3.1: An example of user-interactive search form that offers online search of books.

A user must fill in the values for some of the control elements to obtain the result

pages. Based on the search criteria specified in the form, certain tuples are selected

from the database for generating the response pages. Thus, the results are generated

“on the fly” in response to the user-specified search conditions.

 42

3.2. CHARACTERISTICS OF THE HIDDEN WEB

The Hidden Web is principally defined by its included content or resources which are

not only authentic (up-to-date and accurate) but also highly relevant to every

information requirement as more than half of its content, resides in topic-specific

databases. Most of these databases are overflowing with massive interesting and

valuable information [119]. The characteristics that primarily urge the need to access

the content in the Hidden Web are as follows:

1. Huge and Ever-increasing Size: A lot of information is buried inside such

online databases and the pages generated dynamically thereof. Few examples

of those tremendous databases include information like patents, shopping

catalogs, flight schedules, climate data, stock exchange data, data collected on

space missions, academic databases filled with scientific papers [32, 40]. It is

estimated to contain 7,500 terabytes of information compared to 19 terabytes

of information in the Surface Web [28]. More than 200,000 Hidden web sites

presently exist on the Web [11, 28]. Also, the size of the Hidden Web is

expected to increase at a pace faster than the Web itself as more and more

organizations put their valuable content online through an easy-to-use Web

interface [41, 42].

2. Content Quality: The Hidden Web content is believed to be of very high

quality as it is contained within authorized databases and is accessible only

through the search tools purposely designed for that site [11, 29] allowing

searching in real time and retrieving the information that is current, up-to-

minute.

3. Publicly accessible content: Public information (like Media, News) on the

Hidden Web is estimated 400 to 550 times larger than that commonly defined

WWW. Around 95% of the content contained in the Hidden Web is publicly

accessible and not subject to fees or subscription.

4. User facilitated search process: Users can perform Hidden Web searches as

easily as surface web searches & with greater results as the search interfaces

serving as front end are user- understandable.

5. Dynamic Nature: The dynamic nature of the Hidden Web has been witnessed

from the fluid nature of the WWW itself which is an ever-evolving

information source where web pages, web databases and even whole websites,

appear and disappear, modified or restructured giving the associated

 43

implication “a significant percentage of the Hidden Web databases have a

small life span”.

All these characteristics not only make the study of Hidden Web interesting but also a

challenging task.

3.3. USER-INTERACTION IN THE HIDDEN WEB

A search form typically consists of the HTML code and the CGI program. The HTML

tags create the visual representation of the search form and the CGI program decodes

the information contained within the form. A form usually starts with the <FORM>

tag and begins with an ACTION attribute that specifies the URL of the CGI program

that will process the form information. This form information usually comes in terms

of the user data raised as a query by specifying the query terms in the search form.

Once the form has been completed, the program’s name and collected parameter

values are sent to the server, as shown in Figure 3.2. The search form then specifies

the CGI program that is to be executed at the server side, along with parameter values

(that are filled in the form fields by the user). The server then passes the document to

the user/client. The Hidden Web comprises of this dynamic content included in such a

document.

 Local OS

1. Get document
request sent to the
server

6. Response web page

Local Database

4. Database
interaction

Server machine

3. Start program to
fetch document

2.Process
input

5. created HTML
document

CGI program
Web Server

Figure 3.2: The principle of using server-side CGI Programs

The main task of a server is to handle the client requests by simply fetching

documents. Basically the CGI defines a standard way by which a Web server can

execute a program taking user data as input.

 44

The data contained in the web database that hosts the search form is accessible to the

user by filling the form with certain values and submitting it. The form submission

returns a web page containing the list of links to relevant data.

USER

WEB

BROWSER

Web Databases

Web Server

The Hidden Web

Query Front End

5

4

1 2

3

6

Legend:-

1. Upload User Interface containing search form. 2. Forward interface to user.

3. Fill search form for submission. 4. Form submitted o Web Server.

5. Upload dynamic web page containing relevant results. 6. Views response / result page.

Back End

Figure 3.3: User interaction with a search form interface

Figure 3.3 illustrates the sequence of steps that take place when a user wants to access

the contents in the Hidden Web. The user has to fill in the search form for retrieving

the documents that are dynamically generated from the underlying database based on

the specified query [39, 41]. But, with millions of databases and endless possible

permutations of search criteria, it is not only difficult rather impossible to sift through

every possible combination of the dynamically resulting tuples or pages. Hence, an

automated approach to access the Hidden Web content is needed.

3.3.1. AUTOMATIC APPROACH TO ACCESS THE HIDDEN WEB

To automatically access the contents in the Hidden Web, the crawler must imitate the

sequence of steps (as in Figure 3.3) that are being followed by the human. Figure 3.4

illustrates the difference in the sequence of steps undertaken by any crawler to access

the Hidden Web’s informational content. This approach has the main advantage of

best fit with the conventional search engine technology.

 45

5
4

1 2

3

Legend:-

1. Search form upload. 2. Form extraction, parsing and analysis.

3. Form filling & submission

4. Upload dynamic web page containing relevant results. 5. Response page analysis.

Web

Server

Hidden

Web

Crawler

Web

Database

Figure 3.4: A crawler interacting with the search form interface

Though the approach is straightforward and is easily applicable, but pre-

computing valid and relevant form submissions for all search forms is a

challenging issue because of the following factors:

1) Many different kinds of databases exist on the Web [11]. The databases may

contain content that is either free form text (unstructured database) or data

records with attribute-value pairs (structured database) [41, 44]. In order to

search a database, its underlying design must be analyzed for effective

retrieval of contents.

2) Another major reason is the interface or the search form that is offered by

the database. Every search form has its own structure which may not

resemble with the others as the search form used to query depends on the

structure of the underlying database. The search form used to query the

content contain either a single query box accepting a free-form string

(unstructured or single attribute forms) or multiple query boxes pertaining to

different attributes of the content(structured or multi attribute forms) [41,

44].

The unstructured databases usually contain plain-text documents which are not well

structured and provide a simple keyword-based search interface having an input

control (text type) where users type a list of keywords to fill it in. An example of such

a search interface is shown in Figure 3.4.

 46

Figure 3.5: Keyword-based Search Interface

In contrast, structured databases provide multi-attribute search interfaces that have

multiple query boxes pertaining to different aspects of the content. For example,

Figure 3.5 shows a multi-attribute search form interface for an online book store

offering structured content (title, author, publisher, price, ISBN, number of pages)

coupled with a structured query interface (typically a subset of the content attributes

like title, author, ISBN, publisher). But these search forms serve as the only entry

point to the Hidden Web and thus, must be modeled and processed.

Figure 3.6: A multi-attribute search form interface for an online book store

Though pre-computing the most relevant form submissions for all interesting HTML

forms is a challenging issue but is a passive task which can be carried out by the

 47

crawler in the background when active, irrespective of the structure and design of the

underlying hidden web databases.

3.3.2. DIFFERENCE BETWEEN A CONVENTIONAL CRAWLER AND

HIDDEN WEB CRAWLER

A general web crawler starts by taking a URL from the seed set stored in the URL

Frontier and downloading the associated web page. The downloaded web page may

contain a search form as the pages containing the search form are simply designed

like other webpages using HTML tags. But these crawlers do not possess the

information and intelligence needed to fill the search forms as can be done by

humans. The flowchart depicting the working of the traditional web crawlers for the

Surface Web is shown in Figure 3.6

No

Yes

Choose URL

Retrieve Page

Extract Links for adding to
Frontier

Form Analysis

Value-assignment
 and Submission

Done With Form?

If Form?

Response Analysis

Add new unvisited
 URL to the URL

Frontier

Yes

No

 Crawler for the Hidden Web

No

Initialize URL Frontier
with Seed URLs

Fetch URL from the
Frontier

Parse Page, extract
URLs and store page

into repository

Is
Frontier Empty

ADD new unvisited
 URLs to the
 URL Frontier

Yes End

C
ra

w
li

n
g

Fetch webpage
corresponding to the

URL from W3

Start

Traditional Crawler
For the Surface Web

Initialize URL Frontier
with Seed URLs

Start

Response
Navigation

Is
Frontier Empty End

Yes

No

Figure 3.7: Principle behind a traditional crawler and the Hidden Web Crawler.

 48

On the other hand, the Hidden Web crawlers starts in the same way as the traditional

crawlers by taking a set of seed URLs but are trained to process the search forms by

providing them the information necessarily needed to fill the forms. Once the hidden

web crawler downloads the webpage, it checks whether the web page contains any

search form. If the downloaded web page contains a search form, then the form is

extracted for analysis and processing. For analyzing the extracted form, it is parsed

for the underlying structure (the various control elements) and schema (the type of

values that can be taken by the control). This aids the Hidden Web Crawler in

effectively processing the search forms. As a next step, the crawler tries to predict the

set of values that can be filled in each form field for valid submission. The filled form

is then submitted to the designated server for downloading the response pages. The

flowcharts in Figure 3.6 illustrates the difference in the working of crawlers for the

Surface and Hidden Web

In brief, the traditional crawlers can record the address of the search front pages but

cannot input the search criteria and request data. The difference is fundamental and

implies that traditional crawling techniques that have been successfully applied to

access the Surface Web content are inappropriate for the Hidden Web. Hence, pops

up the non-trivial problem of “training” the crawler for processing the search forms

that are restricted for use by humans.

3.4. CRAWLING THE HIDDEN WEB

The Hidden web is exceptionally huge in size and diversity of data. The databases on

the Web comprise of data from numerous domains like Books, Travel, Automobiles,

Health, Sports etc. This further complicates the task of any Hidden Web crawler. To

minimize the cost of crawling and extracting the hidden web content, the hidden web

crawler must avoid: processing of irrelevant databases and search forms; use of

invalid values for filling or processing the search forms. unnecessary processing of

unnecessary resources [18, 45, 46, 47]. This drives the focus of the Hidden Web

crawler to the following two activities:

A. Resource Discovery/ Filtering irrelevant sources: In order to overcome the

problem of Scale, the crawler must be trained to carry a crawl of only the

relevant sources (effective crawling) rather than carrying a comprehensive

crawl of the Hidden Web (comprehensive or exhaustive crawling) [39, 41, 48,

49]. In other words, the crawler must selectively seek out hidden database

 49

sources that are relevant to user’s information need at hand. This requires the

crawler to first locate the sites containing search form interfaces and then

select the relevant subset from it. Most of the current day search engines try to

possess a comprehensive crawl of the Surface Web, which is likely to include

abundant Hidden Web search pages but the main challenge lies in evaluating

the source for relevance. (This involves identifying relevant sections of the

HTML page that contains the form , identifying relevant page attributes like

the various HTML tags say title tag, meta tags etc.). And as the Hidden Web

data sources are growing continuously at a high rate, selecting the subset of

relevant sources proves not only cost-effective but also effective in time and

makes the crawler less prone to errors.

B. Content extraction: The task of harvesting or extracting information lying

behind the search form interfaces of the selected Hidden Web sources depends

largely on the way, it deals with the those forms[5, 39, 41, 42, 44, 52, 81]. The

crawler has to be able to understand and model the search form and come up

with meaningful queries to issue to the search form and probe the database

behind it. Finally the crawler must be able to extract the data instances from

the retrieved result pages. This problem of Content Extraction poses

significant challenges and the solution lies in the three steps namely: Search

interface understanding, automatically filling search interfaces and

Information extraction. The three steps together typically comprise of the

following four modules of the system:

• Form Analyzer analyzes each and every downloaded page to see if it can

be used as a search page to retrieve information or not. It basically checks

whether a web page is query able, has some form fields or not and.

• Form Parser extracts the fields from the search form and passing them on

to the form processor for filling.

• Form Processor fills in the various form fields by assigning appropriate

values and finally submits the form for retrieving result pages.

• Result Analyzer will analyze all the result pages obtained by the crawler

after form processing and execution, in order to get the required

information.

 50

3.5. RELATED WORK IN HIDDEN WEB CRAWLING

In this section, we discuss relevant research work in the area grouped by the problem

domain and the various strategies have been discussed. Accessing the Hidden Web

content is difficult, chunking the problem domain into that of resource discovery and

content extraction and presenting the related works as per the categorization helps us

to better explore the research already being done in the area. Circumscribed by the

crawler’s limitation of resources and the huge size of the Hidden Web, a Hidden Web

crawler typically adopt to one of the following strategies for extracting the content

residing in web databases:

1. Breadth-Oriented crawling: As the hidden Web contains tens of millions of

databases and search forms, a breadth oriented hidden Web crawler focuses on

covering more and more data sources rather than exhaustively crawling the

content inside one specific data source. Thus, the major challenge in this kind

of crawling seems to be locating the hidden Web resources and analysing the

returned results for learning and understanding the interface required to

automate the process of content extraction.

2. Depth-Oriented crawling: It focuses on extracting the contents from a

designated hidden web resource i.e. the goal is to acquire most of the data

from the given data source. Now, the crucial challenge for the crawler is to

actively issue queries at the interface of the designated database in order to

uncover the database contents while incurring minimal cost. However, the

crawler must automatically generate promising queries so as to carry out

efficient crawling which is an exigent task. The problem is termed as query

selection.

The above approaches are equally facilitated by gaining an insight into the type of

information being contained in any web database which may be either unstructured or

structured.

3.5.1. BREADTH-ORIENTED HIDDEN WEB CRAWLERS FOR

RESOURCE DISCOVERY

A focused crawler targets to select and download web pages associated with only

those links that lead to documents that seem relevant to the domain or topic of interest

 51

and hence addresses the resource discovery problem, The work on focused crawling

[18, 48, 49] mentioned in section 2.3.1 describes the design of focused crawlers for

the Surface Web. The work appears to complement the mentioned problem of scale

and size of the Hidden Web as the techniques used to discover the relevant documents

can be used to identify the relevant web databases for the Hidden Web crawler.

The web directories like dmoz, brightplanet’s searchable directory etc. that provides

links to online databases in a topic hierarchy can be used as seed points for the crawl.

The searchable forms can typically be identified using any one of the following two

approaches [5, 7, 45, 53, 64]:

1) A pre-query approach that analyzes the features of the search forms.

2) A post-query approach that is based on the analysis of the result pages

retrieved in response to a query submission through the filled search form..

3.5.1.1. Automated Discovery of Search Interfaces on the Web

Cope et. Al. [53] first presented the pre-query method to identify the searchable forms.

The approach relies on representing each search forms by automatically generating

the unique features. For each search form that is given as input, the following features

or parameters were extracted: the name off each control element, the values that can

be taken by each control on the search form; the number of control elements that take

free form text as input, the number of control elements taking passwords as inputs etc.

On the basis of these generated features, the search forms were classified with the

help of a machine-learning algorithm based on Decision Trees. The Classifier C4.5

that was introduced by Quinlan [57]. This classification algorithm C4.5 suggested the

development of classification models or decision trees from the input data set in

accordance with the set of features generated in the first step. To prune the decision

trees, the models were induced to handle various possible types of training data like

data having continuous attribute value ranges; data with missing attribute values,

continuous attribute value ranges.

Their approach achieved a precision of 87 percent and a recall of 85 percent when the

method was experimentally evaluated by the authors on an academic web site and

random web sites.

3.5.1.2. Crawling For domain Specific Hidden Web Resources

Bergholz and Chidlovskii [45] presented an example of the post-query approach for

automatically discovering the searchable forms. Their approach uses a domain-

 52

specific crawler that starts from the web pages on the Surface Web or Publicly

Indexable Web for detecting the relevant search forms in a domain. To initialize the

seed URLs for the domain-specific crawler, the Directory structure of Google is used

in their work. The hidden web crawler presented in their work comprises of four main

components:

1. Seed Starter is used to set the seed URLs that act as starting points for the

crawler,

2. Local Crawler to find the pages containing the search forms and are relevant

in the domain of consideration,

3. Form analyzer that analyzes the search forms discovered by crawling and

separates the searchable forms from all others ,

4. Query Prober issues the queries to the separated searchable forms and extracts

the data hidden behind these forms to find its relevance to a given topic or

domain.

They have presented two different modes of working for the Hidden Web Crawler: a

domain-specific and a random mode. In the domain-specific mode, Google Web

Directory [10] is used as a reference to the hierarchy specifying the categories of

interest. The hierarchy comprises of a collection of web sites that are manually

selected and classified by experts in the domain. Also, with each category Ci in the

hierarchy, a set of keywords Di that seem relevant to that category is associated. The

approach has considered the top five levels of the category hierarchy from the

Directory and for each of the selected category from the hierarchy, the set S = {s1, . . .,

sN} of top N pages has been considered relevant for use by the system. The top N

pages have been identified by ranking them for relevance and importance by using the

Google’s PageRank method [3, 43]. As a next step, the set of relevant keywords Di,

is used to fill the separated searchable forms.

In the random mode, the crawler randomly selects a set of M web pages, R = {s1, . . .,

sM} by using Yahoo! Random Web site generator to find the relevant resources. When

working in the random-mode, the relevant keywords for filling the search forms is

chosen by selecting the characteristic keywords from the random pages using Xerox

XeLDA server.

 53

Random Web
URLs

Hidden Web Resources

Root

Health
Computer

Fitness

Query Prober

Google Directory

Query Resources

Seed page starter
{S1,S2, ….Sn}

Local
Crawler

Search
Page

Results

Search Forms

Query able Forms

Keywords

Category Hierarchy

Results

Query
Submission

Category

Running
Form Analyzer

Figure 3.8: Architecture of Hidden Web Crawler

Figure 3.8 presents the detailed architecture of the hidden web crawler. It can be

explained with the help of its various components as follows:

The local crawler identifies the pages that work as entry points to the Hidden Web.

The starting points for the local crawler are selected by using either the set S of top N

pages from the category hierarchy (in domain-specific mode) or the set R of M

randomly selected webpages (in random-mode). It then traverses the web by follows

the hyper-links in the standard breadth-first manner and keeping a record of all the

webpages that contains an HTML form. The crawler has been termed ‘local’ in the

sense that it never leaves the site of the seed si and ignores all the links that forces

quitting the site.

The search forms are extracted from all the web pages that have been traversed by the

local crawler and are passed to the form analyzer. The form analyzer parses each

HTML page downloaded by the crawler, eliminates the duplicate forms and creates

the definitions for all HTML forms. The analyzer then filter out forms that require

pre-registration such as login, sign in etc. from the queryable forms. Four different

types of forms have been defined as shown in Figure 3.9. The largest class contains

all forms. Textual forms are the ones that contain at least one free-form input or a

 54

textual control and form a proper subclass of all extracted forms. The textual forms

however, still include some forms that are irrelevant (user registrations with no

password protection) to search over the Hidden Web.

All Forms Textual Forms Query able Forms
Hidden Web

Forms

Figure 3.9: Classes of HTML forms

All the forms that need a prior registration or login and/or password protection

controls are discarded from the inclusion in the class of searchable forms. The

smallest subclass of the forms represents the Hidden Web forms, which serve as entry

points [61] to the web databases. These forms can be used for submitting a query to

the collection of Hidden Web resources and reporting the result of query execution on

the collection. The Hidden Web forms cannot be syntactically recognized like the

textual and queryable forms [41] and need further analysis. These search forms are

sent to the Query Prober to assess whether they are interfaces to searchable web

databases or not.

The query prober is then used to analyze and validate the syntax and the description

generated by the form analyzer for each search form as an incomplete or incorrect

description does not allow a valid form submission. The most important task

performed by the Query prober is automatically filling the search forms to obtain

valuable response pages. In order to automatically fill the search forms, the Query

prober uses the default values of non-text controls and some domain-specific phrases

for the textual controls on the search form These domain-specific phrases form the set

of ‘positive’ queries whereas a set of ‘non-sense’ words is used to form the ‘negative’

queries to be raised by the query prober to the candidate forms. The Query Prober

then compares the resulting pages obtained by issuing the positive and negative

queries at the search form to assess and find whether the page has a searchable form.

Another task of the query prober is to decide the relevance of the resource to a

category hierarchy based on the obtained response pages.

 55

3.5.1.3. ACHE : An adaptive crawler for locating hidden Web Entry points

The authors in [54] have proposed a way to automatically locate the web databases of

interest. The architecture of the form focused crawler (FFC) given uses three different

classifiers for locating the web pages: Page classifier, link classifier and form

classifier. The architecture of FFC has been presented in Figure 3.10. The crawler

combines the use of a page classifier and a link classifier for focusing its crawl on a

particular topic. Both the classifiers are trained by taking into account the contents of

web pages and by observing the patterns in & around the hyperlinks embedded within

the web page.

The authors first make use of a backward search strategy to analyze and prioritize

links leading to searchable forms. The frontier manager is another major component

of the FFC framework and is used to select the next target link for crawling based on

their reward values decided by the current status of the crawler and the priority of the

link in the current crawling step. The FFC also uses a form classifier to filter out

useless forms. If a form is found searchable by the form classifier, it is added to the

form database if not already present in it. The form classifier is based on the usage of

decision trees to determine whether the candidate form is searchable or not. The forms

that could not be considered for search include forms with login, registration,

discussion groups, mailing subscriptions etc.

Searchable
Forms

Crawler
Page

Classifier
Form

Classifier

Link
Classifier

Link
Frontier

Form
Database

Training
Data

Training
Data

Page Forms

Links

(Link, Relevance)

Most Rewarding
Link

Figure 3.10: The Form Focused crawler (FFC)

 56

The authors again in [56] addressed the limitations of the FFC by presenting a new

framework ACHE (Adaptive Crawler for Hidden-Web Entries). ACHE tries to

improve its behavior in the future runs by learning from its previous executions and

adapting to the environment accordingly. Given a set of Web forms that are entry

points to online databases, ACHE aims to efficiently and automatically locate other

forms in the same domain

Crawler
Page

Classifier

Link
Classifier

Frontier
Manager

Form
Database

Most Rewarding
Link

Page Forms

Links
(Link,

Relevance)

Form Filtering

Searchable Form
Classifier

Domain-Specific
Form Classifier

Searchable
Forms

Adaptive
Link Learner

Future
Selection

Relevant
Forms

Form Path

Figure 3.11: ACHE Architecture

In addition to FFC, the ACHE comprises of two more classifiers: the searchable form

classifier (SFC) which classifies the retrieved form as searchable or non-searchable

and the domain-specific form classifier (DSFC) which checks whether the form

belongs to the target domain. ACHE also employs a component called the adaptive

link learner that dynamically learns features automatically extracted from successful

paths by the feature selection component and updates the link classifier.

3.5.2. DEPTH-ORIENTED HIDDEN WEB CRAWLERS FOR CONTENT

EXTRACTION

Most approaches to information retrieval in the Hidden Web are focused on

leveraging high-quality information available in online databases[5, 39, 41, 42, 44,

52], which needs understanding the various semantics associated with the form

elements and automatically filling them as they are the only entry points to the

Hidden Web.

 57

3.5.2.1. HiWE

Raghavan and Garcia Molina [39] introduced the problem by proposing an

operational model for extending the crawler beyond the Surface Web. The target of

their model is to add to the crawlers, the capability of automatically filling forms.

Their model shown in Figure 3.11 serves as a basis for the prototype hidden Web

Crawler called the HiWE (Hidden Web Exposer).

Response Page

Form Submission

Task Specific
Database

Hidden
Database

Match

Repository

Internal Form
Representation

Set of value-assignment

Response Analysis

Web Query
Front End

Re
sp

on
se

s
U

pl
oa

d
Fo

rm
 U

pl
oa

d

Form Page

Crawler

Form
Analysis

Figure 3.12: Crawler Form Interaction

An outline of the architecture of the model is given in Figure 3.13. This model of a

hidden Web crawler consists of two internal data structures and six functional

modules.

The most basic data structure of HiWE is the URL list that contains all the URLs that

have been discovered by the crawler so far in its process. When the crawler is started,

the URL list is initialized to a seed set of URLs. Another important data structure is

the task-specific database. The task-specific database D is presented in the form of a

table called Label Value Set (LVS) table. D contains all the information that is

necessary for the crawler to formulate search queries relevant to the particular task.

For example, the ‘Book Domain’ D could contain lists of author names and title of

books. The actual format, structure, and organization of D are specific to the crawler

implementation at hand.

 58

Response Analyzer

LVS Manager

Parser

Crawl Manager

Form Analyzer

Form Processor

……...

Data Sources

Label Value Set (LVS) Table

Feedback
Response

Form
Submittion

URL List

WWW

Label Value Set

…
…

...

…
…

...

Figure 3.13: Architecture of HiWE.

The Crawl Manager component is responsible for controlling the entire process of

crawling. It decides the following:

1) the links to be included and excluded from crawling by the HiWE,

2) the links to visit next,

3) the network connection to be used for retrieving the web page.

The Crawl Manager passes the downloaded page to the Parser module that in turn

extracts the embedded hyperlinks from the web page and adds them to the URL List

data structure mentioned above. The LVS Manager is responsible for automatically

filling the search forms by accessing the data stored in the LVS table. It computes a

set of value assignments based on the internal representation of the search form with

the help of a matching function. These values will be used for filling the search forms.

The LVS Manager repeatedly fills and submits the search forms until all the value

assignments in the generated set are exhausted. The LVS Manager is also responsible

for maintaining and populating the contents of the LVS table by providing an

interface for various application-specific data sources. The major challenge of their

approach is dealing with the form elements with infinite domain. Also, the HiWE is

not able to recognize and respond to simple dependencies between the control

elements on the form (e.g., given two control elements corresponding to states and

cities, the values assigned to the “city” element must be cities that are located in the

state assigned to the “state” element).

 59

The Response Analyzer takes the result pages obtained after each form submission

and stores it in the search engine’s index. It also distinguishes between the pages

containing search results and pages containing error messages.

HiWE uses LITE (Layout-based Information Extraction) to extract information from

the search forms and the response pages. It considers both the textual content as well

as the physical layout of the web pages while extracting content. LITE is based on the

observation that the physical layout of the different elements of a web page conatins

significant amount of information.

3.5.2.2.Hidden Web crawler for the Hidden Seek

Ntoulas and Junghoo Cho [41] have provided a theoretical framework for analyzing

the process of generating queries for a document collection that support single-

attribute queries by examining the obtained results. They have proposed a generic

algorithm for Hidden Web Crawler which is given in Figure 3.14.

Figure 3.14: Algorithm for crawling Hidden Web Site.

As in the algorithm, their crawler only considers single terms as queries thus has to

select the query term, use it for issuing the query, and retrieves the result index page

(step 3). It then downloads the Hidden Web pages from the site on the basis of the

links that are found on the result index page (step 4). The process is repeated until all

the available resources are exhausted (step 1). The main challenge their approach

tackled was making the choice of the keyword for the query for which their approach

defined three query-generation policies: a policy that picks queries at random from a

list of keywords, a policy that picks queries based on their frequency in a generic text

collection, and a policy which adaptively picks a good query based on the content of

Algorithm: Hidden_web_crawl()

Step1: While (Resources available)

do

2. qi= SelectTerm()

//select a term to send to the site

3. R(qi) = QueryWebSite(qi)

/*where qi is the selected query & R(qi) is the result page for the Query qi.*/

4. Download (R(qi));

5. End;

 60

the pages downloaded so far from the Hidden-Web site. The process starts by learning

a global picture starting with a random query, downloading the matched documents,

and learning the next query from the current documents. This process is repeated until

all the documents are downloaded.

All the three approaches shared the goal of finding the queries that return the

maximum number of web documents with the minimum cost. The work defined P(qi)

as the fraction of pages that are returned by issuing query qi to the site and Cost(qi) to

represent the cost of issuing the query qi. Where depending on the scenario, the cost

can be measured either in terms of time, network bandwidth, the number of

interactions with the site, or it can be a function of all of these. The query cost

consists of a number of factors like the cost for submitting the query to the site,

retrieving the result index page and downloading the actual pages. Cost for submitting

a query (Cq) was assumed to be fixed. The cost for downloading the result index page

is proportional to the number of matching documents to the query, while the cost (Cd)

for downloading a matching document is also fixed. Then the overall cost of query qi

is:

𝐶𝑜𝑠𝑡 (𝑞𝑖) = 𝐶𝑞 + 𝐶𝑟𝑃(𝑞𝑖) + 𝐶𝑑𝑃(𝑞𝑖)

 3.1

To download the maximum number of pages, this Hidden web Crawler considered

two main factors:

• The number of new documents that can be obtained from the query qi and

• The cost of issuing the query qi.

For example, if two queries, qi and qj , incur the same cost, but qi returns more

number of new pages than qj , qi is more desirable than qj . Similarly, if qi and qj

return the same number of new documents even then qi is more desirable if qi incurs

less cost then qj. Based on this observation, the Hidden-Web crawler uses the

following efficiency metric to compute the popularity of the query qi:

Efficiency = Pnew(qi)/ 𝐶𝑜𝑠𝑡(𝑞𝑖) 3.2

The efficiency of qi measures how many new documents have been retrieved per unit

cost. They compared their adaptive method with two other query selection methods:

the random method (queries are randomly selected from a dictionary), and the

generic-frequency method (queries are selected from a 5.5-million-web-page corpus

based on their decreasing frequencies). The experimental result shows that the

adaptive method performs remarkably well in all cases.

 61

Figure 3.15: Algorithm for selecting the next query term

The best of our policies, the adaptive policy could download more than 90% of a

Hidden-Web site after issuing approximately 100 queries.

3.5.2.3. AKSHR: A Domain-specific Hidden web crawler.

AKSHR is a domain specific Hidden Web crawler which provides fully automatic

techniques to download the search interfaces and matches them by using the DSIM

framework.

Figure 3.16: Architecture of a Domain-specific Hidden Web Crawler (AKSHR)

Greedy Select term ()

Input: L, The list of potential query keywords

Process:

1) For each term ti in L do

2) Estimate Efficiency (ti)= Pnew (ti) / Cost (ti)

3) Done

4) Return ti with maximum Efficiency (ti)

 62

The architecture of AKSHR as presented in Figure 3.16, employs a suite of

algorithms distributed into the following four phases:

The Phase I of AKSHR uses a Search Interface Crawler [4] which provides a

mechanism for automatically extraction of domain-specific search interface by

adopting domain-specific-assisted approach for crawling the hidden web. The

identified search interfaces are then stored in a search interface repository.

In its phase II, AKSHR uses a component DSIM that identifies the semantic mappings

between the attributes of different search interfaces of the same domain i.e. all the

interfaces belong to the same domain such as books domain are candidates for

mappings. The main inputs to this Interface mapping system are two interfaces A and

B comprising of a number of components i.e. {n1, n2…np} and {n’1, n’2…n’q}

respectively.

In Phase III, The Search Interface Parser extracts the interfaces from the Search

Interface Repository and parses them to obtain the structure of a query interface that

has been represented as a hierarchical schema. Figure 3.17 shows a typical example of

two query interfaces in the books domain and its corresponding hierarchical

representation.

Figure 3.17: Two examples Query Interfaces from Books domain and their Hierarchical representation

DSIM uses a Search Interface Repository to store domain-specific search interfaces. It

also provides an extensible domain-specific matcher library to support multi-strategy

match approach. The multi-strategy match [5] approach uses different matching

strategies like fuzzy matching, domain-specific thesaurus etc that are executed

independently. The DSIM also uses a Mapping Knowledgebase that stores the

 63

important semantic mappings so that they can be used further when after sometime

the search interface repository would be updated.

The AKSHR also attempts to automatically fill forms by extracting labels and their

corresponding values with the help of a Data Extractor Engine. The extracted labels

and values are used to generate Domain-specific Data Repository for further use.

In its last phase AKSHR uses a response analyzer to distinguish between the response

pages containing search results, and pages containing error messages. The pages

containing error messages show that no matches were found for the submitted queries

whereas the pages containing search results shows that information was found against

the submitted queries.

3.6. COMPARISON OF THE VARIOUS HIDDEN WEB CRAWLERS

To achieve a notable progress in this fragment of Hidden Web crawling requires

additional efforts for extending the current crawlers. In the next section we provide a

comparison of the above discussed crawlers.

Table 3.1: Comparison of various Hidden Web Crawler

Descri

ptive

criteri

a

Yea

r

Focused

Perspecti

ve

Databa

se type
Technique Strength Limitation

Raghav

an

et.al.[3

9]

2001

Depth-

Oriented

crawler

for

content

extraction

Multi-

attribute

or

structure

d

1) Text similarity to

match fields and

domain attributes.

2) Partial page layout

and visual adjacency

for identifying form

elements

3) Hash of visually

important parts of the

page to detect errors

1) Significant

contribution to label

matching process

2) Updates the user

provided task

description by learning

information from the

successful extracts of

crawling.

1) ignores forms

with fewer than 3

attributes

2) Require

significant human

input thus

performance highly

depends on the

quality of input data

3) not scalable to

hidden web

databases in

diversified domains.

Liddle

et.al.

[44]

2002

Depth-

Oriented

crawler

for

content

extraction

Multi-

attribute

or

structure

d

1) Stratified Sampling

Method (avoid queries

biased toward certain

fields)

2)Fields with finite set

of values, ignores

automatic filling of

text field

3) Concatenation of

pages connected

through navigational

elements

1) domain-independent

approach

2) accounts for

duplicate results

identified by

computing hash values

1) Do not consider

detection of forms

inside result pages.

2) Detection of

record boundaries

and computes hash

values for each

sentence poses huge

resource

requirements.

Garvan

o et.al.
2002

Depth-

Oriented

docume

nt based

1) use of topically

focused queries

1) facilitates design of

meta-search engines 2)

1) Query chosen

only by using

 64

[61] crawler

for

content

extraction

or

unstruct

ured

2) adaptive query

probing

used to categorize

hidden web databases

hierarchical

categories as in

Yahoo! and does not

consider flat

classification

Bergho

lz et.al.

[45]

2003

Breadth-

oriented

crawler

for

resource

discovery

unstruct

ured

database

s in a

domain

1) domain specific

crawling

2) Query prober to

recognize and assess

the usefulness of the

HW resource.

1) Efficient at

discovering

unstructured hidden

web resources as uses

the combination of

syntactic elements of

HTML forms and query

probing technique.

1) Only deal with

full text search

forms.

2) Initialized with

pre-classified

documents and

relevant keywords

Barbos

aet.al.

[42]

2004

Depth-

Oriented

crawler

for

content

extraction

docume

nt based

or

unstruct

ured

1) Considers candidate

query based on its

frequency of

appearance in each

round

1) Simple and

completely automated

strategy

2) Automatically

creates sufficiently

accurate description of

document therefore, can

be used in other

resource discovery

systems.

3) Leads to high

coverage.

1) No assurance of

acquiring new pages

2) ineffective for

search interfaces

that fix the number

of returned results

3) simple approach

therefore raises

security issues

Ntoula

s et.al.

[41]

2005

Depth-

Oriented

crawler

for

content

extraction

docume

nt based

or

unstruct

ured

1) Incremental

adaptive method 2)

frequency estimation

based on already

downloaded

documents

3) greedy algorithm

that tries to maximize

the 'potential gain' in

every step.

1) Combination of

policies (random,

generic and adaptive)

for choosing

appropriate queries.

2) use of multiple

frequency estimators -

independent and zipf's

law based

1) Query

distribution does not

make sure to adapt

to the attribute

values set of the

database.

2) Memory

requirements for

calculating potential

gain are huge.

3) Assumed constant

cost for every query

which does not hold

in real situations.

Barbos

a et.al.

[54]

2005

Breadth-

oriented

crawler

for

resource

discovery

structure

d &

unstruct

ured

database

s

1) Link classifier to

focus search on a

specific topic

2) use of a stopping

criteria to avoid

unproductive searches

1) Highly efficient in

retrieving searchable

forms focused for a

particular topic

1) Manually

selecting a

representative

training set is

difficult so creating

the link classifier is

time consuming

Alvare

z et.al.

[19]

2006

1) set of domain

definitions each one of

which describes a data-

collection task

2) use of heuristics to

automatically identify

relevant query forms

1) System can be

extended for

discovering relevant

resources.

2) Handles client side

as well as server side

hidden Web

3) Experimentally

proved effective for

collecting data.

1) No defined

threshold for

associating form

elements and

attributes in the

domain definitions

2) hypothetical

assumption of

having at least one

label associated with

every form element

which does not hold

true for most of the

bounded form

 65

elements (drop

down boxes)

Ping

Wu

et.al.

[64] 2006

Depth-

Oriented

crawler

for

content

extraction

Multi-

attribute

or

structure

d

1) Models each

structured database as

a distinct attribute -

value graph

2) Set the graph to

crawl the database

(set-covering problem)

1) issues only

meaningful queries as

tuned with domain

knowledge

2) overcomes limitation

of greedy methods

1) Query results in

each round must be

added to the graph

thus involves huge

cost of resources

Barbos

a et.al.

[55]

2007

Breadth-

oriented

crawler

for

resource

discovery

unstruct

ured

database

s

1)Greedy algo derived

by the weights

associated to keywords

in the collected data

2)Issue queries using

dummy words to

detect error pages

1) Improved harvest

rates as crawl

progresses

2) retrieves

homogeneous set of

forms

3) Automated and

adaptive thus eliminates

any bias arising out of

learning process.

1) configuring the

crawler to start

initially needs more

effort than

manually configured

crawlers

2) works only for

Single keyword-

based queries

Madha

van

et.al.

[43]
2008

Depth-

Oriented

crawler

for

content

extraction

Multi-

attribute

or

structure

d

1) Evaluate the query

templates by defining

the in formativeness

test.

1) efficiently navigates

the search space of

possible input

combinations

1) No consideration

to the efficiency of

deep web crawling

Komal

Bhatia

et.al.

[60]

2010

Depth-

Oriented

crawler

for

content

extraction

Multi-

attribute

or

structure

d

1) Domain Specific

Interface Mapper to

create unified query

interfaces for a domain

2) calculation of re-

visit frequency based

on probability of

change of web page

1) Multi-strategy

interface matching

2) use of mapping

knowledge base to

avoid repetition for

minimizing the

mapping effort

3) Enhances the scope

of developing a

specialized search

engine for the Hidden

Web.

1) Indexing

technique was not

specified for storing

pages in the

repository

2) Defined the

performance only

for crawling while

the efficiency of

schema matching

and merging

procedures over

variety of query

interfaces has not

been quantified.

3.7. PROBLEM STATEMENT

A critical look at the techniques exploited by the available crawlers for the Surface

and the Hidden Web indicate the following issues that need to be addressed.

• Scale of the Hidden Web: Research conducted in March 2000 by

brightplanet.com shows that the hidden Web contains a much bigger amount

of data than the Surface Web. The Hidden Web is big and getting bigger and

as the volume of information in the hidden-web grows, there is increased

importance to use parallel crawlers. A hidden-web crawler needs to be

developed within view to resolve the problem faced by a single process

crawler.

 66

• Identification of Relevant Search Forms: The tremendous size and

heterogeneity of the Hidden Web makes comprehensive coverage very

difficult and possibly less useful than domain specific crawling. Searching

irrelevant web pages is a major cause for the users to waste time on the Web.

Thus, the system must identify the few databases out of the huge number

available that seem to be the most relevant so that the search can be directed to

only those databases. Hence, the search forms must first be pruned for

relevance prior to accessing their contents so that the crawler can benefit from

the knowledge of the different application domains.

• Automatic processing of search forms: Most of the Hidden Web is made up

of the content of hundreds of thousands of specialized searchable databases.

Information stored in these databases is accessible only by filling out a form

on a web page and submitting it to the databases. Conventional search engines

do not attempt to fill out forms and index the resulting pages. Because of the

lack of knowledge of the underlying database schema, it is difficult to generate

form assignments that are guaranteed to yield information-rich resulting pages;

• Classification of Web Pages: The information in the Hidden Web is available

in heterogeneous databases from different domains. Also, the search forms to

these hidden web databases, even those belonging to the same domain, are

very different, and therefore it is required to design an internal representation

of these searchable forms that can help in identifying the relevant domain of

the search forms and the available information needed to automatically fill

forms is a real challenge.

• Synchronizing Parallel tasks/processes: Overlap problem occurs when

multiple crawlers running in parallel download the same web document

multiple times due to the reason that one web crawler may not be aware of

another having already downloaded the page. Also many organizations mirror

their documents on multiple servers to avoid arbitrary server corruption. In

such a situation, crawlers may also unnecessarily download many copies of

the same document. Hence, it would be very important to minimize such

multiple downloads to save network bandwidth and increase the crawler’s

effectiveness. Thus, the processes must be coordinated to minimize overlap.

 67

• Reduced Network Bandwidth: In order to minimize overlap and maintain

the quality of downloaded web pages, the coordination between individual

crawling processes needs communication which consumes network bandwidth.

So, an important objective is to minimize communication overhead and thus

the network bandwidth consumption while maintaining the quality of crawling.

• Scalability: There exists a variety of Hidden web sources that provide

information on the multitude of topics/domains. The continuous growth of

information on the WWW and hence the domain specific information with

ever increasing number of domain areas pose a challenge to crawler’s

performance. The crawl of the portion of the web for a particular domain must

be completed within the expected time. This download rate of the crawler is

limited by the underlying resources such as the number of crawling processes.

There is a need to design a crawler that scales its performance according to the

increase in the information on the WWW and number of domains.

The above mentioned objectives have been addressed and resolved in the subsequent

chapters.

 68

CHAPTER 4.

DESIGN OF A PARALLEL HIDDEN WEB CRAWLER

4.1. INTRODUCTION

Much of the Web’s usability depends on the efficiency of the search engines and their

crawlers. The traditional crawler works by taking a URL from the URL frontier,

downloading the web page associated with that URL, extracting hyperlinks that are

embedded in the downloaded web page and adding extracted hyperlinks to the URL

frontier to keep the process going. It traverses the web by following the hyperlinks

from page to page and downloading the documents. But this results in gathering only

those web pages that are interconnected via the link structure, ignoring the Hidden

web contents as no link is available for referring to its contents. Thus, it is not

possible for the general purpose crawler to visit the entire web by following

hyperlinks.

The contents in the Hidden Web reside in searchable databases and thus can only be

accessed by raising the queries at the interface offered by the database. The pages in

the Hidden web do not exist until they are created dynamically in response as a result

to some direct query by the user. These dynamic web pages could not be efficiently

retrieved and collected by the traditional crawlers for inclusion in the search engines’

index leading to a large volume of undiscovered Hidden Web contents. Hence, there

is a need to design and develop a crawler that can find and crawl the Hidden Web

contents.

Moreover, with an ever increasing size of the Hidden Web there is a need to design a

scalable and extensible Hidden Web Crawler. The hidden web crawler must be able to

handle the continuous growth of contents in the Hidden Web and must be extensible

in the sense that third party modules can be added as and when required.

Therefore, in this thesis a design of a Parallel Hidden Web Crawler has been proposed

that solves the above mentioned issues. The proposed work makes the following

contribution:

(i) It proposes a novel approach to crawl the Hidden Web resources by

employing a number of parallel crawling processes (as shown in Figure

4.1). Crawling the Hidden Web contents in parallel, offers a scalable

solution.

 69

Publicly Indexable & Hidden Web Crawlers

Crawler

Crawler

Crawler

Query

Processor

User

Index

 SEARCH ENGINE WITH MULTIPLE CRAWLING PROCESSES

Indexing

Crawling
Search queries and

ranked results

Figure 4.1: A Search Engine with several crawling threads to achieve parallelism.

(ii) A URL Scheduler has been used to organize the seed URLs into several

Domain-Specific Priority Queues for efficient crawling by the parallel

processes.

(iii) To improve the quality of the collection downloaded by the hidden web

crawler, a URL Ranker has been used to rank the various URLs (that will

be discovered during the process) according to their relevance in each

domain.

(iv) To automatically process the form pages (by the parallel form processing

elements), the surface web pages are segregated from the downloaded web

pages and classified according to their domains to create various domain-

definitions and Domain-Specific Data Repositories that helps in filling the

search forms that acts as an entry point for the Hidden Web resources.

(v) For the proposed Hidden Web crawler to work equally well in both the

generic and domain-specific modes, the Form Analyzer analyzes each

search form for organizing them into different Domain-Specific Search

Interface Repositories. When behaving as a generic crawler, the search

forms from these repositories are processed in parallel by the various Form

Processing Elements.

(vi) The proposed crawler enforces parallelism at two different levels to

 70

a) At the level of domains, to reduce the overhead of synchronizing

the various parallel threads.

b) At the level of processing search forms, to minimize the overlap

among the downloaded resources.

(vii) To minimize the consumption of the network bandwidth, the Query

Ranker suggests optimal queries by ranking them according to their

behavior in the previous crawls. An optimal query helps to reduce the

chance of retrieving error pages in response to a valid search form

submission to get a faster coverage of the Hidden Web databases. Since,

only optimal queries will be chosen for filling the search forms, significant

reduction is achieved in the number of queries that might otherwise be

used by any arbitrary approach for filling the search forms. A metric

Reduction Efficiency has been proposed to justify the proposed approach.

The next section discusses the proposed design of the Parallel Hidden Web

Crawler in detail.

4.1.1. PROPOSED DESIGN OF THE PARALLEL HIDDEN WEB CRAWLER

In order to maximize the benefits, the working of the proposed Parallel Hidden Web

Crawler has been divided into six phases where each phase is structurally well defined

and functionally supports the others. The detailed design of the proposed Hidden Web

Crawler has been shown in Figure 4.2. The brief functionality of each phase is as

follows:

1. The first phase is used to initialize the crawler by choosing a seed set of URLs

in each domain. These seeds have been stored in the URL pools respective to

its domain. In order to maximize the benefits achievable from a parallel

crawler, these Domain-Specific URL Pools must be processed in parallel by

the crawler. Moreover, the crawler should also aim to download high quality

pages first. Therefore, a URL Scheduler is used that is responsible for creating

prioritized URL queues corresponding to each Domain-Specific Seed URL

Pool. The URLs from each of these priority queues acts as input to the next

phase of the crawler.

 71

 72

Figure 4.2: Architecture of the proposed Parallel crawler for the Hidden Web.

2. The second phase of the crawler takes the URLs from each of the Domain-

Specific Prioritized URL Queues, downloads the associated web pages. The

phase also analyzes and distinguishes between the two types of web pages, the

ones that can be publicly indexed by crawlers (typically called Publicly

Indexable Web pages) and those that contain a search form (called form page

or a hidden web page). The second phase also helps the crawler to rank the

newly discovered URLs as per their relevance in each domain so that

important pages get downloaded earlier during the crawl.

3. Third phase uses the PIWP given by the second phase to create the Domain-

Specific Data Repositories that are further used by Phase fifth to fill the search

forms in order to download the Hidden Web resources. So, a novel approach

to organize and classify the downloaded collection of web pages according to

their domains like Auto, Books, Food, Travel, etc. is being proposed.

4. The form pages discovered in second Phase are passed onto the fourth Phase

where they are analyzed by the Form Analyzer and stored in various Domain-

Specific Search Interface Repositories that further facilitate the process of

automatically filling the search forms in phase fifth.

5. The fifth phase of the crawler is responsible for an even distribution of search

forms among the parallel processes for processing them efficiently. It uses a

Search Interface Distributor that is responsible for filling search forms of each

domain with the help of the various Form Processing Elements.

6. In the last phase, the various response pages thus retrieved by the crawler in its

previous phases are analyzed to get the useful pages and sift away the pages

that are containing the error messages. In this phase a novel technique for

discovering optimal queries to get an optimal outcome has been introduced.

The following sections describe the functional detail of each phase of the proposed

Parallel Hidden Web Crawler.

 73

4.2. PHASE I: CREATING A URL FRONTIER FOR PARALLEL ACCESS.

This phase is the most basic and important to the entire process and is used to

initialize the seed URLs to be further used by phase II of the proposed crawler. In a

parallel crawler, the seed URLs must be overseen by all the parallel processes to

achieve scalability and efficiency. This is done by partitioning and organizing the

seed URLs into different Domain-Specific URL Pools that can be accessed in parallel

by the various parallel components used by the crawler [19, 20]. For example, the

URLs like www.makemytrip.com , https://placetoseeindelhi.wordpress.com etc.

which provide information in Travel domain are included in the URL pool meant to

store the URLs for Travel domain. Each such group of URLs that belongs to a

common domain is therefore referred to as Domain-Specific URL Pool.

In other words, the proposed crawler follows a domain specific approach to initialize

the seed URLs for crawling where each URL pool stores the URLs from a different

domain like Books, Travel, Auto, Real Estate, Food etc. This helps the proposed

crawler to work well in the domain specific mode as per requirement.

To gather the seed URLs for the Domain-Specific URL Pools, two different methods

are used by the proposed crawler. Initially, the proposed crawler takes advantage of

the classification hierarchy offered by DMOZ since such a directory includes a

collection of Websites selected and manually classified by Open Directory volunteer

editors. For each category in the hierarchy the system supports the retrieval of top N

relevant URLs. Those top N URLs will serve as starting points for the crawler. Later

as the crawler progresses, all the URLs that are gathered during crawling are added to

these different Domain-Specific URL pools with the help of other components of the

crawler.

Also, once each of these Domain-Specific URL pools is initialized with some URLs,

the URLs in these pools need to be prioritized so as to enable the crawler to always

populate its document collection with some finite number of top relevant pages in that

domain [24, 73]. So, the URL Scheduler constructs a prioritized URL queue for each

Domain-Specific URL pool based on the relevance score of the URLs.

The structure of the Prioritized URL queues that has been used in the proposed

approach is shown in Figure 4.3. The domain-specific prioritized URL queue contains

the relevance scores (R-Score) in the decreasing order, computed by the URL Ranker

 74

(used in phase II) and with each R-Score a list of URLs having that score has been

appended.

Figure 4.3: Structure of the Prioritized URL Queue for a domain.

The priorities have been indicated by the positional markers 1 to m in the queue. The

highest priority URLs are contained in the URL list appended at position 1 whereas

the least priority URLs are the ones in the URL list at position m. The URLs with the

maximum value of R-score is assigned the highest priority. So, for constructing the

prioritized URL queues, the URLs in each of the domain- specific URL pools are

sorted in accordance with the m priority scores.

As initially, the URLs have been taken from a classification hierarchy, so the R-Score

value for the seed URLs is same as the order of their occurrence in the listing

provided by the hierarchy and thus a different R-Score value is used for each URL.

Thus, the URL Scheduler is responsible for maintaining as many prioritized URL

frontier queues as there are Domain-Specific URL pools.

4.3. PHASE II: WEB PAGE COLLECTION AND ANALYSIS

This phase of the proposed system is responsible for extracting the URLs from the

domain-specific Prioritized URL Queues according to their domain and allocates

them to the Multi-threaded Document Downloader to download the web page

associated to that URL. This web page is further analyzed by the Web Page Analyzer

that separates the PIWP from the web pages containing search forms. Besides this, it

also extracts the new URLs from the downloaded web pages for adding them to the

URL pool after a R-Score is being assigned to the URL by the URL Ranker. The

following functional components have been used in this phase:

 75

4.3.1. URL ALLOCATOR

Phase I generates multiple Prioritized URL queues, one for each domain of

consideration. The URL Allocator is responsible for extracting the URLs from these

multiple Prioritized URL Queues and assigning them to the multiple threads of the

Document Downloader for downloading the associated web pages.

The URL Allocator extracts URLs at a time from each of the Domain-Specific

Prioritized URL Queue and allocates them to the various threads of the Multi-

threaded Document Downloader to enable parallel downloading of web pages in each

domain. In order to choose a URL from a Domain-Specific Prioritized URL Queue,

the URL Allocator selects the URL from the highest priority URL list in the

prioritized URL queue. The URL list with the highest priority includes all those URLs

that have the maximum value of R-Score for that domain.

The first URL in a domain is the one which occurs in the URL list stored at the first

position in the Prioritized URL Queue respective to that domain. It processes all the

URLs from the URL list having the highest priority (at first position) in a sequential

manner by following a first come first serve approach.

 76

Figure 4.4: Example of a domain-specific priority queue

For example, consider the prioritized URL Queue as in Figure 4.4. Where m different

priority lists of URLs have been formed by the URL Scheduler for a domain. These m

URL list are formed by using the different values of R-Score computed by the URL

Ranker for each of the different URLs included in the respective Domain-Specific

URL Pool. The URL Allocator starts by taking the URL list at the first position

headed by the relevance score R-Score1 as shown in Figure 4.4. It extracts the first

URL, denoted by URL11 in this list, allocates it to a thread of the Document

Downloader for downloading the web page associated with this URL11, takes the next

URL12 in the same list allocates it to a thread of the Multi-threaded Document

Downloader and proceeds in a similar fashion for all the k URLs included in this list.

After allocating all the URLs in a URL list, the URL Allocator extracts the URLs

from the list occupying the next position R-Score2 in a similar way. Thus, the URL

Allocator extracts the other URLs from the other lists (those having lesser priority)

stored in the Domain-Specific Priority Queue in the same manner. Thus, it performs

the same task for each URL list at the various m positions in the decreasing order of

their priorities denoted as R-Score1 > R-Score2 > R-Score3 > R-Score4 >….. >R-

Scorem . The working algorithm of the URL Allocator is given in Figure 4.5.

Figure 4.5: URL Allocator Algorithm

This dynamic assignment of URLs avoids dedicating all the threads to download web

pages from a common domain in case when other prioritized URL queues contain

URLs for processing. Moreover, it also allows sharing the bandwidth when all the

URLs from all the Domain-Specific Prioritized URL Queues except one have been

processed.

 77

4.3.2. A MULTI-THREADED DOCUMENT DOWNLOADER

The Multi-threaded Document Downloader is a high performance asynchronous

HTTP client capable of downloading several web pages in parallel, initiates a number

of downloader instances equal to the number of URLs received (for downloading)

from the URL Allocator by processing the different prioritized URL queues. The

instances download the pages in parallel from the multiple web servers and pass them

to the Web Page Analyzer for further processing. The functionality of the

multithreaded document loader can be explained with the help of the algorithm in

Figure 4.6.

Figure 4.6: Multi-threaded Document downloader Algorithm

If any information about the domain of the just downloaded Web page has been made

available in the due course, the Multi-threaded Document Downloader also passes it

to the Web page Analyzer along with the webpage. This has been indicated by the

arrow labeled as an ordered pair (Webpage, domain) in the architecture provided in

Figure 4.2. For example: If the web page W is a page from TRAVEL domain, then

(W, Travel) is passed to the Web page analyzer. But, if no information about the

domain of the webpage is acquired by the loader, then a NIL values is simply passed

for the domain of the web page which can be represented by (W, NIL).

4.3.3. WEB PAGE ANALYZER

The web pages downloaded by the Multi-threaded Document Downloader are passed

to the Web Page Analyzer. These web pages may contain search forms. Since these

search forms act as entry points for the vast information hidden behind them,

therefore, the proposed system must scan the downloaded web pages to differentiate

between the web pages having forms and those not containing them. Thus, each such

downloaded Web page is given as input to one of the various threads of the Web page

 78

Analyzer, which consists of two components: a Parser and a Page Type identifier. The

Parser extracts the useful content from the HTML tag structure and the Page Type

Identifier identifies and differentiates between the Publicly Indexable Web pages

(PIWP) and the Form pages (FP).

 79

Figure 4.7: Example of a web page having new or child URLs

The information that is stored in the URL Database corresponding to this downloaded

web page and the new URL is represented by the following data structure in the URL

Database.

Now, in order to identify the form pages, the Page Type Identifier searches the

<FORM> tag in the HTML code of the downloaded web page. If the page does not

contain the <FORM> tag, then it is assumed that the page can’t act as an entry point

for the Hidden Web. Thus, these types of web pages are categorized as the Publicly

Indexable Web pages or the PIWP. However, if the page contains the <FORM> tag,

then this may be treated as entry point for the Hidden Web. This can be represented

by the algorithm in Figure 4.8.

Figure 4.8: The Page Type Identifier Algorithm.

Thus, the Page Type Identifier helps in segregating the Hidden Web Pages from the

PIWPs.

4.3.4. URL RANKER

The URL Ranker is an important component of the proposed parallel hidden web

crawler as it ranks the URLs that would be downloaded by the Multi-threaded

Document Downloader. Ranking the URLs according to their relevance is necessary

as it will be helpful for the Multi-threaded Document Downloader to download good

and important pages first.

 80

The URL Ranker basically takes the URLs from the URL Database and ranks them

according to their relevance. Ranking the URLs is important so that relevant URLs

can be considered on priority basis than the other documents.

The URL Ranker thus performs the ranking of each URL to predict its relevance and

importance:

1. Among all the URLs of a single domain in a Domain-Specific URL pool.

2. And across the URLs of all domains in different Domain-Specific URL pools.

Before calculating the relevance score of any URL, the URL Ranker first restores

www.ricksteves.com then an absolute URL has been generated. For example:

Explore Europe

Points to the URL http://www.ricksteves .com/Europe.

The URL Ranker fetches the URLs from the URL Database and computes their

relevance score so that URLs can be prioritized for further processing. This relevance

score of a URL in domain D, has been represented by R-Score (URL, D).

It is implicit that the relevance of the new URL is not known thus, the relevance score

of the new URL has been computed by the URL Ranker prior to fetching the web

page associated with that URL. This task of computing the R-Score is simplified by

assuming the hyperlinked structure of the Web and the fact that web pages are

significantly more likely to link to pages that are related to the domain of the

containing web page.

In order to compute the R-Score for a new URL, the URL Ranker considers the

relevance score of the parent page of that URL, where the parent page is said to be the

page that contains the new URL. Also, in that case the new URL is termed as the

child URL. This has been done based on the assumption that it has a higher

probability that if a page belongs to a particular domain then the links embedded in

 81

that page or in the running text / paragraph of that page may belong to the same

domain as of the domain of its parent page.

The above assumption leads to the calculation of the relevance score by including two

values: a domain score that is calculated based on the terms that surround the URL in

the containing paragraph and a Link Score that accounts for the relevance of the

discovered URL to a domain based on the domain of its parent pages. Thus, the

relevance score of the URL in domain D denoted as R-Score (URL, D), can be

computed by:

Type equation here. 4.1

The domain_score (URL, D) for a particular URL belonging to a domain D is

computed with the help of the domain definitions (given in Appendix A) which are

generated by the Page Classifier in phase III whereas the link_score (URL, D) for a

URL belonging to domain D is computed with the help of domain information of its

parent URL. The following sub-sections discuss the calculation of the domain and

Link Scores in detail.

4.3.4.1. Domain Score

The Domain Score is used to quantify the effect of the terms contained in the running

text or the paragraph of that new URL. So, its value is computed with the help of the

various terms that surround the new URL and the domain definitions created by the

Page Classifier in phase III.

In order to compute the domain_score for a particular URL, the contents of its parent

page (corresponding to the parent URL) has been checked and the paragraph in which

the new URL exist has been analyzed. Thus, for computing the value of the

domain_score, the following steps have been followed:

1) Running text identification: For appropriate computation of the domain_score,

the parent page has been first segmented into blocks or paragraphs so that the

URLs embedded as hyperlinks in any of these blocks can be analyzed and

evaluated independent of the other hyperlinks (child URLs) that exist in the

parent web page. Each such block will have features like text, images, applets,

tables that help in providing the best possible description of the URL. The

 82

paragraphs can easily be identified based on <p> tags associated with them in

the HTML code of the web document.

2) Tokenization: As a next step, for each such paragraph that comprises a child

URL, the various tokens or terms occurring in that paragraph has been

identified.

3) Stop-word Removal: Based on a list of stopwords (refer Appendix B), the

terms or tokens that are having no meaning are eliminated from the list

generated in step 2 above. For example: is, are, of, to, for etc. are some of the

stopwords.

4) Domain Score computation: The domain_score is computed on the basis of

probability computation. From the remaining set of terms extracted from the

paragraph, the number of terms occurring from each of the domains is

identified. This is done by matching each of the extracted term against the key

terms included in the Domain Definitions of each domain. The counts are then

further used to compute the domain_score of the new/child URL which is

given by the probability of the new/child URL belonging to a domain D. Thus,

 Domain_score (URL, D) =
Number of terms from domain D

Total terms extracted pages
 4.2

 This domain_score is further used to compute the rank of the new/child URL

on the basis of its R-Score.

Consider the web page (source: www.placetoseeindelhi.wordpress.com) shown in

Figure 4.9. The page provides a brief detail on the various places that one can visit in

Delhi and belongs to the Travel domain.

 83

Figure 4.9: Example web page containing hyperlinks (Source: www.placetoseeindelhi.wordpress.com)

The source code view of this parent web page is shown in Figure 4.10 and refers to a

hyperlink places to visit near Delhi (illustrated by bold white text in the paragraph in

black). The parser extracts the child URL

“ http://www.theweekendleader.com/Travel/1913/must-in-delhi.html” embedded as this

hyperlink in the parent page.

Figure 4.10: HTML tag structure of the web page in Figure 4.9.

Now, in order to calculate the domain-score of this new or child URL

“http://www.theweekendleader.com/Travel/1913/must-in-delhi.html” the running

paragraph or textual content is separated for tokenization and identification of the

terms in the comprising paragraph. Stopwords are then removed from this obtained

list of tokens to extract the terms that seem useful and relevant for finding the

domain_score.

 84

Thus, the following terms have been extracted: Delhi, loaded, number, tourist,

attractions, sightseeing, location, luxurious, hotels, amenities, delight, travelers,

Qutub, Minar, Jama, Masjid, India, Gate, Salimgarh, fort, places, visit, near, Agra,

Chandigarh, Mathura, Bharatpur, Corbett, Mandawa, magical, land, destination,

North, vibrant, culture, bustling, stress, shopping, centers, ancient, monuments,

perfect, combination, modernity, ethnicity, Trip, excellent, way, spend, vacation,

prime, enjoying, modern.

As a next step, these terms have been matched against the various domain definitions

(generated in Phase III and given in refer appendix A) to find the probability in each

domain that the new URL might belong to. For computing the probability and thus the

Domain Score of the new URL in each domain, a count of terms occurring as

keywords in each of the domain is recorded. It has been found that the following

seven terms tourist, attraction, hotel, travel, visit, trip, culture (out of total 53 terms)

occur in the domain definition of the Travel domain giving a value of

domain_score (URL , Travel)=
7

53
= 0.13 4.3

If a term occurs only once in the paragraph but is available in the domain definitions

of more than one domain, then it adds a value to the score calculated for each such

domain. For example: the term ‘travel’ also occurs in the domain definition for the

Entertainment domain along with other terms ‘trip’, ‘adventure’, ‘stress’, thus giving

a value of

domain_score (URL, Entertainment))=
4

53
=.07 4.4

for the Entertainment domain.

The terms like Agra, ancient, number, loaded etc. that do not occur in a domain

definition, adds a zero value to the count and thus do not modify the value of Domain

Score for the URL in that domain. Thus the value of Domain Score of the new URL

in all other domains equals zero i.e

domain_score (URL, Food)= domain_score (URL, Sports)= 0 4.5

 85

Similarly, if a term occurs more than once but belongs to only one domain definition,

then it adds a value that equals the number of repeated occurrences of the term to the

score of the URL in that domain. Also, if a term occurs more than once in the

paragraph and also belongs to many domain definitions stored in the Domain-Specific

Data Repositories, then it adds a value that equals the number of repeated occurrences

of the term to the score of the URL in each of the domains. Thus, the sum of the

counts of the occurrences of the terms that belongs to a domain and surround a given

discovered URL specify the score of the URL in that domain or the Domain Score of

the URL.

For the cases where the same URL appears in more than one paragraph in the parent

page, then the Domain Score of the URL is calculated for each of the paragraph block

separately and respective Domain Scores obtained for each paragraph are summed up

to find the overall relevance of the URL in each of the various domains.

4.3.4.2. Link Score

The Link Score to predict the relevance of the new URL in the domain has been

computed with the help of the domain information of its parent pages. As already

discussed earlier, the URL Database contains the new/child URL that is extracted

from the downloaded web page, the URL of its parent page and the domain of that

parent URL. Thus, it has been interpreted that the probability of the new URL as

belonging to a domain of its immediate back-link is higher that the probability of it

belonging to other domains.

Consider for example, the new URL that is included in the URL Database and when

the URL is searched for its parent pages, six different parent pages P1, P2, P3, P4, P5

and P6 have been identified. So, the new URL has a total of 6 back-links P1, P2, P3, P4,

P5 and P6 and the domain information that is stored in the URL Database for each of

these six web pages is as Travel, Entertainment, Sports, Travel, Travel &

Entertainment respectively. This data has been summarized as in Table 4.1.

 Table 4.1: Extracted Back-links for the child URL and their associated domains.

New/child

URL

Immediate

back-link →

P1 P2 P3 P4 P5 P6

 86

Domain of the

immediate

back-link →

Travel
Enter-

tainment
Sports Travel Travel

Enter-

tainment

The link_score of the new URL in each of the domains like Travel, Sports,

Entertainment is then calculated by finding the ratio of the number of parent pages in

that domain and the total number of parent pages. Thus, the link_score of the new

URL in TRAVEL domain is calculated as:

Link_score (URL, Travel) =
Number of parent pages in travel domain

Total number of parent pages
 =

 3

 6
= 0.5 4.6

Similarly,

Link_score (URL, Entertainment)=
 2

 6
 = 0.33 4.7

Link_score (URL,Sports)=
 1

 6
= 0.16 & Link_score (URL, Food)= 0 4.8

The domain_score and link_score for the new URL are used to calculate the R-Score

of the URL for different domains as per the equation 4.1 the calculation of the R-score

for the new/child URL is shown as an example in Table 4.2.

Table 4.2: Relevance Score Calculation for new/child URL.

It may be observed that the Link Score considers the relevance of all the parent pages

to the URL as the hyperlink is a reference to a child web page from all the parent

pages that contain it.

Thus the discovered URL will be added to the URL pool for Travel, Sports and

Entertainment domains with the respective R-Score of 0.63, 0.16 and 0.40.

 87

Calculating the rank of each URL within a domain will help in focusing the crawl to

the most popular & relevant links in a domain.

URL Ranker after calculating the relevance scores adds the discovered URLs to its

respective Domain-Specific URL pool. Thus, the URL Ranker finds the relevance of

a new URL in each domain based on its Domain Scores and Link Scores. The next

phase discusses the creation of the various Domain-Specific Data Repositories that is

further used for filling the search forms later.

4.4. PHASE III: CREATION AND MAINTENANCE OF DOMAIN-

SPECIFIC DATA REPOSITORIES

The aim of the Phase III is to create the domain-specific data repositories that are

further used to fill the search interfaces in order to download the Hidden Web

contents. This phase takes the PIWP and the domain of the PIWP if any, in the (PIWP,

Domain) format and generates the Domain-Specific Data Repository with the help of

the Page Classifier and the Page Content Extractor.

The second phase of the crawler makes a distinction between the PIWP and the form

pages based on the presence of the <FORM> tag in the HTML web page. It then

passes the PIWPs to the Phase III that analyzes each PIWP to classify them into

different domains (Books, Entertainment, Food, Real Estate, Sports & Travel) by using

the Page Classifier. After classification, domain-specific databases for each specified

domain is created with the help of the Page Content Extractor.

The Page Classifier (PC) scans the PIWPs to create various Domain-Specific page

repositories (DSPR) where the pages have been grouped and organized as per their

domains. The Page Content Extractor (PCE) then fetches the pages from these

repositories to facilitate the creation of the domain-specific data repositories (DSDR).

The Page Classifier and the Page Content Extractor collectively are responsible for

storing the web pages and other useful data organized according to their domains. The

framework in Figure 4.11 shows the functionality of Phase III used to generate the

Domain-Specific Data Repository. integrated work of the page classifier and the page

content extractor in creating the Domain-Specific Data Repositories.

 88

PIWP

Page Classifier

Web

 page

Extraction Pattern

Domain

Specific

search form

Label

Extractor

Form

Element

table

Extraction

pattern

generator

 Page Content

Extractor

Val1, Val2, Val3lab1

Domain-specific

database

Domain

Specific data

repository

Domain

Specific page

repository

Phase II

(URL, domain)

(Webpage,

domain)

Figure 4.11: Integration of the Page classifier and the Page content Extractor for the creation of

Domain-Specific data repository.

The Page Classifier also sends this information about the domain of a web page to

Phase II for ranking the URLs in domain. The information is passed to the URL

Ranker of Phase II in the form of pairs < URL of the web page, Domain name >.

The working of the Page Classifier and the Page content extractor is discussed below.

4.4.1. PAGE CLASSIFIER

Page Classifier is a very important component of the Phase III as it is responsible for

creating and maintaining the various Domain-Specific Page Repositories. These

repositories help the proposed Hidden Web crawler (in the later stage) to fill the search

forms to retrieve the hidden-web databases. In order to create these different

repositories, the Page Classifier must find the domain of each and every web page it

comes across. Though this information may be made implicitly available to the Page

classifier at certain times through phase II of the crawler, the case may not be always

true. In cases where the domain of the web page is not made available to the page

classifier, it processes the web page to predict its domain. The architecture of the Page

Classifier is shown in Figure 4.12.

 89

Keywords

 Neural Network
(domain definitions & Clusters of keywords)

Tag Extractor

Is
Domain =

NULL ? Index of
 web pages

Web
Pages

Web
Pages

Web
Pages

Yes

No(Web page, Domain)

Clustering

Module

Keywords

Clusters of
keywords

(Web page, Predicted domain)

Figure 4.12: The proposed system for domain identification and page classification.

The architecture of the Page Classifier consists of the following components:

• Index of PIWPs

• Tag Extractor

• Clustering Module

• Domain-specific Repositories

• Neural Network model classifier

The Page Classifier is basically used to identify the domain of all the web pages that

are stored in Index of PIWPs. As the domain of every web page is not known,

therefore, first the domain of the web page is checked. If it is available then the Tag

Extractor is used to extract the keywords from that page and these keywords are used

to train the Neural Network and creating the Domain Definitions. But if no information

is associated with the web page the trained Neural Network is used to find out the

domain of the web page. After identifying the domain, the web page is again stored in

the index of PIWP. In this manner, after some time the domain of most of (all) the web

pages is available and these pages are further stored in their corresponding Domain-

Specific Page Repositories. For example, if the domain of the web page is identified as

Travel domain then this page is stored in the Domain-Specific Page Repository related

to Travel domain. The trained neural Network is used to identify or predict the domain

of a web page.

 90

The proposed approach classifies the web pages by using an artificial neural network

(ANN) which works on two-step framework composed of many simple elements

operating in parallel so that a particular input leads to a specific target output. In order

to predict the relationship between inputs and outputs, the artificial neural networks are

initially trained by observing the behavior in some exemplary input data set. As a next

step, the trained neural network can then be used later for predicting the behavior of

any new data set that is given as input to it. The typical layout of any neural network is

as given below in Figure 4.13 .

Neural Network

including connections

(called weights)

between neurons

CompareInput

Target

Output

Adjust Weights

Neural Net Block Diagram
Architecture of the Artificial Neural

Network

Figure 4.13: Block Diagram of a basic Neural Network (back propagation) [79] and the abstract

architecture of the same as used by the proposed system.

While training any such neural network, the connections between the elements must be

adjusted for their weight values [99, 103]. If the network is adjusted to suitable values

for weights, it is likely that the network output matches the target when compared. So,

usually many such input/ output pairs will be used, in the learning process to train a

network.

In the proposed work, the Neural Network (NN) is given a set of web pages (and their

URLs) with known domains for training the neural network. This set of web pages and

URLs can be obtained in either way by using any Web directory like DMOZ or the

result listing of any search engine. Thereafter, an index is created to store the web

pages along with their domain information.

In order to train the neural network, a web page is taken from this index. If the

information about the domain of the web page is already available to the page

 91

Classifier, the web page is given as input to the tag extractor. The tag extractor extracts

keywords from the <META> and <TITLE> tags.

These extracted keywords are used to train the neural network by generating suitable

domain definitions for each specified domain. These domain definitions have been

generated by selecting important keywords for that domain. Consider, for example, the

same web page as in Figure 4.9 from the site www.placetoseeindelhi.wordpress.com

that provides certain details on the various places of visit in Delhi. The Tag Extractor

when used on the HTML source, extracts the following Keywords from the <META>

and <TITLE> tags: ‘City’, ‘Delhi’, ‘Place’, ‘Travel’. These keywords are judged for

importance by keeping a record of the frequency of its occurrence in the tags and in the

web page as a whole. Based on the frequency of occurrence of each keyword, the

training module of the NN computes a weight value for each keyword and sets a

threshold value for the domain. All the extracted keywords from web pages in a

specified domain that have the weight value above than the threshold value of that

domain will be included in the domain definitions for the respective domain.

These various domain-definitions generated for the different domains are further used

by the trained neural network for classifying the web pages. Also, for each domain, the

clustering module creates clusters of similar keywords that will be used by the Page

Content Extractor to help in the creation of Domain-Specific Databases.

In this work, the keywords with similar context and sharing the same dictionary

meaning have been clustered together. For example, a cluster in the Food domain may

be {carbohydrate, protein, vitamin} signifying the common context ‘all the nutrients

included in different types of eatables’ and sharing the meaning ‘Organic Compound’

whereas another cluster in the same domain might include {burger, snack, cake} based

on the common context of ‘bread’ while another cluster might be {restaurant, cuisine}

based on the meaning of ‘place to eat’. Similarly the various clusters of keywords

generated in TRAVEL domain include {city, place, town, destination}, {tour, travel},

{culture, tradition} based on their respective contexts of location; journey; customs &

behavior respectively.

The neural network is now trained by providing the respective keywords, clusters and

weights to find the unique identifiers for each domain of consideration. Thus, the

proposed algorithm INITIAL_NN() is used to initially assign weights to the extracted

key words that has been used for training the neural network for uniquely

characterizing & identify a domain has been summarized in the following Figure 4.14

http://www.placetoseeindelhi.wordpress.com/

 92

Figure 4.14: Algorithm for selecting initial input and their weights for the neural network

The INITIAL_NN() algorithm takes the web pages w1, w2, w3…..wn whose domains

already known for each domain d as input and extracts m keywords from the <META>

and <TITLE> tags of each web page wi. Based on their frequency of occurrence in the

tags and the web page as a whole, weights are assigned to each keyword k. Initially,

Top twenty keywords are selected for composing the four domain-definitions one

each for Auto, Books, Food & Travel domains based on a computed threshold

frequency TH_Freq(d) for the keywords of each domain.

Based on the generated unique Domain-Definitions, the trained neural network is now

used to predict the domain of a new webpage. The classified web pages thereafter are

stored in the various Domain-Specific Page Repositories as shown in the Figure 4.2.

This process is used for a number of web pages over the specified set of domains. The

Algorithm: INITIAL_NN()

Input: A set of domains D, An index of web pages

Output: Different Domain Definitions and clusters of keywords in a domain

1. For each domain, d є D do

2. For all web pages W={w1, w2, w3…..wn} in domain d do

3. if (<META> & <TITLE> tags exist in a page)

 3a. Extracts the keywords from these tags, say m keywords are extracted

 3b. For each extracted keyword, k do

(i) Record the number of occurrences of k in the <Meta> tag of all web

pages , 𝑀𝐹𝑘,

(ii) Record the number of occurrences of k in the <Title> tag of all web

pages, 𝑇𝐹𝐾

(iii) Record the total number of occurrences of k in all the web pages, 𝑇𝑂𝑇𝐾

 3c. Calculate the weight of each keyword in domain, d using the formula

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑑) =
𝑀𝐹𝑘 + 𝑇𝐹𝐾

𝑇𝑂𝑇𝐾

 3d. Calculate the threshold frequency of domain d .

𝑇𝐻_𝐹𝑟𝑒𝑞 (𝑑) =
∑ (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑑)𝑚

𝑘=1)

𝑚

 3e. For each page do

select the keywords k, where 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑑) > 𝑇𝐻_𝐹𝑟𝑒𝑞 (𝑑)

 3f. For each domain do

i) generate the domain definition by taking top t weighted keywords from

the selected set

ii) obtain the clusters of similar keywords from the domain definitions

 else

 Discard the web page for use by NN;

 Continue;

 93

performance of the Page classifier depends on the Domain-Definitions generated

through the extraction of the keywords as discussed above.

4.4.2. PAGE CONTENT EXTRACTOR

The Page Content Extractor (PCE) takes each Domain-Specific Page Repository as the

input and generates a corresponding Domain-Specific Data Repository (DSDR) as the

output. These Domain-Specific Data Repositories consist of Domain-Specific

Databases that are further used by the Hidden Web Crawler to fill the search forms.

Thus, the Page Content Extractor is responsible for populating and maintaining the

DSDRs. For each domain, a separate Domain-Specific Data Repository has been

created that will facilitate the Hidden Web crawler to fill the corresponding search

forms to obtain the Hidden Web data. Thus, a number of Domain-Specific Databases

each defining the attributes and values from a different domain have been created. For

example, in this work four domains (Travel, Books, Auto, Food) have been used.

Therefore, Page Content Extractor generates four different Domain-Specific Data

Repositories.

Also, these Domain-Specific Databases must be suitable enough to enable correct and

valid submissions for the filled search forms. Therefore, each such Domain-Specific

Database consists of attributes and their corresponding values that can be used to fill in

the search forms belonging to that particular domain by the Hidden Web Crawler.

Initially, these Domain-Specific Databases have been manually equipped with

instances provided by the domain experts but are later populated automatically with

the help of the Page Content Extractor. As an example, consider the Domain-Specific

Database in Table for the Travel domain consisting of attributes and values.

Table 4.3: Sample Domain-Specific databases.

Attributes Values

Source; Departure City; From Delhi; Mumbai

Destination; Arrival City; To Delhi; Mumbai, Chennai

 94

Pattern searcher

& Validator

Val1, Val2, Val3lab1

Valid Pattern

instances in

the form of

attributes &

Values

Page Content Extractor

Extraction

Pattern

Domain Specific Page

Repositories

Web

 pages

Domain Specific DataBaseDomain Specific DataBase

Domain Specific Data

Repositories

Extraction Pattern

generator

Rejected

Invalid Pattern

instances

From the

Form

Analyzer

From the

Clusters

Figure 4.15: The Page Content Extractor

The working of the Page Content Extractor is based on a set of extraction patterns that

are generated by the Extraction Pattern Generator (EP Generator) in the proposed

approach as shown in Figure 4.15. The Extraction Pattern Generator takes two inputs:

1) From search Forms: Since the search forms acts as the entry point for Hidden

Web , the labels/attributes in the search forms are helpful to generate the

instances/values that can be used by the Hidden Web Crawler to fill the forms.

Therefore, the EP Generator takes the labels from the search forms to generate

the extraction patterns.

2) From the clusters: Since, the same attribute in a domain can be represented by

many different names or labels on different search forms, using all such

associated labels will be helpful in generating the values for that attribute.

Therefore, the cluster whose keywords share the same dictionary meaning as

that of the attribute also acts as input labels to be used by the EP generator.

These clusters have already been created by the Page Classifier.

The EP Generator takes the above mentioned two inputs and generates forms the

extraction patterns which further helps to find the values/instances that are used to fill

in the search forms to retrieve the Hidden Web. The six type of the extraction patterns

that have been used by the EP Generator in this work are listed as follows:

 95

Extraction patterns:

EP1: Ls like NP1, ..., NPn

EP2: Ls for example NP1, ..., NPn

EP3: Ls such as NP1, ..., NPn

EP4: Ls comprise of NP1, ..., NPn

EP5: Ls including NP1, ..., NPn,

EP6: Ls in contrast to NP1,…NPn

Where EPi is any extraction pattern.

And, in the patterns Ls indicate the attribute/label like Source, Destination etc, and

NP1, ..., NPn indicate the values / instances that can be taken by that attribute/ label in

the pattern.

For example, consider the sample form from ‘Travel’ domain as shown in Figure

4.16(a). The search form consists of various control elements: a textbox control

labeled Search by Airline that takes a free-form input, a radio button labeled Flight

trip giving the option for selecting a One-Way travel or a Round Trip and two combo

boxes labeled Departure City & Arrival City for selecting the departure and arrival

cities of travel respectively.

Figure 4.16: A sample search form

The labels are extracted from the search form by the Form Analyzer to create a Form

Element Table corresponding to each search form. The Form Element Table

generated by the Form Analyzer corresponding to the search form in Figure 4.16 is

given in Table 4.4.

Table 4.4: A sample of the Form Element Table as generated by the Form Analyzer for Figure 4.16

Control Element (E) Label (L) Values/Dom(E)

 96

Next, these extracted labels are taken from the Form Element table for forming the

patterns such as “departure city like”, “departure city for example”, “departure city

such as” etc. These extraction patterns can easily be formed based on the various

labels used in the form.

For each label in the supplied Form Element Table, the matching clusters are used to

generate the other inputs or Ls instances for the EP Generator. As an example, for the

label ‘departure city’, the clusters in the page repository for ‘TRAVEL’ domain are

used to find the matching clusters. The clusters {area, city, capital, destination, place,

town, state} and {departure, migration} from the set of clusters were found to match

with the label ‘departure city’. These clusters were also given as input to the EP

Generator. Now, for a pattern of type EP3, the EP Generator not only forms an

extraction pattern like ‘departure city such as’ but also ‘area such as ’, ‘city such as’,

‘capital such as’ etc. Similarly for EP1, it generates ‘departure city like’, ‘area like’,

‘city like’, ‘capital like’ etc.. These set of extraction patterns are then used to extract

the values from the PIW pages respective to the various labels.

To extract the values, the Pattern Searcher and Validator raises these extraction

patterns as queries on any general purpose search engine. The retrieved instances are

tokenized to extract the various candidate values. The candidate values are the ones

that can be possibly associated with that Label or attribute.

For example, consider the webpage as in Figure 4.17. The web page is scanned for the

occurrences of the extraction pattern, say “Departure city like” by the Pattern

Searcher and Validator.

Select Departure City Delhi, Mumbai

Select Arrival City Delhi, Mumbai

Radio Flight trip One-way, Round trip

Text Search by airline String of characters

Submit Search Submit

 97

Figure 4.17: Google web page for the query “departure city like”

As can be observed, the specified pattern occurs at many locations in the web page

(marked yellow) giving instances like:

• Departure city like Shenzhen in your dropdown.

• Departure city like NYC and we go as a group.

• Departure city like Tokyo, Kyoto, Hiroshima and Osaka.

• Departure city like Rome, London, Frankfurt, Milan etc.

• Departure city like Amsterdam heading through Germany to Switzerland.

In order to find the values for different attributes or labels, each such instance is

tokenized by the Pattern Searcher & Validator. Tokenization leads to the extraction of

following values for the labels : Shenzhen, in, your, dropdown, and, we , go,as, a ,

group, NYC, Tokyo, Kyoto, Hiroshima, Osaka, Rome, London, Frankfurt, Milan,

Amsterdam, heading, through, Germany, to and Switzerland.

From this set of extracted tokens, the various stopwords like in, your, and, we, go, as,

a, to etc. are eliminated by the PSV to form the candidate values that can be attained

by the underlying attribute or label Ls. The candidate set of values that was thus

obtained for the attribute or Label Ls = ‘departure city’ are: {Shenzhen, NYC,

dropdown, group, Tokyo, Kyoto, Hiroshima, Osaka, Rome, London, Frankfurt, Milan,

Amsterdam, heading, through, Germany, Switzerland }

Now, it is often the case that not all such extracted attribute value pairs are valid. Thus,

the attribute value pairs with valid values must be separated out from the set

 98

containing the invalid values. To find out the valid values, the Pattern Searcher &

Validator assigns a score to each extracted value for finding its relevance in filling

forms from that domain. The score for a candidate value is calculated based on its

frequency of occurrence in the PIW pages stored in the DSPR respective to the

domain of the search form from which the label Ls was extracted.

A threshold value has been defined for values of each label and all the values that have

gained a score above this threshold has been included in the Domain-Specific Database

as valid values for that label. This threshold value has been computed by taking an

average of the number of occurrences gained by all the values over all the pages in that

DSPR.

For the above example, when the candidate values were examined for their number of

occurrences, the irrelevant values like heading, through, group, dropdown were

filtered by using the set threshold for the label ‘Departure City’. A detailed

explanation for finding the valid values/ instances on the basis of threshold

computation is given in Section 6.3.2. Thus, all the values that have a score more than

this value of threshold were considered as valid values to be included in the Domain-

Specific Database for the Travel domain. So, the retrieved valid values NYC, London,

Rome, Tokyo, Frankfurt, Milan, Amsterdam was added in the Domain-Specific

Database corresponding to the labels included in the cluster matching to the label

‘departure city’,.

Thus, by using the various extraction patterns and the pages in the DSPRs, the

Domain-Specific Database is populated automatically by the Page Content Extractor

during the process. Also, the same value might be extracted for more than one label in

the same Domain-Specific Database and if these labels form parts of different clusters,

the values have been added for all such constituting clusters.

The working of the Pattern Searcher and Validator is explained with the help of the

algorithm PSV() in Figure 4.18 where EPi is any extraction pattern formed by using

the extracted label. The occurrences of the extraction pattern EPi is searched over the

pages on the WWW to find the initial values V1, V2,....,Vm. As a next step, the

stopwords are removed from this initial set to get the candidate values cvi ‘s. The final

valid values for the label are then selected by computing a threshold value that is set

for the label using the formula given in the algorithm.

 99

Figure 4.18: Algorithm for Pattern Search and Validator.

The next chapter discusses the other three phases of the Proposed Design of a Parallel

Hidden Web Crawler. The chapter analyzes the pages containing search forms and

stores them in the Domain-Specific Search Interface Repositories. Also, the task of

form filling and response analysis has been discussed in the next chapter.

Algorithm: PSV()

Input: Extraction Patterns EPi, DSPRs

Output: Domain-Specific Database having Attribute/Label and values

1. For each extraction pattern EPi , do

i) Search the EPi over the pages on the WWW

ii) Tokenize the retrieved instances to form the set V={V1,

V2,….Vm}

iii) Remove the stopwords frm the set V to get the set of

 candidate values CV = {cv1 , cv2 ,…. cvi.}

2. For each candidate value, 𝑐𝑣𝑘 є CV do

find its frequency of occurrence, 𝐹(𝑐𝑣𝑘) in each page of the DSPR

3. Calculate the threshold value for the label Ls in EPi

𝑇𝐻_𝐹𝑟𝑒𝑞 (𝐿𝑠) =
∑ 𝐹(𝑐𝑣𝑘

𝑖
𝑘=1)

𝑖

4. For each 𝑐𝑣𝑘 є CV do

if (𝐹(𝑐𝑣𝑘) > 𝑇𝐻_𝐹𝑟𝑒𝑞 (𝐿𝑠))

 Include the candidate value val 𝑐𝑣𝑘 in the Domain-Specific database

 corresponding to Ls

 Else

 Discard the web page for use by NN

 Continue;

 100

CHAPTER 5.

PHASE IV: DISCOVERING THE HIDDEN WEB

RESOURCES IN A DOMAIN

5.1. INTRODUCTION

The phase II divides the web pages into two broader categories i.e. the web pages

containing the search forms and Publically Indexable Web Pages (PIWP). This phase

takes the web page containing the search forms that acts as the entry points for the

hidden web as the input and creates the Domain-Specific Search Interface Repository

containing the search forms as the outcome. Each Domain-Specific Search Interface

Repository contains search forms for a specified domain. For example Domain-

Specific Search Interface Repository for Books domain contains the search forms for

only Books domain. The working of this phase depends on the Form Analyzer which

comprises of the following components:

1) Form Extractor

2) Label Extractor

3) Match Value Generator

Form

Extractor

Form

Extractor

Match

Value

Generator

Querable

Search form

Labels &

values

Domain

specific

search form

Domain
Definitions

 from Phase III

Domain Specific Search

Interface Repositories

Web pages having

search forms

Label Extractor
Label Extractor

Extracted
 Attributes

Form Element Table

Label &
Values

Control
Element Type

Form Analyzer

Figure 5.1: The Form Analyzer

The functionality of each component of Form Analyzer is discussed as follows:

 101

5.1.1. FORM EXTRACTOR

This component extracts the search form within that web page and checks whether that

search form is a queryable form or any registration form. A queryable form is a form

that upon filling with valid values returns a web page that has been dynamically

generated from the web database. If a web page contains a queryable form then it is

forwarded to the label extractor otherwise it is discarded. Discarding of such search

forms (that require pre-registration) improves the efficiency of the Hidden Web

crawler. The working of the Form Extractor can be explained with the help of the

algorithm in Figure 5.2.

Figure 5.2: Algorithm for Form Extractor

Separating the queryable forms from all the other forms that require registration has

been done based on the observation that the forms that are designed for the search

functionality have the submit buttons which are typically found to be named as “GO”

Label Extractor

Label Extractor is another important component of the Form Analyzer that takes the

given queryable form as input and returns a parsed representation of the form. It

extracts the labels of the various control elements, the type of the control element and

any corresponding values that are present on the form and store this information in a

Form-Element Table (FET). For example, Figure 5.3 shows an example of a search

 102

form for which labels and values are to be extracted and Table 5.1 shows its

corresponding FET.

Figure 5.3: Example search form

Table 5.1: Parsed Representation for the above form as Form Element Table (FET)

Control Element (E) Label (L) Values/Dom(E)

Select From Delhi, Mumbai

Select To Delhi, Mumbai

Radio Flight trip One-way, Round trip

Text Search by airline String of characters

Submit Search Submit

Some control elements like the ones labeled as From, To, flight trip offer a finite list of

possible values such as select-option, checkboxes or radio buttons which are embedded

in the webpage itself. Such elements are termed as bounded elements. Other elements

like ‘Search by Airline’ offer free-form input, such as text boxes, have infinite domains

(e.g., set of all text strings) are termed unbounded. In this work, forms having certain

bounded controls have been considered. In general, if E is any control element, then

Dom (E) is the set of values that are valid as input to E. For example: for label ‘From’

and element type Select the Dom(E)= {Delhi, Mumbai}

For some domains like the Real Estate, numerous search forms exist on the Web with

almost a different set of labels for every other form. Also, these search forms contain

very few labels but support a large number of values like “apartment”, “villa”,

“colony”, “building” etc. associated in the form of substrings or options to the control

element. This makes it more difficult to analyze and process the search forms. So, to

better analyze the search forms, if any values exist for some control element of the

form, they are also extracted by the Label Extractor.

 103

5.1.2. MATCH VALUE GENERATOR

Another important task of Form Analyzer is to find the domain (Auto, Books, Food,

Travel) of the candidate search form. Identifying the domain of the search form leads

to the discovery of the Hidden Web resources that provides information about that

specified domain. This is done with the help of the Match Value Generator component

of the Form analyzer. The working of the Match Value Generator depends on a Match

Logic that makes uses of the Domain Definitions generated by the Page Classifier in

the phase III. The Match Value Generator finds the semantic mappings between the

following two components as shown in Figure 5.4:

(a) The extracted labels that are stored in the Form Element Table for the

candidate search form

(b) The Domain Definitions generated by the Page Classifier in Phase III.

Extensible Match Library

Domain
Specific

Thesaurus

Match
Logic

Edit Distance
Algorithm

Form Element
Table (FET)

Form Element
Table (FET)

Domain
Definitions

Domain
Definitions

 Knowledge
Base

Match Value
Matrix generator

Match Value
Matrix Selector

Estimated

Match Values

MVMMatched elements

with overall match

Value

Figure 5.4: Match Value Generator

Thus, the Match Value Generator takes two main inputs: the FET and the Domain

definitions and outputs all the matches among the two inputs. The Match Logic used

by the Match Value Generator supports multi-strategy matching i.e. uses multiple

strategies like Edit Distance Algorithm, Domain-Specific Thesaurus etc. for matching

the two inputs. Each matching strategy can be executed independent of the other and

new strategies can be added to the Match Logic and used as and when required. In

 104

the proposed work, this extensible Match logic uses two types of matching strategies

as follows:

A. Edit Distance Matching

As the same attribute is available under different names in different search

forms and the Domain Definitions, matching the attributes to the key terms in

the Domain Definition has been done on the basis of the Edit Distance

Algorithm [4]. Matching the labels and attributes based on imprecise strings or

tokens is much easier by computing the Edit Distance between the strings. The

Edit Distance is defined as the minimal number of characters that have to be

replaced, inserted and deleted to transform string S1 into string S2. If the

distance is small, then the two strings are assumed to be substantially the same.

Thus, if the strings are identical then the edit distance is zero. To calculate the

generalized Edit Distance between the label and the key term in one of the

domain definitions, the label or attribute (acts as S1) must be converted into

the key term of the Domain Definitions (acts as S2) by changing one character

at a time. For example: suppose S1= cat and S2= fast, then the Edit Distance

between S1 and S2 is equal to 3 as it involves 3 operations of replacing the

character c in S1 by f of S2, replacing the character t in S1 by s of S2, and

inserting the character t in S1 at the end. The computed value of the Edit

Distance is divided with the length of the longer of the two strings i.e. the

label and the key term for calculating the match value. This normalizes the

Edit Distance to lie in the range [0, 1], the result thus obtained is called the

Match Value (MV) of the label and the keyterm.

Table 5.2: Match value computation using edit distance method for the label ‘ Name’ and other key

terms included in different Domain Definitions.

Label (L) Key term (K) Edit

distance,

E1

Edit distance

with reversed

strings , E2

Match Value=
𝒎𝒊𝒏 (𝐄𝟏 ,𝐄𝟐)

𝐦𝐚𝐱(|𝐋|,|𝐊|)

Name Naming 3 6 3/6=0.50

Name Company 6 6 6/7=0.85

Name FirstName 9 5 5/9=0.55

 105

Name Time 2 2 2/4=0.50

The comparison between the extracted labels and the keyterms included in the

domain definitions has been represented in the Table 5.2. The edit distance

algorithm gives more significance to a mismatch at the beginning of a string

than to a mismatch at the end. Therefore, Edit Distance algorithm is used to

compare not only the original strings, but also their reverse strings, i.e., “emaN”

and “emaNtsriF” as shown in row 4 of the table. The 3rd and the 4th column

of the table indicate the comparison between the two inputs when available in

their original and reversed forms respectively. The smaller of the two

similarity values becomes the final edit distance. The fifth column indicates

the Match Value computed between the label (Name) and the keyterms

included in the various domain definitions by dividing the edit distance with

the length of the larger of the two strings. In the same way, the match values

are tabulated for each of the keyterms in the Domain Definitions and each

label of the given FET.

B. Domain-Specific Thesaurus

•

•

•

•

•

•

• is hypernym of car.

• Meronymy: String S1 is meronym of string S2 if S1is a part of S2.

For example, First Name is meronym of Author Name.

 If there exists any relationship between the label and keyterm then Match Value is

assigned as 1 otherwise it is 0. An example of the Match value computed using the

Domain-Specific Thesaurus has been shown in Table 5.3.

Table 5.3: Match Value Computation based on relationship in Domain-Specific Thesaurus

Label (L) Key term (K) Relationship Match value

First Name Name Meronym (L, K) 1

 106

Last Name Name Meronym (L, K) 1

Book Title Book Name Synonymy(L, K) 1

Hardcover Format Hypernym (K, L) 1

For example, If the FET contain the label ‘Hard cover’ and the keyterm ‘Format’ can

take the value hardcover, then the key term Format becomes the hypernym of hard

cover as shown in column 3 of the table .Similarly, the ‘part of ’ relationships may be

used to discover meronyms. If the extracted label consists of two parts First name &

Last name as in column 1 and column 2, then they can be identified as part of Name

and thus a meronym of Name.

While using the Domain-Specific Thesaurus, a match value of zero indicates that the

match logic does not identify any relationship between the two inputs (label and

keyterm). However, if any relationship (Synonymy, Hypernymy and Meronymy)

exists between the two input strings, a match value of 1 is returned by the Match

Value Generator.

Now for each mapping, the overall Match Value (also called Estimated Similarity

Score) is computed as an average of the Match values obtained by using the two

strategies. This estimated similarity score for the labels of the target FET is

represented in the form of a Match Value Matrix (MVM). A number of such matrices

are generated for the target FET, one corresponding to the key terms of each domain

definition. Consider as an example, a FET containing A, B, C as labels and the

domain definition containing the key terms X,Y,Z are given as inputs to the Match

logic, the Match Vale Matrix is a cross-product similarity matrix having the

combinations for A:X,A:Y,A:Z, B:X, B:Y, B:Z, C:X, C:Y, C:Z . Each cell of this

MVM contains the overall match value between the stated label and the specified key

term from the Domain Definition. A schematic representation of the MVM using the

labels of FET and the keyterms of Domain Definition is given below in Figure 5.5.

 107

Extracted
Labels from

the FET

Key terms from the
domain definiton

Cell depicting
the Overall

Match value

Figure 5.5: Schematic diagram of Match Value Matrix

Table 5.4 shows an MVM for a search form with FET f and keyterms from the

Domain definition of Books:

Table 5.4: An example of a Match Value Matrix

 Key Terms →

Labels

Author Title Subject ISBN publisher

Author 1.00 0.20 0.35 0.20 0.30

name of the book 0.30 0.80 0.45 0.30 0.10

ISBN 0.10 0.15 0.12 1.00 0.15

Topic 0.10 0.50 0.15 0.20 0.25

Practically, some of the generated matches in the MVM may be irrelevant and

therefore of no importance. Thus, the Match Logic also employs a Selector Function

that checks all the MVM’s and their overall Match Values to find the matches that are

more valuable, instead of using all that are generated by the Match Logic, thereby

improving the performance of the Match Logic of the Form Analyzer.

To find the valuable matches, the Matrix Selector uses a threshold value as the

selection parameter. This threshold value is compared with the overall Match Value

for each MVM to find the valuable matches. The matches having the overall Match

Values greater than the threshold values are treated as important and thus stored in a

Knowledge Base for future reference. The matches having overall Match Value below

the threshold value would be ignored. Now if in future a label ‘author’ of the FET is

 108

matched with the keyterms ‘Author’ and ‘subject’ in the Domain Definition, the

matcher returns overall Match Value for both the matches i.e. for author and Author ,

author and subject.

In order to avoid needless match effort and redundancy of storage, before starting the

next

eyterms of the Domain Definition, it associates a Boolean variable termed ‘MATCH’

with each label. The Match logic sets the value of the variable ‘MATCH’ to TRUE if

the label matches with a keyterm in some Domain Definition whereas a “MATCH”

value of FALSE for the label indicates that there does not exist any match for that

label in any of the Domain Definitions. Besides indicating a true/false match, the

Match Logic also associates the domain of the matched keyterm with that label. This

will ease the task of identifying the domain of the search form. If the number of labels

of a FET that match with the keyterms from a common Domain Definition are more

than a set cut-off, then it is qualified as a search form in that domain.

 109

Figure 5.6: A sample search form from Books domain

As an example consider the search form in Figure. 5.6 above. In this scenario when

the Match logic generates the matches between the labels of the FET and the key

terms of the various domain definitions, the “MATCH” field is always assigned a

TRUE value. Moreover, all the labels get associated with the key terms of a common

domain definition of Books as shown in the 4th column of the table 5.5.

Table 5.5: Labels and type of input associated with them for the Search Interface Form in Figure 5.6

 110

All seven labels match to the key terms in the definition of Books domain i.e. the

search form exhibits a 100% match with the Books domain, thereby predicting the

Hidden Web resource as relevant in Books domain. Although, the label price also

adopts definition from auto & Travel domains other than that of Books, the match

percentage is less than 15% (only 1 out of the 7 label match) and hence the resource

does not qualify for relevance in any other domain. The various hidden web resources

after examination have been stored in the various Domain-Specific Search Interface

repositories. Also, these repositories are open for updating whenever any new relevant

hidden web resource or a search form is discovered in a domain.

5.2. PHASE V: PARALLEL CONTENT EXTRACTION FROM THE

HIDDEN WEB

This phase of the crawler takes the various Domain-Specific Search Interface

Repositories as input and processes the search forms in parallel to efficiently retrieve

the contents from the Hidden Web. The working of this phase has been illustrated in

Figure 5.7.

Search Interface Distributor

SIM1

FPE1

Search

Interface

Repository

1

Domain Specific Data

Repositories

Phase VI

Query
Ranker

Filled Form

Domain Specific

Search Interface

Repositories

Domain Specific

Search Interface

Repositories
Search

Interface

Repository

N

Search

Interface

Repository

3

Search

Interface

Repository

2

SIMi SIMn

FPEi

FPEn

Figure 5.7: Working of Phase V of the crawler

In order to exploit parallelism, the crawler should be able to process and submit the

search forms in parallel. Therefore, in this phase parallelism has been incorporated in

following two levels.

 111

1) At the level of Search Interface Managers (SIM): The Search Interface Distributor

(SID) acts as the coordinator at this level. It is responsible for distributing the

search interface repositories among the different search interface managers or

SIMs according to their domains. For example, the search interface repository

having numerous search forms from the Books domain is assigned to the search

interface manager that is held responsible for processing the forms from the Books

domain. Similarly, all other SIMs are assigned the responsibility for processing

the search forms that are contained in the search interface repository respective to

their assigned domain. Distributing the search forms domain-wise helps in

avoiding overlap and redundancy.

2) At the level of Form Processing Elements (FPE): At this level, SIM, that is

containing a repository of search forms for a particular domain, distributes the

search forms to every form processing element (FPE) is responsible to fill that

form in future. For example, consider the sample of the search form repository

from Books domain shown in Figure 5.8 that contains only those search forms

which allow online searching of books.

Figure 5.8: Sample of the Domain-Specific search interface repository in Books domain

The SIM is responsible for fetching the hidden web data from the Books domain and

distribute these m forms to m Form Processing Elements (FPE). This enables parallel

harvesting of hidden web data in the Books domain through the parallel processing of

search forms by the various Form Processing Elements created by the SIM

responsible for it.

In other terms, each Search Interface Repository is assigned to a Search Interface

Manager (SIM) that becomes responsible for harvesting the corresponding search

forms. Hence, the search forms from different domains are assigned to different

 112

Search Interface Managers. For example, in order to perform a crawl of the portion of

the web databases related to the “Auto” world, the Search Interface Distributor

assigns the “Auto” domain Search Interface Repository to one of the SIM which

evenly distributes the search interfaces among its Form processing elements.

Now, as each SIM is assigned only the search forms from a fixed, unique domain, the

number of SIMs is constant in a single crawl and equals the number of distinct

domains of crawler consideration. This guarantees that all the search interface

repositories have been harvested. But as all the search interface repositories are

initially mapped to the set of SIMs, the crawler cannot increase the number of Search

Interface Managers to accelerate processing of search forms (the crawling process).

Therefore, to overcome this limitation on the crawl rate, each SIMs is made

responsible for a random distribution of its load among the parallel Form Processing

Elements (FPE) to facilitate load balancing. Also, all the FPEs of a Search Interface

Manager need to register themselves with their representative SIM at that instant

before a request for processing the list of search form is made by it. Each FPE can be

assigned a maximum of n search forms for processing by it. If the search interface

repository of a SIM contains more than n forms, then the SIM creates a new instance

of the FPE and assigns another n forms from its repository to the newly created FPE.

This assures an even distribution of workload among all the form processing elements

that were registered with a particular SIM. Thus, the number of FPEs must be created

and destroyed dynamically by the respective SIM as per the requirement in its domain.

 113

Figure 5.9: Algorithm to distribute load by the SIMs to the associated FPEs

After distribution, each form processing element is held responsible for harvesting

exclusively the set of search forms received from its SIM without communicating

directly with each other. Whenever a FPE starts, it is initialized with a list of

parameters from its Search Interface Manager. These parameters include: the parsed

representation (generated in phase IV) of the search form to be processed, content

filter, list of URLs to be included and excluded from crawling etc.

A FPE analyzes the various parameters to judge the type of the contents that is

required to fill up the search form. The Domain-Specific Database and the Page

Statistics Repository which are stored together in the Domain-Specific Data

Repository act as filling resources for the form processing elements. The working of

the Form Processing Element is the guided by the Query Ranker that is used to

generate ranking among the queries listed in the Domain-Specific database based on

the statistics that is collected by the crawler during its execution. A detailed working

of the Query Ranker is provided in the Section 5.4. The FPE then fills the form by

raising queries as per their ranks and associating a suitable value with each control,

the value being chosen from the domain of the respective control element.

Figure 5.10: Algorithm of a Form Processing Element (FPE).

The FPE, after filling the search form, submits the request to the corresponding Web

Server and obtains valuable responses in the form of dynamically generated web pages.

 114

The working of an individual form processing element can be explained with the help

of the following algorithm in Figure 5.10.

Once the FPE is over with the set of search form assigned for crawling, it makes a

request for new search forms to be assigned to it. The Search Interface Manager does

not need to permanently monitor the system because the FPEs demand work on a

need basis. The FPEs does not impose any overhead on the Search Interface Manager

because the SIM simply responds to requests for unprocessed search forms and all the

SIMs and the FPEs work in a recursive fashion till the specified time or the

exhaustion of other available resources.

The interaction between the SID, SIM, FPE and the hidden web database can be

illustrated with the help of a sequence diagram as shown in Figure 4.15:

Figure 5.11: A sequence diagram showing interaction between the SID, SIM, FPEs and the Web server.

The sequence diagram consists of four objects, one each of a SID, SIM, FPE and the

database server. It consists of the following steps:

1) The SIM created for a domain requests the SID for the Search Interface

Repository associated with the domain of its consideration.

2) The SID provides the corresponding Search Interface Repository to the SIM.

3) The SIM creates a FPE for processing the provided Search Interface

Repository.

4) The FPE then asks its controlling SIM for the n search forms to be processed

by it.

5) The SIM sends the requested number of search forms to the FPE.

SIM: Search

Interface

manager

FPE: Form

Processing

Element

DB: Web Server
SID: Search

interface

Distributor

1: Ask for Search Interface Repository

2: Assigns a Search interface repository

3: Creates FPEs

4: Ask for Search Forms

5: Sends an initial list of n search forms
6: Fills and submits the search form

7: Response pages

8: checks for availability of new search forms

 115

6) The FPE processes each search form by filling with appropriate values and

submits the filled search forms to the Web Server.

7) The Web Server generates dynamic web pages in response which are then

passed to next phase VI of the crawler.

8) After the FPE has processed the n search forms assigned to it, it asks the

controlling SIM for more search forms if available in the Search Interface

Repository to continue harvesting the Hidden Web data.

The SID object remains active for steps 1 and 2; the SIM object remains active for

steps 1,2,3,4,5,8; the FPE object remains active for 3,4,5,6,7,8 and the Web Server

remains activated during steps 6 and 7.

The distribution of the search forms from the Search Interface Repository assigned to

the SIM is done dynamically during the crawl by the SIM itself through its support to

variable number of form processing elements.

The design of this phase helps to combat the problem of:

1) Overlap: For the proposed hidden web crawler, overlap is said to exist if and

only if the same search form is considered for processing by more than one

SIM as this will lead to multiple fetches of the same webpage and thus a

redundancy in the extracted hidden web content. However, the proposed

approach avoids overlap by assigning the search form to a unique SIM

respective to its domain.

2) Synchronization: The Search Forms have to be partitioned to enable parallel

crawling but this involves an overhead of synchronizing the parallel crawling

processes to minimize overlap. The proposed approach does not involve the

overhead of synchronizing the parallel threads as the Search Interface

Distributor acts as the centralized coordinator of the operation of all these

parallel threads or elements and distributes the work as per the domains.

3) Communication Bandwidth: Although, each SIM need to coordinate with its

associated FPEs but neither the various SIMs nor the FPEs need to

communicate among themselves to coordinate with each other. This helps to

minimize the communication bandwidth needed for synchronizing the work of

the various parallel threads. Moreover, avoiding the overlap among the search

forms during processing will be useful to eliminate repeated harvesting of the

same hidden web database which further helps the proposed Parallel Hidden

 116

Web Crawler to preserve the network bandwidth and thus improve the

efficiency and the effectiveness of the crawler.

After the first run of the crawler is over, the obtained set of response pages and web

pages is analyzed to collect data for these repositories. The next section discusses this

process of analysis in detail.

5.3. PHASE VI: RESPONSE ANALYSIS

Response Analyzer is one of the most important components of the proposed crawling

system that helps in generating the resources that helps the crawler in filling the search

forms. The idea is based on the hypothesis that analyzing the set of response pages

retrieved by submitting filled search forms during an earlier execution of the crawler,

helps in generating better queries for the future runs of the crawler.

In the proposed approach, the various resources like page statistics repository and

domain specific databases (see Figure 5.17) that help the crawler for filling the search

forms with optimal queries have been collectively termed as the filling resources for

the crawler.

Filling Resources

Phase V

Query
Statistics

Response Analyzer

Size Extractor

Page Content
Extractor

Overlap
Statistics

Miner

Response Pages

Page
Statistics

Domain
Specific

Database

Response Page Parser

Extracted
URL

Response records
(unique+ duplicates)

query1

Val1, Val2, Val3lab1

Query
Response
page

siz
e

Query Ranker

 Phase II

URL
Database

Figure 5.12: The working of the Response Analyzer

Generally, two types of response pages are typically retrieved for a search in the web

database: a multi-match page consisting of a list of result records and a no match page;

Figure 5.13 and 5.14 respectively show such pages for a hidden database offered by

querying the website makemytrip.com in the ‘travel’ domain. The response result page

 117

in Figure 5.13 has multiple records so it can be called as a multi-match page. Herein,

each retrieved record describes the schedule of a particular flight and the fare incurred.

Such a multi-match page has been termed in this work as a Valid Response page (VRP)

whereas a page in Figure 5.14 that contains an error message reporting that either no

matches were found for the submitted query or page not found (HTTP 404 error) has

been termed as Dead Response page (DRP).

Figure 5.13: A valid response page or a multi-match page from a hidden database in ‘travel’ domain

 118

Figure 5.14: A dead Response page or a no-match page from the same hidden database of ‘travel’

domain.

The aim of the Response Analyzer is to automatically distinguish between a VRP and

a DRP and provide the feedback which acts as a huge source of information for the

Form Processing Element to tune the crawler for suitable and appropriate value

assignments in the next run of the crawler. The feedback includes items as follows:

1) the size of the response page that has been dynamically generated;

2) the content or data items extracted from the response pages in the form of

snippets

3) the hyperlinks embedded in the response pages.

These three features are helpful to identify the optimal queries to be supplied for filling

the search forms. These resources of information are needed by the crawler to

efficiently fill the search forms and are collectively stored in the Domain-Specific Data

Repository (created during phase III). Also, these resources are adaptive in nature

while the crawler proceeds towards its target, thus are self-governed by the crawler.

After the first run of the crawler is over, the obtained set of response pages and web

pages is analyzed to collect data for these repositories. However, for the ease of

implementation of the response analyzer, immediate navigation of the response pages

further have not been chosen. The next sub-sections discuss this process of analysis in

detail by providing a description of the various functional components of the Response

Page Analyzer which are as follows.

5.3.1. SIZE EXTRACTOR

The dynamically generated response pages are usually structured in a similar fashion,

be it an answer page with a single record or a long list of matching records. In usual, a

response page containing a long list of matching records is of a bigger size as

compared to the one that contains fewer number of matching records which in turn is

bigger in size to a dead response page. It has been assumed here that the size of a ‘no

match page’ lies in the range 1-3KB. The Size extractor calculates the size of the data

retrieved by a query in terms of the size of the response pages, based on which it later

guides the crawler through the wise suggestion of optimal queries for better valid form

submissions. Such queries are hereafter termed as ‘optimal’ queries. The size of the

data retrieved by a query or in short, the size of a query is assumed to be the size of its

 119

retrieved response pages for that query submission. Therefore, a few terms have been

defined to be used for the purpose mentioned above.

• Definition 1: Valid query: A query qi submitted to the web database DB, is a

valid query if it returns m search result records that are forked into n response

pages with each page accommodating at most M result records. In other words,

a valid query is one that returns a valid response page.

• Definition 2: Dead Query: A query qi submitted to the web database DB, is a

dead query if it retrieves a dead response page i.e. the page containing no

results or no match page.

Therefore,

For a valid query, qi :

 m> =1, n> =1

For any dead query, qi :

 m=0, n =1

Where n is the number of response pages retrieved in response to qi & m is the

total number of records that are retrieved when qi was fired on the search form.

• Definition 3: Invalid Query: A query qi to the web database DB is termed as

invalid if does not even allow the submission of the filled form to the web site.

• Definition 4: Query response Size, QRS(): The Query Response Size of a

query qi , represented as QRS(qi) has been computed as the size of response

page that has been retrieved by issuing the query qi to database DB.

For a valid query qi , Query Response Size (in KB) is defined as the size of the

response page Ri, i.e.

 QRS (qi) = Size(Ri)

It is obvious that the QRS of a dead query is the size of the DRP that has been

retrieved. It has been assumed here that Query response Size of a dead query is

between 1KB to 3 KB. Thus,

For a dead query qi ,

 1KB <= QRS (qi) <=3 KB

The computation of the size of the Response Page not only helps the proposed crawler

to distinguish between the valid, invalid and dead queries in its future runs but also in

estimating the cost of issuing the specified query which depends directly on the huge

cost of downloading from the Web. The queries that have once been marked invalid

 120

remains in the same status always but the queries which might have been marked as

dead in a particular run of the crawler may not necessarily behave the same always.

Thus, elimination of invalid queries from the query space reduces the time of

execution of unwise or non-optimal queries and the query space occupied by these

queries but eliminating the dead queries may debar certain promising queries from

consideration in the subsequent runs. Thus, in this work, the dead queries have not

been eliminated from the consideration of being optimal queries. Therefore, among all

queries- valid or dead, the crawler wisely predicts the ‘optimal’ query by ranking them

based on the Query Response Sizes.

5.3.2. THE PAGE CONTENT EXTRACTOR

The Page Content Extractor used in this phase of the crawler has been used to extract

the content from the retrieved Response Pages in order to populate the contents of the

Domain-Specific Databases that are stored in the Domain Specific Data Repositories.

The Domain-Specific Databases have been created in terms of labels/attributes and an

associated set of values and are initialized with instances provided by the domain

experts based on their knowledge in phase III of the proposed crawler. But, in order to

update these Domain-Specific Databases, new entries are extracted from the Response

Pages for populating their contents. This otherwise may lead to the situation of

“insufficient data” for the crawler when trying to automatically process the search

form through filling. Populating the contents of these Domain Specific Databases helps

to improve the crawler’s ability to more effectively fill the forms during its subsequent

runs.

5.4. QUERY RANKER

Query Ranker generates the rank of the candidate queries listed in the Domain-Specific

Database based on the page or query statistics collected during crawling. For ranking

the queries, consider Dom(Ei) to indicate the set of values in the domain of control

element Ei for each i ∈ [1, d] where d is the number of controls on the form; then, the

Cartesian product of Dom(E1), Dom(E2), Dom(E3), ..., Dom(Ed) form the query space

for the proposed Parallel Hidden Web crawler.

We refer to each element of the Cartesian product as a query qi in the query space i.e.

Q= {q1, q2, q3,……qm} i.e. a query is one of the possible combinations from the values

of all the elements. Alternatively, each qi is a list of (label, value) pair where label of

 121

the control element is an attribute of the form and value is one of the instances from

the domain of the associated control element.

Let CDi denote the number of choices for each control field, thus

CDi = |Dom(Ei)| for each i ∈ [1, d] 5.1

Then the query space Q, comprises of a maximum of m queries that can be sent

correctly for filling a form

Where m = CD1* CD2* CD3………* CDd 5.2

Or

m = ∏ CDi
d
i=1 = ∏ |Dom(Ei)|d

i=1 5.3

Thus, m is the total number of possible query combinations for a search form.

Figure 5.15: Example of a search form to a structured database

Consider the multi-attribute search form as in Figure 5.15 and a sample of the Domain-

Specific Database for the same in Table 5.6 that is used as running example to explain

the working of the query ranker while filling out the designated search form. The first

column of the domain-specific database contains the labels of the various control

attributes of the referred search form and the second column contains the possible

values for the corresponding attribute.

 122

Table 5.6: Sample Domain-Specific Database showing the 3 attributes or controls of the search form

and the domain of each such attribute.

Control Element (Ei) Domain(Ei)

From Delhi, Mumbai

To Delhi, Mumbai

Search flights One-Way, Round-trip

For the referred case, the control element say ‘From’ can have either ‘Delhi’

or ’Mumbai’ as a valid value, ‘To’ can take either ‘Delhi’ or ’Mumbai’ & the control

‘Search Flights’ can take one-way or round-trip as its possible values, thus each

control element offers a choice of two values giving the values of m=2*2*2=8 . This

value of m specifies the number of queries that can be possibly raised for the form. The

possible set of queries has been listed in table 5.7.

Table 5.7: Set of 8 possible query combination

When the proposed crawler starts initially, its working is based on the contents of the

Domain-Specific Database where all the query combinations have equal probabilities

of selection. But, practically, dependencies exist among the attributes of the hidden

database, because of which the Query Ranker excludes certain combination of values

from forming a candidate query. In the above example, with proper external

knowledge of the dependency between the Source of departure and the Destination of

arrival many combinations of queries can be discarded, so as to form the query space

Q as in Table 5.8. Thus, the crawler need not explore queries having values for From=

S.No. From To Search flights

1 Mumbai Delhi One-way

2 Mumbai Delhi Round-trip

3

4

5

6 Delhi Delhi Round-trip

7 Delhi Mumbai One-way

8 Delhi Mumbai Round-trip

 123

‘Delhi’ and To= ‘Delhi’. Such excluded queries (at s. no. 3, 4, 5, 6in Table 5.7) form

the set of invalid queries which should also be debarred from all the future runs of the

crawler. The query Space, Q, thus formed consists of four queries which have been

shown in table 5.8. The Query Ranker now assigns a query ID to each query in Q so as

to uniquely identify them during the ranking process.

Table 5.8: The query space Q and the assigned query id’s

 When the crawler initially starts, it raises the query in the same sequential order as per

their Query id’s. After all the queries have been executed, the retrieved set of response

pages has to be analyzed for updating the Domain-Specific Database and initializing

the page statistics repository. Thus, the completion of the first run of the crawler is

responsible for initializing the contents of the Page Statistics Repository. After the first

run, these queries are further ranked by the proposed Query Ranker module to get the

optimal sequence of all the possible queries.

The Query Ranker performs a random ranking of the queries in the Domain-Specific

Database based on the size of response pages in the Page Statistics Repository. Also,

the proposed Random Ranking mechanism considers the following:

1) Not all the candidate queries from the query space Q that are listed in the

domain-specific database can retrieve Valid Response Pages (VRP) from the

hidden database. Certain queries appear to be valid but when fired on the

search form does not retrieve valid response page. The reason might be because

the hidden web database does not offer search for the criteria that has been

stated in the query.

2) A query that once retrieved Dead Response Pages and thus was termed as

‘Dead’ may not necessarily be ‘dead’ always when raised in the next crawls of

 124

the proposed crawler. The possible reason being that the hidden web databases

might have been updated.

Intuitively, the proposed ranking approach defines a random ranking function,

random_rank() based on two factors: a static and a dynamic factor. The static factor

considers the behaviour the query exhibited in all the previous executions of the

crawler whereas the dynamic factor considers the behavior of the query in the

immediate previous crawl. Therefore, the rank of the query qi when the crawler runs

for the kth time depends on a value of the static rank which would be computed based

on the statistics from all the previous crawls and the dynamic rank whose value is

computed based on the sizes of the response pages obtained in the immediate last

crawl i.e. the (k-1)th crawl. Thus, the rank of a query qi to be executed when the

crawler runs for the kth time is the cumulative value of static and dynamic rank

generated for the kth crawl :

Random_rank(qi, k) = α . static_rank(qi, k) + (1 − α)dynamic_rank(qi, k)

5.4

Where,

For k=1

static_rank (qi, k)=0

dynamic_rank (qi,k) = i

For k>=2

static_rank (qi, k) =random_ rank (qi, k-1)

dynamic_rank (qi,k) = pos(qi ,desc_sort(QRS(Q)))

Here, desc_sort () is a function that produces a listing in the decreasing order of the

QRS (qi) for all the queries in the query space, Q. And, pos () gives the position of the

query qi in the sorted list.

The static ranking function has been termed as static because its contribution to the

value of random_rank for the kth crawl is independent of the various statistics

generated during the (k-1)th execution of the crawler thereby remaining constant in that

particular run of the crawler. Thus, it is a value that is assigned to the query prior to the

execution in the current crawl. The value of random_rank for the first run of the

crawler thus has been computed by using the formula stated in Equation 5.4.

 125

Random_rank(qi, 1) = α. static_rank(qi, 1) + (1 − α)dynamic_rank(qi, 1) 5.5

Also, the parameter α lies in the range [0, 1] and determines when random ranking

should be done. If α=1, the random_rank of the query computed for the immediate

previous crawl is returned to form the rank of the queries for the next run of the

crawler; which means no statistics need to be collected during the crawler’s execution

and no re-ranking is performed. But this always issues the queries in the same order

repeatedly which may always project the same response from the server, and might not

help to obtain the other records present in the hidden database.

If α=0, the initial static rank is excluded from consideration and only the effect of the

statistics collected from immediate previous crawl is examined to predict the ‘optimal’

query i.e. only the dynamic factor is taken into consideration.

As an example, the value of α =0.25 has been considered. This assigns a higher weight

to the dynamic_rank so as to give more importance to the behavior of the query in the

most recently executed crawl. The size needs consideration as some queries may bring

a detailed description of certain records and thus more of the data that is resident in the

hidden database. Thus, by taking the value of α as 0.25.

Random_rank(qi, 1) = 0.25 ∗ static_rank(qi, 1) + 0.75 ∗ dynamic_rank(qi, 1)

 5.6

As mentioned earlier, for the initial start of the crawler, the values of static_rank (qi, 1)

= 0 for all qi and the value of dynamic_rank (qi,1) =i as the queries were arranged in

some random order by the crawler. Table 5.9 shows the computation of random rank

values that would be used in the first run of the crawler.

Table 5.9: Computation of random rank values using equation 5.6 for the first run of the crawler

Query ID static_rank(qi,1) dynamic_rank (qi,1) random_rank(qi,1)

 0.75

 1.5

 2.25

q4 0 4 3.0

 126

The random_rank values for the queries are used to decide the order in which the

queries will be raised at the search forms. More is the value of the random_rank, less is

the importance of the query. Alternatively, the higher is the value of random rank for

the query, much later it will issued at the interface by the FPE. Thus the queries would

be raised in the order q1, q2, q3, q4 for the first run as can be depicted by the values of

random_rank (qi,1) in Table 5.9. Now, when the queries were raised by the FPE in this

order, different response pages with varying sizes were retrieved.

Table 5.10 provided a description of each such response page that has been retrieved

by issuing the queries q1, q2, q3 and q4. For the example under consideration, the page

statistics repository has been initialized as in Table 5.10 which contains the URL and

sizes of the response pages retrieved by issuing the queries in Table 5.8 but as per their

order in Table 5.9:

Table 5.10: The contents of the page statistics repository for the queries

Query ID Response page Query Response

Size (KB)

q1

q2

q3

q4

Now, the ranking of the queries for the next run of the crawler depends on the output

or the size of response pages obtained in the current run. The static rank of queries for

the next run of the crawler is computed based on the random rank values that were

calculated for the immediate previous crawl.

Thus, the static rank of the queries for the second run would be given by the

random_rank values obtained for the first run which is same as the order in which the

queries were issued during the first run of the crawler. This has been shown in Table

5.11. This way the first query q1 having the value 0.75 for its random_rank gets a rank

 127

static_rank (q1,2)=1, while the query q4 having the random_rank value as 3.0 is

assigned the last rank in the ordered list i.e. static_rank (q4, 2)=4.

Random_rank(qi, 2) = 0.25 ∗ static_rank(qi, 2) + 0.75 ∗ dynamic_rank(qi, 2) 5.7

where,

 static_rank(qi, 2) = random_rank(qi,1)

and

dynamic_rank(qi, 2) = pos(qi ,desc_sort(QRS(Q)))

Table 5.11: The static rank of the queries for the second run of the crawler

Query ID Static_rank (qi ,2)

q1 1

q2 2

q3 3

q4 4

The dynamic rank for the queries for the second run have been obtained by ranking the

queries in the decreasing order of their Query Response Sizes (QRS) values obtained

for each query in the first run. The QRS and the dynamic rank values have been shown

in Table 5.12.

Table 5.12: Dynamic rank values for the second run using equation 5.7

Queries Response page size Dynamic_rank (qi,2)

q1 100 2

q2 96 3

q3 108 1

q4 96 3

By considering the values of α=0.25 which gives more weight age to the recent

behavior, the computation of the random _rank values as per the equation (5.7) for the

second run has been shown in Table 5.13.

Table 5.13: Computation of random_rank for the queries for the second run using equation 5.7

 128

Queries static-rank (qi,2) dynamic_rank (qi,2) Random_rank (qi,2)

q1 1 2 2.5

q2 2 3 2.75

q3 3 1 1.5

q4 4 3 3.25

As can be seen from the values of random rank in Table 5.13, the proposed approach

issued the queries as per the order q3, Q1, q2, q4. When the queries were issued as per

their ascending random_rank values obtained in Table 5.13, a total of 229 unique

records were retrieved, though each query independently retrieved 142, 87, 177, 150

records from the hidden database. This has been shown in Table 5.14.

Table 5.14: Number of records retrieved by each query

Queries Number of records retrieved

q3 142

q1 87

q2 177

q4 150

The proposed random ranking approach ensures that by issuing the queries as per their

random_rank values, some minimum number of queries will be required to

exhaustively retrieve the contents of the target database. Thus, the component, Overlap

Statistics Miner has been used to analyze the obtained records retrieved by each query.

When the Miner extracted the duplicates and unique records retrieved by each query, it

was found that just q3 and q1 would suffice to retrieve all the 229 records as the two

queries q2 and q4 retrieved only duplicates. The Query q2 retrieved a total of 177

records of which 39 records have already been retrieved by q1 and 138 records have

already been retrieved by q3. Similarly, the query q4 fetched 150 records of which 23

records overlapped with q1 and another 127 were duplicates with q3. Thus, the

proposed approach leads to an optimal solution as per which only two queries would

be sufficient for retrieving the same amount of data from the hidden database.

 129

For another next run of the crawler, the static_rank values to be used for the queries

will be b

ased on the random_rank values used for the respective query in this run of the crawler.

However, to obtain the values of dynamic_rank for the various queries, the QRS that

wou

ld be obta

ined from the response pages retrieved by this run would be used. The QRS for the

various queries used in the second run are as shown in Table 5.15.

Table 5.15: QRS and the dynamic_rank values for the next run of the crawler

Queries Response page size Dynamic_rank (qi,3)

q1 92 3

q2 98 2

q3 88 4

q4 102 1

So, the random_rank for the next run would be computed by using equation 5.4 again.

These computed values of random_rank to be used for the next run are shown in

Table 5 .16.

Table 5.16: Computation of random_rank for the queries for the second run using equation 5.7

Queries static-rank (qi,3) dynamic_rank (qi,3) Random_rank (qi,3)

q1 2 3 2.75

q2 3 2 2.25

q3 1 4 3.25

q4 4 1 1.75

Hence, the order of queries as suggested by the Query Ranker for the next run would

be q4, q1, q2, q4. Thus, the queries will be raised by the FPE as per the values of

 130

computed random_rank. Similarly, the rank among the queries for the subsequent runs

of the crawler would be obtained.

The details of implementation and the results of the various experiments that were

conducted to evaluate the proposed work of parallel hidden web crawler are discussed

in the next chapter of this thesis.

 131

CHAPTER 6.

IMPLEMENTATION & RESULT ANALYSIS OF

PARALLEL HIDDEN WEB CRAWLER

6.1. GENERAL

With the rise in the number of Hidden Web databases accessed through search forms,

finding efficient ways of exploring contents from these hidden databases is of

supreme and increasing importance. One of the methods to access the Hidden Web

employs an approach similar to ‘traditional’ crawling but aims at extracting the data

residing in databases behind the search interfaces or forms. Moreover, the hidden

Web is big and getting bigger. As the volume of information in the hidden-web

database grows, there was a need to design a crawler that scales its performance

according to the increase in the information on the Hidden Web. The proposed

Parallel Hidden Web Crawler addresses these issues by automatically discovering

relevant resources in different domains like Books, travel, Auto etc through the

analysis of each web page. It then tries to automatically process each search form by

raising appropriate queries through an analysis of the response pages and submitting it

to the respective web server. The proposed work has been divided to work in six

phases:

1) The first phase is used to initialize the crawler by choosing a seed set of URLs

in each domain. These seeds have been stored in the URL pools respective to

its domain which are then scheduled by the URL Scheduler for crawling. This

is done by creating a priority queue for each Domain-Specific URL Pool. The

URLs from each of these priority queues will act as input to the next phase of

the crawler.

2) The second phase is responsible for taking the URL from each Domain-

Specific Prioritized URL Queues to download the associated web pages. The

phase also finds whether the downloaded web pages belong to the Publicly

Indexable Web or to the Hidden Web with pages containing search forms. The

second phase also helps the crawler to rank the newly discovered URLs as per

their relevance in each domain so that important pages get downloaded earlier

during the crawl.

3) Third phase uses the PIWP given by phase II to create the Domain-Specific

 132

Data Repositories that are further used by Phase V to fill the search forms in

order to download the Hidden Web resources. So, a novel approach to

organize and classify the downloaded collection of web pages according to

their domains like Auto, Books, Food, Travel, etc. is being proposed.

4) The form pages discovered in Phase II are passed onto Phase IV where they

are analyzed by the Form Analyzer and stored in various Domain-Specific

Search Interface Repositories. This facilitates the process of automatically

filling the search forms in phase V.

5) The fifth phase of the crawler employs a Search Interface Distributor (SID)

that is responsible for an even distribution of search forms among the parallel

processes for efficiently processing them. The SID is also responsible for

filling search forms of each domain with the help of the various Form

Processing Elements.

6) In the last phase, a novel technique for discovering optimal queries (by

analyzing the response pages) to get an optimal outcome has been introduced

queries are generated by analyzing the pages retrieved in response to earlier

query submissions. This significantly reduces the load on the web servers as

only valid queries will be used to fill search forms and any invalid queries

would be eliminated. This helps the crawler in getting useful pages and sifting

away the pages that contain error messages.

The proposed Parallel Hidden Web Crawler has been implemented using .NET

framework 3.0 and SQL Server 7.0. It was mainly written in Java using JDK 1.4.2 but

it also includes software components implemented in native code i.e. in other

programming languages, such as C, C++ but can be inter-operated with java code

using the JAVA Native Interface (JNI) .To check the performance of the proposed

work, various metrics have been used that are discussed in the next section.

6.2. PERFORMANCE METRICS

The standard measures of performance in the area of Information Retrieval are:

Precision, Recall, and F-measure. So, the performance of the proposed parallel

hidden web crawler is measured via these three metrics. For the purpose of analyzing

the performance, consider the following terms:

• C, the number of valid or correct search form submissions.

• I, the number of invalid or incorrect search form submissions and

 133

• N, the number of search forms that could not be filled and submitted by the

proposed processed parallel hidden web crawler.

With the help of above defined terms C, I and N, Precision, recall and F-Measure can

be defined as:

1) Precision is defined as a fraction of correct form submissions over all the form

submissions by the Parallel Hidden Web Crawler. Mathematically, the

Precision is given by

P = C/ (C + I) 6.1

2) Recall is defined as a fraction of correct form submissions over all the search

forms given to

3) the system for processing by the crawler, then the Recall of the proposed

parallel hidden web crawler crawling system is given by the expression given

in equation 6.2

R = C/ (C +I+N) 6.2

4) F-measure incorporates both precision and recall. F-measure is given by

F = 2PR/ (P + R) 6.3

where Precision P and Recall R are equally weighted.

6.2.1. DATA SETS

For experimental evaluation of the proposed work, the following four domains have

been considered: Auto, Books, Food and Travel. The proposed crawler is initialized

by taking about 140-150 URLs for each domain from the list provided under the

DMOZ open dir

ectory that were stored in the various Domain-Specific URL Pools.

In phase I, each initial list of URLs that is stored in the various Domain-Specific URL

Pools is given as input to the URL Scheduler for deciding the order in which the

URLs must be fetched from the WWW. The order is decided by the URL Scheduler

based on the rank assigned by the URL Ranker (phase II) to each URL. During the

initial run of the crawler, the rank of any URL is considered to be the same as in the

directory listing. The URL appearing at the topmost position in the directory list takes

the top rank for scheduling also. Based on these rank values, the URL Scheduler

creates a prioritized URL queue for the URLs in each domain. A sample of the initial

URL queue for the Food domain contained in the text file is as shown in Figure 6.1.

 134

Figure 6.1: Initial list of URLs for ‘Food’ domain

Similarly, URLs were taken for other domains and arranged in order in the respective

URL Queues (.txt files). These text files or queues were given as inputs in each domain

as shown in the interface of the crawler in Figure 6.2.

Figure 6.2: Interface of the Parallel Hidden Web Crawler

Based on these URLs, web page have been retrieved in each domain which was then

analyzed to measure the performance of the proposed system by using the above-

defined metrics, Precision, Recall and F-measure. A detailed discussion on the

performance of the various components is given in the following sections.

 135

6.3. EXPERIMENTS & RESULTS

6.3.1. FINDING THE FORM PAGES AND THE PIW PAGES

In the next phase, the URLs that were ready for downloading in the various Domain-

Specific Priority Queues Pools are allocated to the URL Allocator that uniformly

distributes the URLs (by taking one from each queue) to the multiple threads of the

document loader. The Multi-threaded Document Downloader then downloads the web

pages by establishing the http connections to the designated web servers.

As soon as the web page was downloaded, it was given as input to the Web page

Analyzer that employs a parser and a page identifier. The parser parses the web page to

extract the useful content like <anchor>, <form>, <meta>, <title> etc. from the

HTML tag structure and the page identifier finds and separates the form pages from

the PIW pages.

All the functionality of phase II has been incorporated in the Web Data Extractor

module of the crawler implementation which has been implemented by using the .NET

framework with Java technology. The interface of the web data extractor of phase II is

shown in Figure 6.3. Multiple threads of the Web Data Extractor can be executed

simultaneously. This can be done by increasing the thread count in the "New Session -

Other" tab on the interface.

Figure 6.3: Interface of the Web Data Extractor employing URL Allocator, Multi-Threaded Document

Loader and the Web Page Analyzer.

A session is started by clicking “New” by which a window pops-up asking for the

prioritized URL queues created by the URL scheduler as input. To extract the URLs

 136

that were embedded as hyperlinks within the <anchor> tag, the check box in the lower

left corner of the window is marked to true. A snapshot of initialization when URLs

were to be extracted is shown in Figure. 6.4 and the list of extracted hyperlinks is

shown in Figure 6.5.

Figure 6.4: Initialization of the Web Data Extractor for URL extraction.

Figure 6.5: A snapshot of the list of hyperlinks extracted from downloaded web pages

During crawling, it is not necessary to add the newly found URLs to the Domain-

Specific URL Pools each and every time

 137

<META> tag. A total of 565 pages were downloaded by the Multi-threaded

Document Downloader and were given to the Page Type Identifier (after parsing) that

classified them as per the data in Figure 6.6:

Total Pages downloaded PIW Pages Form Pages

565 182 383

Figure 6.6: The number of pages of each type as identified by the Page Type Identifier

Each of the PIWP and the Form page, immediately after analysis by the Web page

identifier is passed respectively to the Page Classifier used in Phase III and the Form

Analyzer used in Phase IV for further functioning of the crawler

6.3.2. THE PAGE CLASSIFIER AND THE PAGE CONTENT EXTRACTOR

All the pages that were identified as PIWPs by the Web Page Analyzer in Phase II are

passed onto the Page Classifier for classifying and organizing them according to their

domains, in Phase III. The Page Classifier is designed with the help of a back-

propagation neural network that is configured and trained by extracting key terms in

each domain with the help of a Tag Extractor. The open source software Neural

Network Toolbox that uses MATLAB environment is used to implement the

functionality of the used neural network.

 138

The keyterms for training are those that are extracted from the <meta> keywords,

<meta> description and <title> of the web pages whose domain information is already

available. The URLs of such web pages are passed in the form of a plain text file with

one URL starting at each line. This file has been generated by the Web Data Extractor

module in the implementation and is referred by the name “urlforWDE.txt”. The

interface of the Web Data Extractor and a sample of the generated file to be used as

input for extracting key terms is shown in Figure 6.7.

(a)

(b)

 139

Figure 6.7: Initialization of the key term extraction process in (a) with a sample of the input file

urlforwde.txt in (b).

To start with a session, the file “urlforwde.txt” is given as input, a snapshot of key

term extraction after the session has started is shown in Figure 6.8.

Figure 6.8: A snapshot during term extraction

The extracted keyterms using the <meta> keywords, <meta> description and <title>

are as shown in Figure 6.9.

Figure 6.9: Snapshot of extracted title and keywords from the META tag.

 140

These extracted keyterms from all the web pages whose domains were available act as

input for training the neural network. The proposed system uses a back propagation

neural network model as a basic network that has been designed with three layers, one

input layer, one output layer and one hidden layer as shown in Figure 4.7. Table 6.1

illustrates the biases used at each of the three layers and illustrates the various

activation functions that have been used by the proposed system.

Table 6.1: Biases and Activation Functions Used

The network was trained to zero error in sixteen epochs, as shown in Figure 6.10.

Figure 6.10: Training the neural network

By Clicking on ‘Performance’ plot button, the mean error squared can be found. This

is depicted in the graph shown in Figure 6.11. The graph shows the value of the

Biases

Number of Neurons in Input layer 4

Number of Neurons in Hidden

layer

5

Number of Neurons in Output

layer

1

Activation Functions

For Input layer Piece-wise linear

For Hidden layer Sigmoid

For Output layer Sigmoid

Error criteria used Mean Squared Error

Target accuracy 0.00000015

 141

performance function versus the iteration number. It can be seen from the graph that

the mean squared error of the network starts at a large value but keeps on decreasing

showing that the network is learning. The plot has three lines where blue is used to

depict the training set, green to validate how well the network generalized and red

represent the network’s generalization to data that it has never seen (test set). Training

continues as long the network’s error keeps on reducing for the validation data. For

the purpose of implementation this validation data (with minimum error) has been

referred to as Domain Definitions which include a set of key terms for each domain so

as to uniquely define that domain. These Domain Definitions helps in actually

identifying the documents belonging to each such domain.

Figure 6.11: Performance of the Neural Network (error vs iteration)

 142

s that are assigned to those key terms.

Table 6.2: Experimental Results Obtained for the Page Classifier

Domain of web

pages

Percentage of web

pages correctly

classified

Percentage of web

pages incorrectly

classified

Percentage of

pages that

couldn’t be

classified

Food 66.67% 22.22% 11.11%

Books 100% 0% 0%

Travel 100% 0% 0%

Auto 93.75% 6.25% 0%

Average 89.75% 7.69% 2.56%

The graphs in Figure 6.12 (a) and (b), represent the performance of the proposed page

classifier. On the X-axis are labeled the various domains of consideration by the

proposed system whereas the Y-Axis represents the percentage of web pages that are

classified either correctly or incorrectly or could not be classified by the Page

Classifier.

 143

(a)

(b)

Figure 6.12: Performance of the Page Classifier

The performance of the Page Classifier is low in the ‘Food’ domain, the reason behind

which is as follows: Though web pages contain useful features as discussed above but,

these features are sometimes missing, misleading, or unrecognizable for various

reasons in some particular web pages .For example, web pages that belong to the Food

domain typically contain large images or flash objects but little textual content. In such

cases, it becomes difficult for classifiers to make reasonable judgments based on

features available on the web page. .

To store the classified collection of web pages as per their domains, the Page Classifier

creates the various Domain-Specific Page Repositories. i.e. each web pages is stored in

the Domain-Specific Page Repositories (DSPRs) respective to its domain. The web

pages contained in each such repository were then passed as input to the Page Content

Extractor (PCE) that will extract the labels and values for creating the Domain-

 144

Specific Databases for filling the search forms in Phase V. The Page Content Extractor

works by extracting values from the various instances of the different extraction

patterns occurring in the repositories.

These extraction patterns have been generated in the proposed system with the help of

labels extracted from the search forms and the various clusters generated by the

clustering tool used with the neural network. For an extracted label ‘departure city’ six

patterns were formed such as “departure city like”, “departure city for example”,

“departure city such as” etc. based on the type EP1, EP2, EP3 respectively. As

departure city forms a part of the cluster {city, place, town, destination} in Travel

domain, thus a total of 24 extraction patterns were formed by using a single label

‘departure city ’ and the cluster{city, place, town, destination} i.e. six patterns for each

cluster element based on the defined six type of extraction patterns. More than 100

extraction patterns were generated for each domain by the Extraction Pattern Generator

in the form of an excel file, a small sample of which is shown in the snapshot in Figure

6.13.

Figure 6.13: The generated Extraction Patterns in the Travel Domain

 145

When these extraction patterns were raised as queries on general purpose search

engine like Google [117], various candidate instances were retrieved for the extracted

labels which were validated against their occurrences in the web pages of the Domain-

Specific Page Repository to find the set of valid values for the label. Figure 6.14 shows

a sample page from the PIW when the extraction pattern “departure city like” was

raised as query on Google [117] by Page Content Extractor.

Figure 6.14: Result page when the extraction pattern ‘departure city like’ was raised on Google.

Similarly, all the extraction patterns were raised as queries for extracting the candidate

instances from the PIW pages. But as not all the candidate values are of use practically,

the set of valid values from the candidate set need to be found. This is done by

assigning a score to each candidate value based on its frequency of occurrence in the

PIW pages stored in the DSPR respective to the domain of the search form from which

the label Ls was extracted.

Figure 6.15 show a snapshot when the retrieved values were analyzed for their

occurrences in the PIW pages in the DSPRs.

 146

Figure 6.15: Snapshot of .mdb file when analyzing the instances of candidate values in PIW pages

stored in the DSPRs.

The set of valid values was generated by using the algorithm devised for the Pattern

Searcher ……………………………………………………………………..

 candidate value in a small sample of web pages from the page repository of Travel

domain.

 147

Table 6.3: A sample of candidate values with their occurrences in the web pages in the DSPR

W
eb

 p
a

g
e#

L
s=

 D
ep

a
rt

u
re

C
it

y

N
Y

C

L
o

n
d

o
n

R
o

m
e

T
h

ro
u

g
h

H
ea

d
in

g

T
o

k
y

o

F
ra

n
k

fu
rt

M
il

a
n

G
ro

u
p

A
m

st
er

d
a

m

K
y

o
to

O
sa

k
a

S
h

en
 z

h
e
n

S
w

it
z
er

la
n

d

1 8 2 1 0 1 0 0 0 0 0 0 0 0 0 0

2 0 1 4 2 0 0 0 0 0 1 0 0 0 0 0

3 0 1 3 2 0 0 0 0 0 1 0 0 0 0 0

4 6 3 8 2 0 0 0 0 0 0 0 0 0 1

5 42 35 63 16 3 0 21 17 15 4 29 0 1 1 0

6 6 0 2 10 0 0 0 1 9 0 1 0 0 0 1

7 7 0 0 0 3 1 0 0 2 0 0 0 0 0 0

8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

9 11 0 0 1 0 2 0 0 0 2 0 0 0 0 0

10 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0

T
o

ta
l

O
cc

u
rr

e
n

ce
s

86 44 82 31 9 3 21 18 26 8 30 0 1 1 2

The threshold frequency for the values of a label would be then computed by

𝑇𝐻_𝐹𝑟𝑒𝑞 (𝐿𝑠) =
∑ 𝐹(𝑐𝑣𝑘

𝑖
𝑘=1)

𝑖
 6.4

Using the above formula as stated in the PSV Algorithm given in Figure 4.18, where

cvk is denotes any candidate value and F(cvk) denotes its frequency of occurrence in

each page of DSPR. Therefore,

𝑇𝐻_𝐹𝑟𝑒𝑞(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑐𝑖𝑡𝑦)

=
44 + 82 + 31 + 9 + 3 + 21 + 18 + 26 + 8 + 30 + 0 + 1 + 1 + 2

17

=
326

17
= 19.714

Thus, the threshold value of 19.7 is used to filter the useless values from the candidate

set of values for the label ‘departure city’. All the values having the number of

occurrences more than this value of threshold was considered for inclusion in the task-

specific database for the Travel domain. Thus, the following nine values were added in

the task-specific database: NYC, London, Rome, though, Tokyo, Frankfurt, Milan,

 148

group, Amsterdam. For the same label and the various extraction patterns generated by

the EP generator, candidate values from all the web pages in the same domain are

extracted similarly by the Page Content Extractor. Thus, the Task-specific database is

populated automatically during the process through repeated extraction of values from

the web documents by the PCE.

The label and its corresponding set of valid values were added into the respective

Domain-Specific Database. The performance of the Page Content Extractor is

evaluated in terms of the number of valid value generated from the set of candidate

values extracted by searching each extraction pattern. Table 6.4 shows the number of

candidate and valid values that were obtained for the label ‘departure city’ by raising

the six extraction patterns of type EP1, EP2,….EP6.

Table 6.4: Number of candidate values and valid values generated for the label ‘departure city’ using

the six extraction patterns.

Extract_Pattern

Number of

Candidate

values

Number of Valid

Values

%age of

Valid Values

Departure City Like 77 47 61

Departure City for example 17 8 47

Departure City such as 23 7 30.4

Departure City comprise 8 5 62.5

Departure City including 32 4 12.5

Departure City in contrast

to 6 1

16.6

Total 163 73 44.7

Figure 6.16: Graphical representation of the number of candidate and valid instances by the PSV

0

10

20

30

40

50

60

70

80

90

EP1 EP2 EP3 EP4 EP5 EP6

Candidate values

Valid Values

 149

So, the Pattern Searcher and Validator helps in significantly improving the

performance of the crawler by suggesting a set of valid values only. This cuts on the

number of unnecessary requests that would be otherwise made to the web server if all

the extracted candidate values were used to fill the search forms. For the label

‘departure city’, a total of 163 candidate values were extracted, only 73 of which were

found to be the actual valid instances i.e. 91 or 55.3% irrelevant values were filtered

from being included in the Domain-Specific Database under the label ‘departure city’

for the Travel domain. This is represented by the graph in Figure 6.16.

A similar set of valid values is generated for each of the various labels that would be

extracted by the label extractor of the Form Analyzer. Each extracted label with its set

of corresponding valid values is stored in the respective Domain-Specific Database.

Hence, this phase helps in creating the various Domain-Specific Databases that are

required to fill in the search forms when the crawler reaches its phase V during

execution.

6.3.3. FORM ANALYZER

For all the form pages received from phase II, the Form analyzer first extracts the

labels and values from the given search form. And, then performs matching among the

extracted labels/ values and the key terms of each domain definitions to predict the

domain of relevance of the form page or hidden web resource.

Element E3

Label(E3)=”Buy New or Used”

Element E1

Label(E1)=”Book Type”

Element E2

Label(E2)=”Publicatio Name”

Figure 6.17: A Sample Search Interface with Labels and Values

An example of a typical search form with its control elements and labels is shown in

Figure 6.17. The form in the Figure also displays certain values like ‘Fantasy’, ‘Sci-

Fi’ , ‘New’ and ‘Used’ for the control element E1. Such controls are called as bounded

 150

controls. The HTML structure of the extracted form from the web pages is as shown in

Figure 6.18.

<h3>Search New Archive</h3>

<form method="post" action="Default1.htm">

 <table>

 <tr>

 <td align="right" width="150"> Book Type </td>

 <td>

 <select name="What">

 <option value="fan" selected="selected"> Fantasy</option>

 <option value="sci"> Sci-Fi</option>

 <option value="thi"> Thriller</option>

 </select>

 </td>

 </tr>

 <tr><td>

</td></tr>

 <tr>

 <td align="right" width="150"> Publication Name </td>

 <td><input name="name" size="45" maxlength="200" value="" /></td>

 </tr>

 <tr><td>

</td></tr>

 <tr>

 <td align="right" width="150"> Buy New or Used:

</td>

 <td>

 <input type="radio" name="buy" value="new" />New

 <input type="radio" name="buy" value="used" />Used

 </td>

 </tr>

 </table>

</form>
Figure 6.18: HTML Source Code of the Sample Search Form of Figure 6.17

The interface of the Form Analyzer is as shown in the Figure 6.19. The URL of the

web page having search form is entered in the given textbox and the ‘Go’ button on the

interface is clicked to start the label extraction process. The labels that are, thus,

extracted are shown in the interface itself. The web form is loaded in part (A)

WebBrowserControl, its source code is visible in part (B) RichTextArea and the

corresponding labels for the web form are extracted into a (C) DataGridView, as

indicated in Figure 6.19 and Figure 6.20.

 151

C

B

A

Figure 6.19: The Interface of the LET.

Figure 6.20: Layout of the Form Analyzer during the process of label extraction.

For all the search forms that were given as input to the Form Analyzer in each domain

(Auto, Books, Food, Travel), labels were extracted for the control elements. The Form

Analyzer was able to extract 65.13% of labels from the search forms in Auto Domain.

Similarly, 54.54%, 50.09% and 64.59 % of labels were extracted from the search

forms in Books, Food and Travel domain respectively as shown in Figure 6.21.

 152

Figure 6.21: Performance of Form Analyzer when extracting labels.

The various labels that were extracted from a given search form are temporarily stored

for analysis in an excel spreadsheet as shown in Figure 6.22.

Figure 6.22: Snapshot of the temporary sheet created during label extraction

 153

The Form Analyzer shows the best performance for label extraction in the Auto

domain as the search forms in this domain had only few controls like Make, Model etc.

The total number of labels extracted and the total number of labels that existed on

search forms in each domain is shown in the graph in Figure 6.23(a) whereas the

percentage accuracy of extracted labels against the actual labels that exist on the search

form in each domain is shown in Figure 6.23(b).

(b)(a)

Figure 6.23: The number and Percentage of Labels Extracted in each domain

To further improve the performance of the Form Analyzer, values for controls were

also extracted. The method for label extraction used by the form analyzer was tuned to

extract the values of the control elements with finite domain, as their values can be

depicted from within the search form itself, like the SELECT tag that has OPTIONS

and INPUT, RADIO tag that has values which are selected while filling the form

manually/automatically. The INPUT defines areas that can be edited in the form, the

Attribute TYPE of the INPUT control further describes the type as text, checkbox,

radio, submit etc. The control SUBMIT of the INPUT type is generally used to submit

the values filled in the form. Every control has a name attribute which is used to

appoint control’s label. SELECT is used to create a drop-down list box or a multi-

choice list box. TEXTAREA is used to create a text box which can input multiple lines

of words.

Figure 6.24 shows the domain-wise performance when just values (and not labels)

were extracted by the Form Analyzer from the various search forms. The Form

 154

Analyzer was able to extract 88.97 % of the values in Auto domain, 28.04 % of values

in Books domain, 65.95% in Food domain and 94.29% in Travel domain.

Figure 6.24: Performance of Form Analyzer when extracting values.

As shown in Figure 6.25(a), of all the search forms in Travel domain, a total of 314

values were extracted from a total of 333 values that existed on those search forms.

Moreover, the Form Analyzer was able to extract 121 values from all the 136 values

that were present on the search forms in Auto domain giving an accuracy of 88.97%.

For other domains Books and Food, the Form Analyzer was able to extract 23 and 31

values from the respective total of 82 and 47 values that were present on the search

forms in these domains.

 155

(b)

(a)

Figure 6.25: Performance of the Form Analyzer when extracting values of control elements.

The Form Analyzer performed its best when extracting the values/instances from

search forms in Travel domain (as shown in Figure 6.25 (b)) as control elements on the

search forms from this domain typically consisted of drop-down boxes listing all

possible values that can be taken by that control while filling the search form.

The average accuracy of the Form Analyzer for the four domains Auto, books, Food

and Travel when both labels and values were extracted from the search forms is shown

in Figure 6.26.

 156

Figure 6.26: Domain Wise performance of Form Analyzer when extracting labels and values both.

The overall percentage accuracy of the Form Analyzer in each of the four domains for

extracting the labels and values together is shown Figure 6.27.

Figure 6.27: Overall %age Accuracy of Form Analyzer when extracting labels and values.

As shown in Figure 6.27, the Form Analyzer shows the best performance for the

search forms in Travel domain.

0

10

20

30

40

50

60

70

80

90

Auto Books Food Travel

A
cc

u
ra

cy

Overall Accuracy of Form Analyzer

% Accuracy

 157

When the various search forms were given as input to the Form Analyzer in phase IV,

the extracted labels were matched against the domain definitions generated by the page

Classifier (in Phase III) to predict the relevant domain of the hidden web resource.

Based on the label extraction process and the Match logic, the Form Analyzer was able

to discover the various search forms in each domain. Of the total 383 search forms

received by the crawler in its phase IV, 369 were found to be queryable. When these

369 forms were analyzed, 322 were discovered as relevant search forms in one or the

other domain but could not predict the relevant domain of 27 search forms. The

observed data is shown in table 6.5.

Table 6.5: Results of the Form Analyzer

Also, among the 342 that were discovered as relevant search forms, almost an equal

number of resources belonged to each domain like Auto, Books, Food and Travel. But

when the results were analyzed, a total of 43 search forms (from 342) were incorrectly

organized in a Domain-Specific Repository. The graph in Figure 6.28 shows the

accuracy of the Form Analyzer in discovering relevant search forms.

Figure 6.28: Accuracy of the Form Analyzer while discovering search forms in various domains

Accuracy of the Form Analyzer

 correctly discovered relevant
resources

 incorrectly discovered
relevant resources

resources that could not be
classified

Total # of search forms in the Hidden Web
369

correctly discovered relevant search forms 299

incorrectly discovered search forms 43

search forms that could not be classified 27

 158

The reason behind this incorrect classification might be the match logic that depends

on the use of a Domain-Specific Thesaurus in the Matching library which might have

been built manually or automatically. So, using the Match logic, there are likely to be

some search forms which cannot be definitely classified for their relevant domains.

Based on the extracted labels, the Extraction Pattern Generator is used to create the

various extraction patterns needed by the Page Content Extractor for finding the valid

values of the extracted labels as done by the crawler in phase III.

The analysis of the various search forms by the Form Analyzer helps the proposed

crawler to discover the hidden web resources for each domain. Also, each search form

is stored in its respective Domain-Specific Search Interface Repository from where it

is assigned to one of the parallel form processing element by the Search Interface

Distributor in Phase V.

6.3.4. PARALLEL PROCESSING OF SEARCH FORMS

After these various Domain-Specific Databases and the search interface repositories

were created in Phase III and Phase IV, the next step of the proposed crawler is to

process in parallel, the search forms stored in each of these domain-specific

repositories. In other words, the search forms were processed in parallel within and

among domains. The search forms must be processed in parallel within and across

different domains.

The top ranked query in the Domain-Specific Database (as suggested by the query

ranker) is used to fill in all the search forms respective to that domain. Figure 6.29(a)

shows a search form from Travel domain that is processed by the query From= Delhi,

To= Mumbai and Search Flight= Round-trip as suggested by the Query Ranker.

Figure 6.29(b) shows the corresponding dynamic web page retrieved in response of

this form submission.

 159

(b)

(a)

Figure 6.29: Sample search form from travel domain that is processed and the corresponding response

page retrieved

Figure 6.30 and 6.31 shows a snapshot of the crawler’s task of filling the search forms

in parallel along different domains. Figure 6.30 shows that all the forms from the

Travel domain when processed in parallel, are filled using the same query (flights

making a round-trip from Delhi to Mumbai on the specified dates) and Figure 6.31

shows the response pages that were downloaded when the corresponding search forms

were processed.

 160

Figure 6.30: Parallel Processing of search forms in Travel domain with the query round-trip flights

from Delhi to Mumbai on specified dates.

Figure 6.31: Parallel downloading of response pages from the Hidden web databases behind the search

forms in Figure 6.30.

 161

In the same way, the search forms from all the other three domains (Auto, Books and

Food) are processed with the help of the FPEs by using the optimal queries as

suggested by the Query Ranker in each domain.

Figure 6.32: Parallel Processing of search forms in Auto domain.

Figure 6.32 shows the filled forms from the Auto domain when the search was made

for the car Honda Amaze whereas Figure 6.33 shows the downloading of response

pages in parallel when the search forms in Figure 6.32 were processed. Similarly,

search forms from other domain were also processed in parallel.

 162

Figure 6.33: Parallel downloading of response pages in Auto domain

The Query Ranker initially suggests the queries stored in the Domain-Specific

Databases based on any arbitrary ordering among them but the crawler simultaneously

keeps a record of the percentage content that has been retrieved by issuing each query.

The crawler stops issuing queries as soon as this percentage reaches approximately

hundred. The crawler next fires the queries according to the random rank predicted by

the proposed mechanism. Table 6.6 presents the results for evaluating the proposed

Random Ranking Approach in terms of a comparison between the number of queries

required in each approach i.e. the arbitrary and the proposed approach when a fixed

percentage of the contents of the hidden database has been retrieved.

 163

Table 6.6: Experimental Evaluation of the Query Ranker

%age of

database

contents

fetched

Number of queries

required

%age

Reduction

of

Queries

Arbitrary

Ordering

Proposed

random

Ranking

20 4 2 50

40 20 8 60

60 40 18 55

80 50 22 56

100 60 28 53.3

The proposed system measures the progress of the FPE based on the metric Reduction

Efficiency, R. The metric has been defined as the ratio of the number of queries that

has been cut off to the number of queries required when any arbitrary ordering among

the queries was specified.

Thus,

𝑅 =
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
 6.1

The numerator can be computed by finding the difference between the number of

queries required for arbitrary ordering and the proposed random ranking mechanism.

For example when 40% of the database content has been retrieved, the value of R can

be calculated as:

𝑅 =
20−8

20
∗ 100 =

12

20
∗ 100 = 60 6.2

As depicted from the last column of table 6.6, the proposed Random Ranking approach

cut shorts the number of queries to approximately 50% of the total queries that were

 164

needed when the queries have been raised in any arbitrary order. This nearly stable 50%

ratio has been possibly achieved by including the factor of dynamic rank which is a

query-dependent factor that predicts the behaviour of the query for the next run

according to the query size statistics generated in the immediate previous run of the

crawler.

The percentage of the obtained records (the x-axis) against the number of queries

issued (the y-axis) has been shown in Figure 6.34. The crawler initially progresses

rapidly with the increase in the number of queries justifying the target of the proposed

approach which was to choose the wise queries (based on the analysis of the response

pages) in such a way that most of the data from the database can be retrieved as early

as possible rather than retrieving the entire contents in the end.

Figure 6.34: Comparison of different Query ranking approaches

For example, for the proposed approach a point (60, 18) (see Figure 6.34) means that

the crawler was able to discover 60 % records from the database when it had issued

just 18 queries. The same amount of data has been extracted by issuing 40 queries

using the arbitrary approach earlier. Thus, the proposed algorithm is asymptotically

optimal (in terms of number of queries and database coverage) in the sense that it

retrieves the same size of Hidden web database by issuing less number of queries as

compared to any arbitrary approach for firing the queries.

The search forms from all the other domains were also processed in the similar way in

parallel. For each domain, the data in Table 6.7 shows the number of search forms

correctly submitted and processed (C); the number of search forms incorrectly

0

20

40

60

80

100

20 40 60 80 100

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

Percentage of Database Covered

Arbitrary Order

Proposed
Approach

 165

submitted and processed (I); the number of search forms that could not be submitted

and processed (N) by the proposed parallel Hidden web crawler.

After the search form were filled and submitted to the respective web servers, the web

pages that were retrieved in response were forwarded further to the Response

Analyzer. Each thread of the Response Analyzer employs an instance of the Page

content extractor (as in Phase III) that helps in maintaining and updating the various

domain-specific databases created in Phase III.

6.4. COMPARASON OF ALL DOMAINS

It may be observed from the data in the Table 6.7 that the number of search forms that

could not be processed by the system (which was 46) is approximately the same as the

number of hidden web resources that were assigned to a domain irrelevant for the

search form or hidden web resource during the process of discovering the hidden web

resources. Thus, a domain-specific database that matches the predicted domain of

relevance of the hidden web resource or the search form which is in fact different than

the actual domain of the search form, might have been used to process the search form,

making the crawler incapable of processing it.

Table 6.7: Number of Form submissions: Valid, Invalid and Failures

Domain

of search

forms

Average no. of Forms

successfully submitted &

processed Average no. of

failures in form

submission and

processing, N

Valid form

submissions

C

Invalid form

submissions

I

Food 44 15 14

Books 62 12 13

Travel 79 10 8

Auto 65 13 11

Based on the data in Table 6.7, the precision, recall and f-measure values are

computed in each of the domains for the proposed crawler. The same has been

represented by the data in table 6.8

 166

Table 6.8: Precision, Recall and F-measure values averaged over all the search forms processed in a

domain.

Domain Precision Recall F-Measure

Food 0.75 0.76 0.75

Books 0.84 0.83 0.83

Travel 0.89 0.91 0.90

Auto 0.83 0.86 0.84

Average 0.83 0.84 0.83

It may be observed from Table 6.8 and the corresponding graph in Figure 6.35 that on

an average while processing search forms in any domain, the Precision is high i.e.

ranges from 75.21% to 89.18%, range of Recall is also high i.e. from 76.66% to 91.2%

and average F-measure of is also quite high i.e. varies from 75.12% to 90.03%.

Figure 6.35: Precision, Recall and F-Measure values in each domain and average over all domains.

It may be noted that the maximum value of precision, recall and f-measure is

observed for the web search forms in travel domain. The reason behind this is the

performance of the Page Classifier and the Page Content Extractor that helps in

creating a domain-specific database that is highly accurate.

A slightly low value of Precision, Recall and F-measure is observed in the Food

domain occur due to the high number of cuisines that exist based on the geography of

the region. Moreover, the same ingredient used for different food items in cooking has

been assigned different names depending on the language used by the people in that

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Food Books Travel Auto Average

Precision

Recall

F-Measure

 167

region. However, during the experiment, it was found that the values of Precision,

Recall and F-measure for the Books, Auto and Travel domains remain fairly

consistent. Thus, the experiments conducted over all the domains indicate that the

framework proposed in this work is both consistent and efficient.

6.5. COMPARASION OF THE PROPOSED PARALLEL HIDDEN WEB

CRAWLER WITH EXISTING WEB CRAWLERS

In this work, a design of the architecture for parallel hidden web crawler has been

proposed and implemented. The experimental results show that the proposed crawler

is able to effectively crawl the Hidden Web with high accuracy.

In [45], Bergholz and Chidlovskii implemented a domain-specific crawler that starts

on the Publicly Indexable Web and detects search forms relevant to a given domain.

Their crawler shows excellent results on single-attribute search forms that support the

search of textual content residing in unstructured document databases while simply

ignoring the multi-attribute search forms for structured databases.

The hidden web crawler in [39] finds candidate assignments for submitting a search

form. The response analyzer has been used either to distinguish between pages

containing search results and pages containing error messages or to simply store the

resulting web page in a repository for supporting the user queries in future. The

response analyzer did not analyse response pages for retrieving any other useful

content that can facilitate the crawler’s act in future. Also, another challenge of their

approach lies in dealing with the form elements with infinite domain.

The authors in [46, 75] have developed domain-specific hidden web crawlers that are

capable of automatically downloading and processing the search forms but did not

consider the parallelization of the tasks in and across domains. A single search form is

being processed at a time in their work.

In comparison, the hidden web crawler proposed in this work targets to download and

process the various search forms in parallel within and across domains that enables

efficient crawling. Moreover, the proposed approach also leads to the following

advantages:

1) Each parallel instance that is responsible for processing the search forms is

dedicated to tackle the search forms from a single domain in a particular run of

the crawler. For example: the snapshot captured in Figure 6.31 shows the

parallel filling and processing of search forms from Travel domain whereas

 168

another snapshot of Figure 6.33 that was captured at the same instance shows,

the parallel processing of search forms from a different domain, Auto. This

eliminated the overhead of synchronizing the various parallel threads in

execution.

2) Minimizing the synchronization helped in minimizing the communication

bandwidth required to coordinate the parallel threads or instances.

3) Filling the search forms with only valid and wise queries as suggested by the

query ranker helps in reducing the unnecessary requests that will otherwise be

submitted to the web database server. Thus the proposed crawler obeys the

property of politeness with respect to web servers.

4) The proposed Parallel Hidden Web crawler is also scalable and extensible [90,

92].

Table 6.9 compares the proposed Parallel Hidden Web Crawler over certain

parameters with some of the existing crawlers for the Hidden Web.

Table 6.9: Comparison of proposed parallel hidden web crawler with the existing crawlers

Characteristics Deep
Web
Crawler
[39]

Hidden
Web
Crawler[45]

DSHWC[47] AKSHR[65] Proposed
Parallel Hidden
Web Crawler

Description
Processes
the form

and fills it
by using

LVS table

Analyze the
form,

classify it
and fills the

form

Downloads
the forms,

merges them
into USI and

fills it
automatically

Downloads
the form and

fills them
automatically

Downloads forms
from the WWW
& then processes
them using the
Query Ranker

Search Form

Collection Doesn’t

downloads

forms

Doesn’t

downloads

forms

Downloads

the forms

automatically

using Search

Interface

Crawler

Downloads

the forms

automatically

using Search

Interface

Crawler

Uses Form

Extractor to

download forms

Selection of

Candidate

Forms
No No No No

Yes

Uses Form

Analyzer module

for the purpose

Form Filling

Not Fully

Automatic

Not Fully

Automatic

Fully

Automatic

using

Domain-

specific Data

Repository

Fully

Automatic

using

Domain-

specific Data

Repository

Fully automated

as depends on the

automatic

creation of

Filling Resources

comprising of a

domain-Specific

Database and

Page Statistics

Repository

 169

Query

Optimization
No No No No Yes

Polite No No No No Yes

Precision Low Low High High High

Recall Low Low High High High

F-measure Low Low High High High

Extensible * * Yes Yes Yes

Scalable * * Yes Yes Yes

Network Load

Uses

Large

Band

Width

Uses Large

Band Width

Uses optimal

Band Width

(due to Batch

Mode)

Uses optimal

Band Width

(due to Batch

Mode)

Uses optimal

Bandwidth due to

the reduced

communication

between the

parallel FPEs

* not claimed.

The performance of the proposed Parallel Hidden Web Crawler, measured in term of

Precision, Recall and F-measure, is found to be higher as compared to the existing

Hidden Web Crawlers [45, 73]. The proposed Parallel Hidden Web Crawler also

makes use of optimal network bandwidth by reducing the communication between the

parallel Form Processing Elements.

 170

CHAPTER 7.

CONCLUSION & FUTURE SCOPE

7.1. CONCLUSION

An effective and efficient technique to crawl and extract the content in the Hidden

web databases has been designed and implemented in this thesis. More specifically,

the main challenges involved in developing a a parallel crawler that downloads pages

from the Hidden Web have been addressed and resolved.

As the size of the hidden web contents are very large and it would continue to grow

with the time, the main objective of this work was to resolve the problems faced by a

single process crawler for the Hidden web. Thus, during this time, crawling has been

studied at many different levels. Various crawling strategies for the Hidden Web and

parallel crawlers were studied and analyzed to build a parallel Hidden Web crawler

that tackles the following challenges:

• Scale of the Hidden Web. The tremendous size and heterogeneity of the

hidden web makes comprehensive / exhaustive coverage very difficult and

possibly less useful than domain specific crawling. Thus, in this work, a

parallel approach that provides effective coverage by following a domain-

specific approach and efficiently crawling the huge contents in the Hidden

web has been proposed and implemented in this work.

• Identification of Relevant Search Forms. As the search forms act as the only

entry point to the content residing in hidden web databases, a mechanism that

automatically discovers the relevant search forms in a domain has been

developed. A match logic has been designed for this purpose and various

domain-specific search interface repositories have been created to store the

relevant forms in each domain.

• Automatic processing of search forms: To extend the crawl beyond the

surface web, the crawler must be capable of automatically filling the search

forms. But as these forms are developed to be used by humans, automatically

submitting the form by filling with suitable values is not only diffcult rather

impossible. Therefore, a framework that helps the crawler to automatically

process the search forms has been designed. Domain-specific databases have

been created and used for storing the labels and the values needed to fill in the

search forms.

 171

• Classification of web pages: As the information on the web has been drawn

out of many sources and domains, automatically identifying the relevant

domain of the available information is a real challenge. Thus, in this work an

approach that automatically identifies the domain of web pages for their

classification has been developed. Different domain-specific page repositories

are used to store the web pages as per their domain after classification.

• Automatic Query Generation. The hidden web crawler should not only be

capable of automatically processing the search forms but also of making an

optimal choice among the candidate queries to be raised by it .In this work, the

Query Ranker that ranks the queries in the domain-specific databases to be

used by the crawler for filling the search forms has been used to suggest the

most optimal query at that time.

• Reduced Network Bandwidth: In order to minimize overlap and maintain

the quality of downloaded web pages, the coordination between individual

crawling processes needs communication that consumes network bandwidth.

Following the domain-specific approach helps the crawler in minimizing the

communication overhead and save the network bandwidth consumption while

maintaining the quality of crawling.

• Extensible and Scalable: The proposed crawler is extensible in the sense that

third party components or modules can be added as per the requirements. In

addition, the proposed crawler offers scalability in design as new modules may

be incorporated in the system as per the requirements.

The proposed parallel Hidden Web Crawler has been implemented using .NET

technology and SQL Server. For the conducted experiments, high values of Precision,

Recall and F-measure were obtained which indicates that the proposed crawler

efficiently crawls the hidden web pages. The classification of the proposed work into

different phases not only improves the performance of each phase but also renders a

modular and extensive framework to crawling.

7.2. FUTURE WORK

The work in this thesis extensively explore the problems that are faced while cawling

the Hidden Web. Some of the possible extensions and issues that could be further

explored or extended in the near future are as follows:

 172

• Designing of a Search Engine based on parallel hidden web crawler. As

the size of the hidden web contents are very large and it would continue to

grow with the time. Therefore, work can be done to design a search engine

that could be able to crawl, extract and index the content of these hidden

databases.

• Indexing the Hidden Web Pages. Search engines typically allows to search

the information to the users by maintaining large-scale inverted indexes which

are often replicated for the purposes of scalability. Hence, to reduce the cost of

operation, they must be pruned. Thus, future work can be done towards

obtaining efficiency in maintaining the index for Hidden Web in general and

searching the required information in the indexed documents in particular.

• Updating the Hidden-Web pages. The information on the Web today is

constantly evolving. Once the parallel hidden web crawler has downloaded

the information from the Hidden Web, it needs to periodically refresh its local

copy in order to enable users to search for up-to-date information. Therefore,

work can be done in this direction to crawl the Hidden Web information

incrementally.

 173

BIBLIOGRAPHY

[1] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen,

Arthur Secret. The World Wide Web in the Communications of the ACM

August 1994/ Vol. 37, No. 8, p.p 76-82.

[2] Kwong Bor Ng and Paul P. Kantor. An investigation of the preconditions for

effective data fusion in information retrieval: A pilot study, 1998.

[3] http://www.googleguide.com/google_works.html

[4] C. Manning, P. Raghavan and H. Sch¨utze Introduction to Information

Retrieval http://nlp.stanford.edu/IR-book/pdf/ chapter20-crawling.pdf

[5] Ipeirotis, P., G.; Gravano, L.; Sahami., M,: Probe, count, and classify:

Categorizing hidden-web databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 67–78, Santa Barbara,

CA, USA, May 2001.

[6] Search engines directory.

http://www.searchengineguide.com/searchengines.html.

[7] L. Gravano, P. G. Ipeirotis, and M. Sahami, “QProber: A system for automatic

classification of hidden-Web databases” , ACM TOIS, 21(1):1–41, 2003.

[8] http://www.w3.org/WWW.

[9] Arnaud Le Hors, P. Le Hagaret, L. Wood, G. Nicol, J. Robie, M.Champion, S,

Byrne. Document Object Model (DOM) Level 2 Core Specification. Technical

Report 13 November 2000. Available at http://www.w3.org/TR/DOM-Level-

2/

[10] Profusion’s search engine directory. http://www.profusion.com/nav.

[11] Sherman, C.; Price, G.: The invisible Web: Uncovering information sources

search engines can't see. CyberAge Books ,Medford, NJ: (2001)

[12] Baeza-Yates, R., ; Ribeiro-Neto, B.: Modern information retrieval (2nd ed.).

Addison-Wesley-Longman (1999).

[13] http://www.tripadvisor.com/

[14] http://www.medhunt.com/

[15] www.metacrawler.com

[16] Jayant Madhavan, J., Cohen, S., Dong, X. L., Halevy, A. Y., Jeffery, S. R., Ko,

D., and Yu, C. 2007. Web-Scale Data Integration: You can afford to Pay as

You Go. In CIDR. 342–350.

 174

[17] Menczer, F., Pant, G. and Srinivasan, P., “Topical Web Crawlers: Evaluating

Adaptive Algorithms”, ACM Transactions on Internet Technology, Vol. 4, No.

4, pp. 378–419,November 2004.

[18] Chakrabarti, S.; Berg, M.; V., Dom. B. : Focused Crawling: A New Approach

to topic-specific Web Resource Discovery. Computer Networks, 31(11-16),

pp. 1623–1640,(1999)

[19] Álvarez, Manuel, Raposo ,Juan, Pan, Alberto, Cacheda, Fidel, Bellas,

Fernando, Carneiro, Víctor, “DeepBot: a focused crawler for accessing hidden

web content”, Proceedings of the 3rd international workshop on Data

enginering issues in E-commerce and services: In conjunction with ACM

Conference on Electronic Commerce, pp. 18-25,June 2007.

[20] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano

Vigna,“ Ubicrawler: A scalable fully distributed Web crawler”, In Proceeding

of The Eighth Australian World Wide Web Conference, 2002. Or in Software

Pract. Exper., 34(8):711–726, 2004.

[21] Najork, Marc, and Allan Heydon, “High-performance web crawling”,

Technical Report 173, Compaq Systems Research Center. 2001.

[22] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused

Crawling Using Context Graphs. In Proceedings of the 26th VLDB

Conference,Cairo, Egypt, 2000, pages 527–534,.

[23] Junghoo Cho, Hector Garcia-Molina: “Parallel Crawlers”, 7–11 May 2002,

Honolulu,Hawaii, USA.

[24] A.Heydon, M.Najork. Mercator: a scalable, extensible web crawler. World

Wide Web, 2(4):219–229, December 1999

[25] M. Koster. A standard for robot exclusion.

http://www.robotstxt.org/wc/norobots.html, June 1994.

[26] The Web Robots Pages. Html author’s guide to the robots meta

tag.Http://www.robotstxt.org/wc/meta-user.html, March 2005.

[27] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world-

wide web: a survey. SIGMOD Record, 27(3):59–74, Sept. 1998.

[28] Bergman M.K..:The deep web: Surfacing hidden value. The Journal Of

Electronic Publishing 7(1) (2001).brightplanet

 175

[29] Chang K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured

databases on the web: observations and implications. SIGMOD Record,

33(3):61–70, 2004a.

[30] K. C.-C. Chang, B. He, and Z. Zhang. Metaquerier over the deepweb: Shallow

integration across holistic sources. In Proceedings of the VLDB Workshop on

Information Integration on the Web (VLDB-IIWeb’04), 2004b

[31] Krishna Bharat and Andrei Broder. A technique for Measuring the Relative

Size and Overlap of Public Web Search engines. In Proceedings of the 7th

World Wide Web Conference, Pages 379-388, Brisbane, Australia, April 14-

18, 1998.

[32] Steve Lawrence and C. Lee Giles. Searching the World Wide Web. Science

(280), Pages 98-100, April 1998.

[33] Erik W. Selberg and Oren Etzioni. Multi-service search and comparison using

the MetaCrawler. In Proceedings of the 4th International World Wide Web

Conference, Pages 195-208, Boston, MA, USA, December 1995.

[34] David Brake. Lost in Cyberspace, New Scientist, June 28, 1997.

[35] A.K.Sharma, J. P. Gupta, D. P. Agarwal, “Augment Hypertext Documents

suitable for parallel crawlers”, Proc. of WITSA-2003, a National workshop on

Information Technology Services and Applications, Feb’2003, New Delhi.

[36] A.K.Sharma , J.P.Gupta, D.P.Agarwal. PARCAHYD: An architecture of a

parallel Crawler based on Augmented Hypertext Documents. In International

Journal of Advancements in technology Vol.1, No.2 October 2010

[37] Gerard Salton , Christopher Buckley, Term-weighting approaches in automatic

text retrieval, Information Processing and Management: an International

Journal, v.24 n.5, p.513-523, 1988

[38] Lawrence, S.; Giles, C.,L.: Accessibility of information on the web. Nature,

400:107–109, 1999.

[39] Raghavan, S.;Garcia-Molina, H.: Crawling the Hidden Web. In: 27th

International Conference on Very large databases (Rome, Italy, September 11-

14, 2001) VLDB’01, 129-138, Morgan Kaufmann Publishers Inc., San

Francisco, CA

[40] Wright, A.: Searching the Deep Web. In CACM,51(10) pp. 14-15 (October

2008)

http://dl.acm.org/citation.cfm?id=54260&CFID=493328994&CFTOKEN=88687154
http://dl.acm.org/citation.cfm?id=54260&CFID=493328994&CFTOKEN=88687154
http://dl.acm.org/citation.cfm?id=54260&CFID=493328994&CFTOKEN=88687154

 176

[41] Ntoulas, A.; Zerfos, P.; Cho, J.: Downloading Textual Hidden Web Content

Through Keyword Queries. In: 5th ACM/IEEE Joint Conference on Digital

Libraries (Denver, USA, Jun 2005)JCDL05, pp. 100-109 (2005)

[42] Barbosa, L.; Freire J.: Siphoning hidden-web data through keyword-based

interfaces. In: SBBD, 2004, Brasilia, Brazil, pp. 309-321 (2004).

[43] Madhavan, J.; Ko, D.; Kot, L.; Ganapathy, V.; Rasmussen, A.; Halevy, A.:

Google’s Deep-Web Crawl. In Very large data bases VLDB endow., 1(2),

1241-1252.(2008)’

[44] Liddle, S.,W.; Embley, D,W.; Scott, D.T.; Yau, S.,H.: Extracting Data Behind

Web Forms. In: 28th VLDB Conference2002 , pp. 2-11, HongKong, China, pp.

38-49 (2002)

[45] Bergholz, A.; Chidlovskii, B.: Crawling for Domain-Specific Hidden Web

Resources. In: 4th International Conf. on Web Information Systems

Engineering pp.125-133 IEEE Press, 2003

[46] Lage, J.;Silva A.;Golgher P.;Laender, A.:Automatic generation of agents for

collecting hidden web pages for data extraction In: Data & Knowledge

Engineering IEEE 2(49) (2004)

[47] Sharma, A.,K.; Bhatia, K.,K.,: A Framework for Domain-Specific Interface

Mapper (DSIM). International . Journal of Computer. Science & Network

Security,12(8), December 2008.

[48] McCallum,A.; Nigam,K.; Rennie,J.; Seymore.K.: Building domain-specific

search engines with machine learning techniques. In Proc. of the AAAI Spring

Symposium on Intelligent Agents in Cyberspace, 1999.

[49] Chakrabarti, S.; Punera,K.; Subramanyam,M.: Accelerated focused crawling

through online relevance feedback. In Proc. of WWW, pages 148–159, 2002.

[50] Rennie, J.; McCallum, A.: Using Reinforcement Learning to Spider the Web

Efficiently. In Proc. of ICML, pages 335–343, 1999.

[51] Wang,W.; Meng, W.; Yu, C.: Concept hierarchy based text database

categorization In proc. Intern. WISE Conf., pp.283-290, China, June 2000

[52] Zhang, Z., He, B., C.-C. Chang, K.: Light-weight Domain-based Form

Assistant: Querying Web Databases On the Fly. In Proceedings of the 31st

Very Large Data Bases Conference, 2005

[53] Cope, J., Craswell, N. and Hawking, D. (2003), “Automated discovery of

search interfaces on the web”, Proceedings of the 14th Australasian Database

 177

Conference, Adelaide, pp. 181-9.Jared Cope, Nick Craswell, and David

Hawking. Automated discovery of search interfaces on the web. In

Proceedings of the 14th Australasian database conference, pages 181–189,

2003.

[54] Luciano Barbosa and Juliana Freire. Searching for hidden-web databases. In

Proceedings of WebDB’05, pages 1–6, 2005.

[55] Luciano Barbosa and Juliana Freire. An adaptive crawler for locating hidden-

web entry points. In Proceedings of the 16th international conference on

World Wide Web, pages 441–450, 2007.

[56] Luciano Barbosa and Juliana Freire. Combining classifiers to identify online

databases. In Proceedings of WWW’07, pages 431–440, 2007.

[57] Quinlan, R. (1996), “Boosting, bagging, and C4.5”, Proceedings of AAAI-96

14th National Conference on Artificial Intelligence, Portland, OR, pp. 725-30.

[58] Bergholz, A. and Chidlovskii, B. (2004), “Learning query languages of web

interfaces”, Proceedings of the 2004 ACM Symposium on Applied Computing,

Nicosia, pp. 1114-21.

[59] A. K. Sharma, Komal Kumar Bhatia: “Automated Discovery of Task

Oriented Search Interfaces through Augmented Hypertext Documents” Proc.

First International Conference on Web Engineering & Application

(ICWA2006).

[60] A. K. Sharma, Komal Kumar Bhatia. Merging Query interfaces in Domain-

Specific Hidden Web Databases accepted in International Journal of Computer

Science, 2008.

[61] A. de Carvalho Fontes and F. Soares Silva, “SmartCrawl: A New Strategy for

the Exploration of the Hidden Web”, ACM Transaction on WIDM’04,

Washington, DC, USA, November 2004.

[62] P.Ipeirotis and L. Gravano, Distributed search over the hidden web:

Hierarchical database sampling and selection," in VLDB, 2002.

[63] Manuel Álvarez, Juan Raposo, Alberto Pan, Fidel Cacheda, Fernando Bellas,

Víctor Carneiro: Crawling the Content Hidden Behind Web Forms. In

Proceedings of the 2007 International conference on Computational Science

and its applications, Published by Springer-Verlag Berlin, Heidelberg, 2007.

[64] Ping Wu, J.-R. Wen, H. Liu, and W.-Y. Ma. Query Selection Techniques for

Efficient Crawling of Structured Web Sources. In ICDE, 2006.

 178

[65] Komal kumar Bhatia, A.K.Sharma, Rosy Madaan: AKSHR: A Novel

Framework for a Domain-specfic Hidden web crawler. In Proceedings of the

first international Conference on Parallel, Distributed and Grid Computing,

2010.

[66] H. He, W. Meng, C. T. Yu and Z. Wu, "Automatic extraction of web search

interfaces for interface schema integration.," in WWW (Alternate Track

Papers & Posters), ACM, 2004, pp. 414-415.

[67] "AbeBooks Official Site - New & Used Books, New & Used Textbooks, Rare

& Out of Print Books," abebooks.com, 2012. [Online]. Available:

http://www.abebooks.com/.

[68] H. Nguyen, E. Y. Kang and J. Freire, "Automatically Extracting Form

Labels," ICDE - IEEE, pp. 1498-1500, 2008.

[69] K. C.-C. Chang, B. He and Z. Zhang, "Toward Large Scale Integration:

Building a MetaQuerier over Databases on the Web.," CIDR, pp. 44-45, 2005.

[70] M.Marin, R. Paredes,C.Bonacic.High Performance Priority Queues for Parllel

crawlers in proceedings of the ACM conference WIDM ’08 , California, USA

[71] D. H. Chau, S. Pandit, S. Wang, C.Faloutsos. Parallel crawling for online

social networks. In Proceedings of the 16th international Conference on World

Wide Web (Banff, Alberta, Canada, May 08 - 12, 2007). WWW '07. ACM,

New York, NY, 1283-1284.

[72] Shoubin Dong, Xiaofeng Lu and Ling Zhang, A Parallel Crawling Schema

Using Dynamic Partition Lecture Notes in Computer Science Volume

3036/2004, pp. 287-294.

[73] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling

through URL ordering. Computer Networks and ISDN Systems, 30(1–

7):161–172, 1998.

[74] D Cai S, Yu J wen. “Extracting Content Structure for Web Pages Based on

Visual Representation”. In the International Conferences on Asia-Pacific Web

Conference(APWeb), 2003.

[75] Golub, K. and A. Ardo (2005, September). Importance of HTML structural

elements and metadata in automated subject classification. In Proceedings of

the 9th European Conference on Research and Advanced Technology for

Digital Libraries (ECDL), Volume 3652 of LNCS, Berlin, pp. 368–378.

Springer.

 179

[76] X. Qi and B. D. Davison. “Knowing a web page by the company it keeps”. In

International conference on Information and knowledge management (CIKM),

pages 228-237, 2006.

[77] Xiaoguang Qi and Brian D. Davison “Web Page Classification: Features and

Algorithms”, Department of Computer Science & Engineering, Lehigh

University, June 2007.

[78] Bing Liu. “Web Data Mining, Exploring Hyperlinds, Contents, and Usage

Data.”Springer. 2007.

[79] Arul Prakash Asirvhatam and Kranti Kumar Ravi. "Web Page Categorization

based on Document Structure", International Institute of Information

Technology, Hyderabad, India 500019.

[80] Sini Shibu, Aishwarya Vishwakarma and Niket Bhargava, “A combination

approach for Web Page Classification using Page Rank and Feature Selection

Technique” , International Journal of Computer Theory and Engineering,

Vol.2, No.6, December, 2010

[81] Sonali Gupta, Komal Kumar Bhatia: Exploring ‘Hidden’ parts of the Web: the

Hidden Web, in 4rth International Conference on Advances in recent

technologies in communication and computing, ARTCom 2012 organized by

the Associaton of Computer Electronics and Electrical Engineers ACEEE,

proceedings in Lecture Notes in Electrical Engineering , Springer Verlag

Berlin Heidelberg 2012 p.p. 508-515. ISSN 1876-1100.

[82] Pikakashi MAnchanda, Sonali gupta, Komal Kumar Bhatia: On the automated

classification of Web pages using Artificial Neural Networks, IOSR Journal of

Computer Engineering (IOSRJCE) ISSN: 2278-0661 Volume 4, Issue 1 (Sep-

Oct. 2012), PP 20-25.

[83] Sonali Gupta, Komal Kumar Bhatia: A system’s approach towards Domain

Identification of Web pages, in Second IEEE international conference on

Parallel, distributed and Grid computing , dec 06-08, 2012 organized by

Jaypee University of Information Technology, Solan, Shimla H.P, indexed in

Scopus.

[84] Sonali Gupta, Komal Kumar Bhatia: Deep Questions in the ‘Deep or

Hidden’Web. In International Conference on Soft Computing for Problem

Solving SocPros-Dec 28-30 , 2012, Jaipur, rajasthan, proceedings by springer.,

indexed in DBLP.

 180

[85] Sonali Gupta, Komal Kumar Bhatia: Domain Identification and Classification

of Web pages using Artificial Neural Networks, in 3rd International

Conference on Advances in computing, communication and Control ICAC3,

Jan 18-19, 2013 organized by Fr. Conceicao Rodrigues College of Engg.

Mumbai, proceedings by Springer Verlag Berlin Heidelberg. Indexed in

Scopus.(pp 215-226).

[86] Sonali Gupta, Komal Kumar Bhatia: Crawl Part :Creating Crawl Partitions in

Parallel Crawlers in IEEE International Symposium on Computing and

Business Intelligence, ISCBI August- 2013, held at delhi organized by

Cambridge Institute of Technology.IEEE Xplore, Indexed in Scopus

[87] Sonali Gupta, Komal Kumar Bhatia:HiCrawl: A Hidden Web crawler for

Medical Domain in proceedings of 2013 IEEE International Symposium on

Computing and Business Intelligence, ISCBI, August18-18, 2013 Delhi ,

India .indexed in scopus

[88] Sonali Gupta, Komal Kumar Bhatia, Pikakshi Manchanda: WebParF: A Web

partitioning framework for Parallel Crawlers. In International Journal of

computer Science and Engineering (IJCSE)published by engineering journals

indexed by Google Scholar, CiteseerX, Index Copernicus , DOAJ vol.5 No.8

August 2013 pp 718-725.

[89] Sonali Gupta, Komal Kumar Bhatia: A Novel Term Weighing Scheme

(VARDF) Towards Efficient crawl of Textual Databases. In International

Journal of (IJCEA) , ISSN: 2321-3469 (Impact Factor: 2.84), Volume-IV,

Issue-I/III indexed by DBLP.

[90] Sonali Gupta, Komal Kumar Bhatia: Hidden Web Resource Discovery

through semantic understanding of Search Form interfaces in IEEE

international Conference on Advanced Computing and Communication

technologies , ICACCT-2014 proceedings by IEEE Xplore.

[91] Sonali Gupta, Komal Kumar Bhatia: A Comparative Study of Hidden Web

Crawlers in International Journal of Computer Trends and Technology (IJCTT)

– volume 12 number 3 – Jun 2014, pp 111- 118, ISSN: 2231-2803

[92] Sonali Gupta, Komal Kumar Bhatia: Optimal Processing of Search Forms for

Hidden Web Extraction through a Novel Random Ranking Mechanism,

communicated in International Journal of Information Retrieval Research

(IJIRR),

 181

[93] Meta tags, Frontware International.

[94] Daniele Riboni “Feature Selection for Web Page Classification”, Universita’

degli Studi di Milano, Italy.

[95] J. Yi and N. Sudershesan, “A classifier for semi structured documents”, In

KDD, Boston, MA USA, 2000.

[96] Wai-Chiu Wong, A. Wai.C. Fu, “Incremental Document Clustering for Web

Page Classification”, Chinese University of Hong Kong, July 2000.

[97] Gerry McGovern. "A step to step approach to web page categorization".

www.gerrymcgovern.com.

[98] H. Yu, J. Han, K.C.Chang. PEBL: positive example based learning for web

page classification using SVM. In KDD’02 : proceedings of the 8th ACM

SIGKDD international conference on Knowledge Discovery and Data mining,

pages 239-248, New York, NY, USA, 2002.

[99] Daniela XHEMALI, Christopher J. HINDE and Roger G. STONE,” Naïve

Bayes vs. Decision Trees vs. Neural Networks in the Classification of

Training Web Pages” IJCSI International Journal of Computer Science Issues,

Vol. 4, No 1, 2009.

[100] S. M. Kamruzzaman, “Web Page Categorization Using Artificial Neural

Networks”, Proceedings of the 4th International Conference on Electrical

Engineering & 2nd Annual Paper Meet 26-28 January, 2006.

[101] TheMathsWork, http://www.mathworks.com/products/neuralnet/.

[102] U. Schonfeld, Z. Bar-Yossef, I. Keidar. Do not crawl in the DUST: different

URLs with similar text. In Proceedings of the 15th International World Wide

Web Conference, pages 1015–1016, New York, NY, USA, 2006.

[103] Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach, London:

Prentice Hall, 2003

[104] MLADENIC, D. 1998. Turning Yahoo into an automatic Web-page classifier.

In Proceedings of the European Conference on Artificial Intelligence (ECAI).

473–474.

[105] Kwon, O. W. ; Lee, J.H. Web Page Classification based on k-nearest

neighbour approach. In proceedings of 5th International Workshop on

Information Retrieval with Asian Languages. ACM Press, new TOrk, NY, 9-

15, 2000

 182

[106] Kwon, O. W. ; Lee, J.H. Text Categorization based on k-nearest neighbour

approach for Web site classification. Information Process Management 29,

1(Jan.) 25-44, 2003.

[107] On the Automated Classification of Web sites, John M. Pierre, Linkoping

University Electronic Press, Sweden.

[108] Do, H.H., E. Rahm: COMA – A System for Flexible Combination of Match

Algorithms. VLDB 2002

[109] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based

approach to integrating source query interfaces on the deep web. In SIGMOD,

2004.

[110] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP:

Discovering Complex Mappings between Database Schemas. In SIGMOD,

2004.

[111] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm, Generic Schema

Matching with Cupid, VLDB 2001

[112] Jyoti Gautam, Ela Kumar, and Mehjabin KhatoonSemantic Web Improved

with IDF Feature of the TFIDF Algorithm in Proceedings of the International

MultiConference of Engineers and Computer Scientists 2014 Vol I, IMECS

2014, March 12 - 14, 2014, Hong Kong

[113] Shaikh, F. and Siddiqui, U.A. and Shahzadi, I.(2012) Semantic Web based

Intelligent Search Engine, in proc. of International Conference on Information

and Emerging Technologies, pp. 1-5..

[114] Lu, C. and Hu, X. and Park, J. (Sep. 2011) Exploiting the Social Tagging

Network for Web Clustering, (Systems, Man, and Cybernetics – Part A:

Systems and Humans), vol. 41, pp. 840-852.

[115] Jomsri,P. and Sanguansintukul, S. and Choochaiwattana, W. (2010) A

Framework for Tag-Based Research Paper Recommender System: An IR

Approach, in proc. of the 24th International Conference on Advanced

Networking and Applications Workshops, IEEE, pages 103-108.

[116] Vagelis Hristidis, Yuheng Hu, Panagiotis G. Ipeirotis:Relevance-Based

Retrieval on Hidden-Web Text Databases Without Ranking Support. IEEE

Trans. Knowl. Data Eng. 23(10): 1555-1568 (2011)

[117] www.google.com

[118] www.makemytrip.com

 183

APPENDIX A

Domain Definitions considered for the various domains of consideration:

1) Travel:

Domain-Definitions: {Tour, Travel, visit, country, hotel, street, road, local,

attraction, city, capital, metropolitan, world, nation, route, migration, price,

vacation, railway, roadway, coming, leaving, source, arrival, economy, culture,

heritage, airline, airway, reservation, age, passengers, adults, children, natural,

return, largest, Asia, Africa, America}

Clusters: {city, capital, place, state, town, area, destination};{departure,

migration}; {arrival}, {Travel, journey, trip, tour, excursion}, {visit},

{country, nation, capital, world}, {road, street, route, roadway, }, {local, area},

{vacation, leaving}, {culture, heritage}.

2) Food:

Domain-Definitions: {Fats, proteins, carbohydrates, minerals, vitamins,

calcium, food, oil, butter, heat, dry, boil, fry, steam, burger, snacks, fast food,

junk food, nutrients, nutrition, cuisine, restaurant, bake, oven, grill, microwave,

grind}

Clusters: {Fats, proteins, carbohydrates, minerals, vitamins,

calcium} ;{ burger, snacks, fast, junk, food, restaurant, grill}; {nutrients,

nutrition}; {cook, grill, cuisine, fry, steam, dry, bake, oil, butter}; {boil};

{grind};{microwave, oven}.

3) Books:

Domain-Definitions: {Author, Name, title, ISBN, price, Book, Publisher,

Edition, Subject, Table of Contents, Index, University, Literature copyright,

Higher, education, graduate, Fiction, novel, biography, writer}

Clusters: {Author, writer, name, publisher, subject, graduate}; {name, title,

book, table of contents}; {ISBN, publish, book, edition}; {book, name, subject,

index}; {education, university, higher}; {publish, copyright};{Literature,

Fiction, Novel, Biography}

 184

4) Auto:

Domain-Definitions: {vehicle, car, taxi, price, transport, Private, commercial,

wheel, machine, motor, Make, model, manufacturer, sedan, Hatchback, body;

MRF, SUV, XUV, MUV, tyre, mortgage}

Clusters: {vehicle, tyre sedan, car, hatchback, taxi, motor,

transport};{ Private, commercial, price, MRF };{ Make,

manufacturer};{ model, body};{wheel, tyre, machine, motor};

{mortgage};{SUV, XUV, MUV}

 185

APPENDIX B

Table of stopwords accounted in the research work:

is he another such if

am she must thus usually

are it all then I

the you any than The

this they not only was

that there nor also were

for here or find has

of which either up have

see it neither down had

it be each even to

with in every like above

and a but still over

by an although new so

we other once on hence

 186

BRIEF PROFILE OF THE RESEARCH SCHOLAR

Name: Ms. Sonali Gupta

Designation: Assistant Professor, Department of Computer Engineering

 YMCAUST, Faridabad

Qualification:

Research Interests:

• Internet and Web technologies

• Information Retrieval

• Data & Text Mining

Work Experience:

• Assistant Professor, Department of Computer Engineering,

YMCAUST, Faridabad (August 2009 to till date)

• August 2004 to July 2009)

• (August 2003 to July 2004)

 187

LIST OF PUBLICATIONS

List of Published Papers

S.No Title of the paper

along with volume,

Issue No, year of

publication

Publisher Impact

Factor

Referred

/ Non-

Referred

Whether

you paid

any money

or not for

publication

Remarks

1. Optimal Processing of

Search Forms for

Hidden Web Extraction

through a Novel

Random Ranking

Mechanism

Volume IV-Issue –II,

2014

International

Journal of

Information

Retrieval

Research

IGI Global

Referred

 No

Indexed

by ACM

Digital

Library,

INSPEC,

JournalTO

Cs

Bacon's

Media

Directory,

Cabell’s

Directories,

2. WebParF: A Web

partitioning framework

for Parallel Crawlers

Volume-5 Issue No.8

August 2013

International

Journal of

computer

Science and

Engineering

- Referred No Indexed

By DBLP,

Google

Scholar,

Scirus,

CiteseerX,

DOAJ

3. A Comparative Study

of Hidden Web

Crawlers

 volume 12 number 3 –

June 2014

International

Journal of

Computer

Trends and

Technology

(IJCTT)

Journal

Impact

Factor

= 2.358

Referred yes Indexed

by DBLP,

Google

Scholar,

4. A Novel Term

Weighing Scheme

(Vardf) Towards

Efficient Crawl Of

Textual Databases

 Volume-IV, Issue-I/III

International

Journal of

Computer

Engineering

&

Applications

(IJCEA)

Impact

Factor:

2.84

Referred yes Indexed

by DBLP,

Google

Scholar

5. On the automated

classification of Web

pages using Artificial

Neural Networks

Volume 4, Issue 1 ,

2012

IOSR Journal

of Computer

Engineering

(JCE)

 Referred yes Indexed

by DBLP,

Google

Scholar

 188

6. Exploring ‘Hidden’

parts of the Web: the

Hidden Web

2012

IET Conference

publications

Springer

4th Int. Conf.

on Advances

in recent

technologies

in Comm &

comp.

ARTCom

 Referred Indexed

by Scopus

7. A system’s approach

towards Domain

Identification of Web

pages

2012

Second

IEEE,

international

conference

on Parallel,

distributed

and Grid

computing

(PDGC)

 Referred Indexed

by Scopus

8. Deep Questions in the

‘Deep or Hidden’Web

Springer,

International

Conference

on Soft

Computing

for Problem

Solving

SocPros-

2012

 Referred Indexed

in DBLP

9. Domain Identification

and Classification of

Web pages using

Artificial Neural

Networks, 2013

Springer 3rd

International

Conference

on Advances

in

computing,

communicati

on and

Control

ICAC3,

 Referred Indexed

in Scopus

10. Crawl Part :Creating

Crawl Partitions in

Parallel Crawlers, 2013

IEEE

International

Symposium

Computing

and Business

Intelligence,

ISCBI

 Referred Indexed

in Scopus

11. HiCrawl: A Hidden

Web crawler for

Medical Domain

IEEE

International

Symposium

Computing

and Business

Intelligence,

ISCBI

 Referred Indexed

in Scopus

 189

12. Hidden Web Resource

Discovery through

semantic understanding

of Search Form

interfaces

IEEE

international

Conference

on Advanced

Computing

and

Communicati

on

technologies

ICACCT-

2014

 Referred Indexed

by Google

Scholar,

Research

Gate,

Academia

