
ASSESSMENT AND EVALUATION OF QUALITY

ASPECTS OF SOFTWARE SYSTEMS USING MULTI

CRITERIA DECISION APPROACH

THESIS

submitted in fulfilment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

J.C. BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY, YMCA

by

AMANDEEP KAUR

Registration No: YMCAUST/PH51/2011

under the supervision of

Dr. ASHUTOSH DIXIT Dr. P.S. GROVER

 PROFESSOR PROFESSOR

& FORMER DEAN (DU)

Department of Computer Engineering

Faculty of Engineering and Technology

J.C. Bose University of Science &Technology, YMCA

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

September, 2019

i

DECLARATION

I hereby declare that this thesis entitled “ASSESSMENT AND EVALUATION OF

QUALITY ASPECTS OF SOFTWARE SYSTEMS USING MULTI CRITERIA

DECISION APPROACH” by AMANDEEP KAUR, being submitted in fulfilment

of the requirements for the Degree of Doctor of Philosophy in Department of

Computer Engineering under Faculty of Informatics and Computing of J.C Bose

University of Science and Technology, YMCA, Faridabad, during the academic year

2019-2020, is a bona-fide record of my original work carried out under the guidance

and supervision of Dr ASHUTOSH DIXIT, PROFESSOR, DEPARTMENT OF

COMPUTER ENGINEERING, J.C BOSE UNIVERSITY OF SCIENCE AND

TECHNOLOGY, YMCA, FARIDABAD and Dr P.S. GROVER, PROFESSOR

AND FORMER HEAD/DEAN , DEPARTMENT OF COMPUTER SCIENCE,

DELHI UNIVERSITY, DELHI and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other

university.

(AMANDEEP KAUR)

Registration No: YMCAUST/PH51/2011

ii

CERTIFICATE

This is to certify that this thesis entitled “ASSESSMENT AND EVALUATION OF

QUALITY ASPECTS OF SOFTWARE SYSTEMS USING MULTI CRITERIA

DECISION APPROACH” by AMANDEEP KAUR, submitted in fulfillment of the

requirement for the award of Degree of Doctor of Philosophy in Department of

Computer Engineering, under Faculty of Informatics and Computing of J.C Bose

University of Science and Technology, YMCA, Faridabad, during the academic year

2019-2020, is a bona-fide record of work carried out under our guidance and

supervision.

We further declare that to the best of our knowledge, the thesis does not contain any

part of any work which has been submitted for the award of any degree either in this

university or in any other university.

Date:

DR. ASHUTOSH DIXIT DR. P.S. GROVER

Professor, Professor and Former Dean/Head,

Department of Computer Engineering, Department of Computer Science,

Faculty of Informatics and Computing, Delhi University,

J.C Bose University of Science and Technology,

YMCA,

Delhi

Faridabad

iii

ACKNOWLEDGEMENT

I express my gratitude to almighty WAHEGURU JI for giving me strength, positivity

and courage to complete this thesis.

I would like to express my sincere and deep gratitude to my supervisors, Dr

Ashutosh Dixit Professor, Department of Computer Engineering, J.C.Bose University

of Science & Technology, YMCA, Faridabad and Dr P.S. Grover, Professor and

Former Head/Dean, Computer Science Department, Delhi University, Delhi for

giving me the opportunity to work in this area. It would never be possible for me to

take this thesis to this level without their continuous guidance, innovative ideas,

constructive criticism and valuable advice. Their knowledge in various perspectives

of research provided me the opportunity to make significant work in this direction.

Their continuous support and encouragement keep me sailing through tough times of

my Ph.D. pursuit.

I am sincerely thankful to Dr Komal Bhatia, Chairman, Department of Computer

Engineering and Dr Atul Mishra, Chairman, Department of Information Technology

Computer Application for their constant feedback and suggestions followed by

consistent encouragement during the course of this research work. I want to express

my special thanks to Dr Naresh Chauhan for his motivation and moral support for

doing research in better way. I would like to thank all the faculty members of

Department of Computer Engineering for their constant cooperation and all time

support.

A special thanks to my grandmother Late Sdr. Mohinder Kaur for showering me with

unconditional love and encouragement throughout my education. I am sincerely

thankful to my parents S. Jagdev Singh and Sdr. Kamaljeet Kaur, and my brother S.

Japneet Singh for being there for me always and showering me their blessings and

support. I am also thankful to my brother-in-law S. Gurpreet Singh for his continuous

availability and support.

No words are sufficient to thank my better half, S. Tajinder Singh and my

sweethearts, Baby Gurnoor Kaur and Master Harvansh Singh for their understanding

with utmost patience, love and faithful support without which it would never be

possible to finish this thesis.

Thank you all!

(Amandeep Kaur)

iv

DEDICATED

to

“MY LOVING FAMILY”

for their constant support with endless patience.

v

ABSTRACT

IT world is evolving rapidly and the software development companies are trying to

carve out their places in it. Everything is getting automated and is getting software

based. With this the dependency on the software is increasing rapidly. Hence, the

responsibility of developing quality software has enhanced. Constructing high quality

software is a huge challenge. Traditionally the focus of software industry was to

provide more and more functionality in a software product. But over the last decade

this focus has been shifted on to improving quality of the software product.

Indisputably the software quality has become an indispensable subject in the field of

software engineering. Eventually, developing trustworthy software is the new focus of

software developers along with the functional software. While developing a project,

developer has to deal with a number of constraints related to functionality, quality,

cost and time. In order to meet all the constraints, new software development

methodologies keep on flooding. The range of software development approaches can

be pigeonholed into three broad genres. First, the modular programming approach,

which was introduced in 70’s, which is then followed by object oriented programming

approach in the early 90’s and thirdly aspect oriented programming approach that is

evolved on the concept of OOP approach in the later years of the 19th century.

Aspect oriented software development approach is relatively new approach for

software development that is gaining attention. AOP methodology proposes to

remove the cross-cutting and tangling problems of OOP approach by the proper

implementation of the concept called as separation of concerns. Separation of

concerns is an important concept and activity in structuring the software systems

meaningfully and can play an important role in adding the trustworthiness to the

software. Aspect-oriented programming promises to enhance the extensibility and

reusability of code through the removal of tangled and crosscutting code by the

usages of aspects and pointcuts.

Moreover as every now and then new software programming techniques are being

proposed. In order to assess, evaluate and improvise the software quality, different

vi

software quality models have been proposed by various researchers as well as

consortiums. Software metrics are a way to quantify qualitative attributes of the

software. Hence, to measure the numerous attributes of the software, various

researchers have proposed various software metrics. But AOP being a new paradigm

relatively, therefore, a lesser number of software metrics are proposed and validated

till date. To initiate the research process, Aspect Oriented Metrics proposed by the

researchers have been studied, analyzed and it’s affect on the trustworthiness and

hence on quality of the aspect oriented software is tabulated.

So, thrust of the thesis is to assess and evaluate the relevant quality aspects of the

software systems by developing a software product quality model that could

incorporate the modern-day software features.

Towards this goal, firstly various old and new software quality models are reviewed

critically and their weaknesses identified. Further, various missing but relevant

characteristics are identified on the basis of latest ISO/IEC software quality model

ISO 25010. Four characteristics are found to be essential to be part of the proposed

software quality model. Finally an improved software product quality model is

proposed to incorporate the relevant modern-day software features. The validation of

the proposed model is done using Analytical Hierarchy Process (AHP) technique of

Multi-Criteria Decision Method (MCDM).

Further, the reusability and complexity of aspect oriented systems is studied and

compared it with object oriented Systems using OO metrics. Through statistical

analysis it is found that aspect oriented systems are better as regards stability,

reusability and maintainability though at the cost of higher complexity.

The work has also put forward three unified frameworks for the quality attribute

evaluation.

Firstly, considering that determining coupling for Aspect-oriented Systems (AOSs)

would assist in the quantification of various software attributes and hence improve

quality. This paper presents a new Aspect-oriented System Coupling Metric (COAO),

which is based on the properties of elements and the relationships among them. The

vii

process of defining a metric primarily requires a clear, unambiguous definition of

basic and relevant concepts related to Aspect-Oriented Programming. As such, first

and foremost, novel definitions of basic concepts such as system, element, relation,

module and attribute are specified concerning Aspect-Oriented Programming.

Subsequently, a current metric for Aspect-Oriented System Coupling is proposed,

followed by an illustration of exemplary calculation for the proposed metric. Finally,

the proposed metric is validated theoretically against Braiand properties for coupling

of software systems. The result indicates that the proposed metric for the Aspect-

oriented System Coupling metric COAO is a valid metric for measuring coupling in

Aspect-oriented Software Systems.

Secondly, as it is considered that the computation process inclusive of the systematic

approach leads to fairly good solution with a high degree of consensus. Hence a

metric is proposed for the assessment of supportability attribute with the aid of an

exemplary real-life questionnaire. Also, a case study has been performed for the

evaluation of Supportability metric.

Thirdly, it is analyzed that there is a need for a formal framework for evaluating the

extensibility of the software. In order to design a framework for extensibility, a novel

maintainability model (proposed and validated earlier) for aspect-oriented software

systems on the lines of ISO/IEC 25010 has been used. By applying the

maintainability model, a novel framework for evaluating the extensibility

characteristic is exhibited. The proposed framework is tested for a set of aspect-based

software. Also, validation of the proposed extensibility metric is done by applying

Karl Pearson Product Moment Correlation method. Finally, a comparison is made

between software built using object-oriented approach and aspect-oriented approach.

Results suggest that software built using aspect-oriented approach is more extensible

than the one built using object-oriented approach. The proposed framework is found

to help software developers in selecting software that can be easily extensible.

viii

TABLE OF CONTENTS

Declaration i

Certificate ii

Acknowledgment iii

Dedication iv

Abstract v

Table of Contents viii

List of Tables xii

List of Figures xv

List of Abbreviations xviii

CHAPTER I: INTRODUCTION 1-16

1.1 GENERAL 1

1.2 TYPES OF PROGRAMMING 3

1.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT 4

1.3.1 Separation of Concerns 4

1.3.2 Aspect-Oriented Vs. Object-Oriented Systems 10

1.4 CHALLENGES ADDRESSED AND SOLUTIONS

PROPOSED
12

1.5 ORGANIZATION OF THESIS 14

CHAPTER II: SOFTWARE QUALITY MODELS, METRICS

AND MULTI-CRITERIA DECISION MAKING
17-68

2.1 QUALITY MODELS 17

2.1.1 McCall's Quality Model 19

2.1.2 Boehm's Quality Model 21

2.1.3 Standard ISO 9126 22

2.1.4 FURPS Quality Model 24

2.1.5 Ghezzi Quality Model 25

2.1.6 Dromey Quality Model 26

2.1.7 Standard ISO/IEC 25010 27

ix

2.2 METRICS FOR SOFTWARE SYSTEMS 35

2.2.1 Metrics for Module Oriented Systems (MOS) 35

2.2.2 Metrics for Object-Oriented Systems 36

2.2.3 Metrics for Aspect-Oriented Systems 42

2.3 AOP METRICS AND SOFTWARE QUALITY 49

2.3.1 AOP Metrics Analysis 54

2.3.2 Aspect-Oriented Quality Frameworks 56

2.4 MULTI-CRITERIA DECISION MAKING 59

2.4.1 Weighted Summation Method 60

2.4.2 Weighted Product Method 60

2.4.3 Analytical Hierarchical Process 61

2.4.4 Analytical Network Process 62

2.4.5 Interpretive Structural modelling 62

2.4.6 Technique for Order Preference by Similarity to Ideal

Solution
63

2.5 REVIEW SUMMARY 65

CHAPTER III: QUALITY MODEL FOR ASPECT-ORIENTED

SYSTEMS
69-86

3.1 INTRODUCTION 69

3.2 A NOVEL SOFTWARE QUALITY MODEL FOR ASPECT

ORIENTED SYSTEM
70

3.3 EXTENSIBILITY 73

3.3.1 Software Extensibility in Existing Quality Models 74

3.4 SCALABILITY 76

3.4.1 Software Reliability in Existing Quality Models 77

3.5 SUPPORTABILITY 79

3.5.1 Usability in Existing Quality Models 81

3.6 OPTIMIZED CODE 84

3.6.1 Performance Efficiency in Existing Quality Models 84

x

CHAPTER IV: VALIDATION OF THE PROPOSED MODEL 87-116

4.1 ANALYTICAL HIERARCHICAL PROCESS 87

4.2 SOFTWARE EXTENSIBILITY AS A SUB-

CHARACTERISTIC IN SOFTWARE MAINTAINABILITY
90

4.2.1 Validation 91

4.3 OPTIMIZED CODE AS A SUB-CHARACTERISTIC IN

PERFORMANCE EFFICIENCY
96

4.3.1 Validation 98

4.4 SCALABILITY AS SUB-CHARACTERISTIC IN

SOFTWARE RELIABILITY
102

4.4.1 Validation 104

4.5 SUPPORTABILITY AS SUB- CHARACTERISTIC IN

USABILITY
108

4.5.1 Validation 109

4.6 CHAPTER SUMMARY 114

CHAPTER V: INVESTIGATION OF REUSABILITY AND

COMPLEXITY OF AOP SYSTEMS
117-130

5.1 INTRODUCTION 117

5.2 SOFTWARE METRICS USED 118

5.3 COMPARATIVE ANALYSIS OF VARIOUS METRICS 119

5.4 METRIC ANALYSIS 126

5.4.1 Stability 127

5.4.2 Reusability 128

5.4.3 Maintainability 129

CHAPTER VI: NOVEL METRICS FOR AOP 131-156

6.1 INTRODUCTION 131

6.2 AO COUPLING METRIC 131

6.2.1 Existing aspect-oriented coupling metric 132

6.2.2 Proposed Aspect-Oriented System Coupling Metric 133

6.2.2.1 Theoretical Framework 134

6.2.2.2 New Proposed AO Coupling Metric 136

xi

6.2.2.3 Illustration 138

6.2.3 AO Coupling Metric Validation 140

6.2.3.1 Property 1- Nonnegativity 140

6.2.3.2 Property 2- Null value 141

6.2.3.3 Property 3- Monotonicity 141

6.2.3.4 Property 4- Merging of elements 141

6.2.3.5 Property 5- Disjoint element additivity 141

6.3 SUPPORTABILITY METRIC 142

6.3.1 Case Study 144

6.4 EXTENSIBILITY METRIC 146

6.4.1 Internal Factors and Metrics for Extensibility 147

6.4.2 Proposed Extensibility Metric 149

6.4.3 Case Study 149

6.4.4 Extensibility Metric Validation 153

6.4.5 Extensibility Framework Comparison for OO and AO

Software
154

CHAPTER VII: CONCLUSION AND FUTURE SCOPE 157-162

7.1 CONCLUSION 157

7.2 FUTURE SCOPE 161

REFERENCES 163-176

APPENDIX A 177-186

APPENDIX B 187-188

APPENDIX C 189-190

APPENDIX D 191-198

BRIEF PROFILE OF RESEARCH SCHOLAR 199

LIST OF PUBLICATIONS 200-201

xii

LIST OF TABLES

Table Title Page No.

Table 2.1 Security and its sub characteristics 29

Table 2.2 Compatibility and its sub-characteristics 29

Table 2.3 List of added sub characteristics under the corresponding

characteristic

30

Table 2.4 Comparison of the various software quality models concerning

quality attributes

32

Table 2.5 Various MOS features measured in terms of metrics 36

Table 2.6 Various OOS features measured in terms of CK metrics 38

Table 2.7 Various OOS features measured in terms of LK metrics 40

Table 2.8 Various OOS features measured in terms of MOOD metrics 41

Table 2.9

AOP metrics proposed by various authors with respect to aspect-

oriented features 42

Table 2.10 Relevance of the AOP metrics with the quality attributes
51

Table 3.1 Type of change concerning maintainability sub-characteristics 74

Table 3.2 Extensibility Attribute Coverage in Quality Models 75

Table 4.1 Scale of Relative Importance 88

Table 4.2 Sample Matrix for pair wise comparison 89

Table 4.3 Matrix M for weights allocation to sub-characteristics for

maintainability

92

Table 4.4 Matrix for M
2

after 1
st
 Iteration 93

Table 4.5 Matrix for row sum and eigenvector for Matrix M
2
 93

Table 4.6 Matrix for M
4

after 2
nd

 Iteration 94

Table 4.7 Matrix for row sum, eigenvector and difference for Matrix M
4
 94

Table 4.8 Matrix for M
8

after 3
rd

 Iteration 94

xiii

Table 4.9 Matrix for row sum, eigenvector and difference for M
8
 Matrix 95

Table 4.10 Matrix OC for weights allocation to characteristics 98

Table 4.11 Squaring the OC matrix 99

Table 4.12 Row sum matrix and eigenvector of the OC
2
 Matrix 99

Table 4.13 Squaring the OC
2
 Matrix 100

Table 4.14 Row sum matrix, eigenvector, and difference of the OC
4
 Matrix 100

Table 4.15 Squaring the OC
4
 Matrix 100

Table 4.16 Row sum matrix, eigenvector, and difference for the OC
8
 Matrix 100

Table 4.17 Matrix S for weights allocation to characteristics 104

Table 4.18 S
2
 Matrix after 1

st
 Iteration 104

Table 4.19 Row sum and eigenvector of the S
2
 Matrix 105

Table 4.20 S
4
 Matrix after 2

nd
 Iteration 105

Table 4.21 Row sum, eigenvector, and difference of the S
4
 Matrix 105

Table 4.22 S
8
 Matrix after 3

rd
 Iteration 106

Table 4.23 Row sum, eigenvector and difference of S
8
 Matrix 106

Table 4.24 Matrix SU for weights allocation to characteristics 110

Table 4.25 SU
2
 Matrix after 1

st
 Iteration 111

Table 4.26 Row sum and eigenvector on SU
2
 Matrix 111

Table 4.27 SU
4
 Matrix after 2

nd
 Iteration 112

Table 4.28 Row sum, eigenvector and difference using SU
4
 Matrix 112

Table 4.29 SU
8
 Matrix after 3

rd
 Iteration 113

Table 4.30 Row sum , eigenvector and difference of SU
8
 Matrix 113

Table 5.1 Mean of the Statistics collected for Spacewar (Java) and

Spacewar(AspectJ)

122

xiv

Table 5.2 Package level Statistics collected for Spacewar (Java) and

Spacewar(AspectJ)

123

Table 5.3 List metrics with respect to methods 124

Table 5.4 Metrics collected with respect to attributes 125

Table 5.5 Preference range of the metrics 127

Table 5.6 Comparative Metric Analysis 128

Table 6.1 Summary of AOP metrics and features 133

Table 6.2 Qualitative categorization of Aspect-oriented Coupling. 138

Table 6.3 Identification of a Relation, as a contributor, to Attribute or

Module Coupling

139

Table 6.4 List of Coupling Property Measures given by Briand 140

Table 6.5 Supportability Reference Table 144

Table 6.6 Project 1 Supportability metric 144

Table 6.7 Project 2 Supportability metric 145

Table 6.8 Metrics for Design Characteristics 148

Table 6.9 List of AspectJ Projects 150

Table 6.10 Extensibility of AspectJ Projects 150

Table 6.11 Correlation values for DS, CO, CC and extensibility 153

xv

LIST OF FIGURES

Figure Title Page No.

Figure 1.1 Aspect-Oriented Programming Methodology 7

Figure 1.2 Aspect Weaving in Aspect-Oriented Programming 8

Figure 1.3 Organization of Thesis 14

Figure 2.1 Classification of Literature Review 18

Figure 2.2 Mc Call Software Quality Model 20

Figure 2.3 Boehm Software Quality Model 21

Figure 2.4 ISO 9126 Software Quality Model 23

Figure 2.5 FURPS Quality Model 24

Figure 2.6 Ghezzi Quality Model 25

Figure 2.7 Dromey Quality Model 26

Figure 2.8 ISO 25010 Quality Model 28

Figure 2.9 Class Hierarchy Example 37

Figure 2.10 Attributes of Trustworthy Software 49

Figure 3.1 Hierarchical Software Quality Model 69

Figure 3.2 New Proposed Software Quality Model 71

Figure 3.3 Maintainability with the sub-characteristics 76

Figure 3.4 Reliability with the sub-characteristics 79

Figure 3.5 Supportability and its features 81

Figure 3.6 Supportability with the sub-characteristics 83

Figure 3.7 Performance Efficiency with the sub-characteristics 85

Figure 4.1 Hierarchy of Criteria and Alternatives 87

Figure 4.2 Proposed Maintainability Model 92

xvi

Figure 4.3 Rank Synthesis of Maintainability model 96

Figure 4.4 Proposed Performance efficiency model 98

Figure 4.5 Rank Synthesis of Performance Efficiency model 102

Figure 4.6 Proposed Reliability model 103

Figure 4.7 Rank Synthesis of Reliability Model 107

Figure 4.8 New Proposed Usability Model 110

Figure 4.9 Rank Synthesis of Usability Model 114

Figure 5.1 UML for Spacewar Java 120

Figure 5.2 UML for Spacewar AspectJ 121

Figure 5.3 Displays the mean values of the collected metrics for

Spacewar (AspectJ and Java)
123

Figure 5.4 Displays the package level metrics collected for Spacewar

(AspectJ and Java)
124

Figure 5.5 Displays the metrics collected with respect to methods 125

Figure 5.6 Displays the metrics collected with respect to attributes 126

Figure 6.1 Elements of AOS 134

Figure 6.2 Methodology to measure and analyze the proposed aspect-

oriented system coupling metric COAO
137

Figure 6.3 AOS Example 139

Figure 6.4 Relationship between Supportability and Quality 142

Figure 6.5 Supportability for Project1 and Project2 145

Figure 6.6 Overview of Extensibility Framework 146

Figure 6.7 Relationship of extensibility quality characteristics with

internal factors and metrics
147

Figure 6.8 Relation between Design Size and Extensibility 151

Figure 6.9 Relation between Complexity and Extensibility 151

xvii

Figure 6.10 Relation between Cohesion and Extensibility 152

Figure 6.11 Relation between Coupling and Extensibility 152

Figure 6.12 Extensibility analysis 154

xviii

LIST OF ABBREVIATIONS

AOP Aspect-Oriented Programming

MOP Modular Programming

OOP Object-Oriented Programming

AOSD Aspect-Oriented Software Development

ITD Introduction

IoT Internet of Things

AHP Analytical Hierarchical Process

MCDM Multi Criteria Decision Making

LOC Lines Of Code

CK Chidamber and Kamerer

WMC Weighted Methods per Class

RFC Response For a Class

LCOM Lack of Cohesion of Methods

CBO Coupling between object classes

DIT Depth of Inheritance Tree

NOC Number of Children

LK Lorenz and Kidd

CS Class Size

NOO Number Of Operations

NOA Number Of Added operations

SI Specialization Index

MOOD Metrics for Object-Oriented Design

MHF Method Hiding Factor

xix

AHF Attribute Hiding Factor

COF Coupling Factor

MIF Method Inheritance Factor

AIF Attribute Inheritance Factor

PF Polymorphism Factor

CAE Coupling on Advice Execution

CIM Coupling on Intercepted Module

CMC Coupling on Method Calls

CFA Coupling on Field Access

RFM Response For a Module

LCO Lack of Cohesion in Operations

CDA Crosscutting degree of an Aspect

WOM Weighted Operations in Module

DIT Depth of Inheritance Tree

NOC Number of Children

NOF Number Of Features

NOA Number Of Aspects

NCI Number of Classes and Interfaces

BCF Base Code Fraction

ACF Aspects Code Fraction

AF Advice Fraction

ACD Advice Crosscutting Degree

PHQ Program Homogeneity Quotient

CoAT Coupling on Attribute Type

xx

CoPT Coupling on Parameter Type

CoAR Coupling on Attribute Reference

CoOI Coupling on Operation Invocation

CoI Coupling on Inheritance

CoHA Coupling on High Level Association

UACoh Unified Aspect Cohesion

CMPX complexity metric of the aspect-oriented system

FURPS Functionality, Usability, Reliability, Performance and Supportability

DEQUALITE Design Enhanced Quality Evaluation

AOSQUAMO Aspect-Oriented Software Quality Model

WSM Weighted Summation Method

WPM Weighted Product Method

ANP Analytical Network Process

ISM Interpretive Structural Modelling

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

1

CHAPTER I

INTRODUCTION

1.1 GENERAL

Software is progressively becoming an essential element of business systems,

products, and services. With the significant increase in the production of the software,

the necessity of quality has become apparent. It has become critical to assure the

availability and dependability of the software. The significant issues in developing

modern-day software are the ever-increasing size and complexity of the systems

incorporated all together along with the high demands for quality. Quality of software

products has evolved to be a key component in the success of any business. Reduced

quality of the software product in delicate frameworks like responsive systems,

control systems may possibly result in financial loss, permanent damage, mission

breakdown, or even loss of human life. During software product development, the

developers have to deal with several different, and most of the time competing,

aspects of quality requirements that are related to functionality, quality, cost, and

time. Software failures cost companies a significant amount of money and cause

damage to their brand value, which in turn results in loss of jobs. Poor performance or

a lack of functionality within internal and external applications can significantly

impair the organization's ability to compete and respond to business demands in a

competitive market.

Improper application of the quality in each area of business applications results in

expenditure overruns, schedule overruns in addition to the production of wastes in the

way of rework up to nearly half of the total development time. Quality build-in

software tends to have fewer defects that saves a tremendous amount of time as well

as money. Time gets saved through testing and maintenance phases, and maintenance

costs get lowered because of the increased reliability of the quality software that

contributes appreciably towards client satisfaction; thereby leading to the lower

overall expenditure.

2

Over time, the basic definition of software quality has evolved. As per IEEE Standard

Glossary of Software Engineering Terminology, IEEE Standard 610.12-1990, term

‘Software Quality’ is defined as “the extent to which a system, component or process

meets specified requirements and customer needs” [1][2]. This definition was

redefined in the year 2010 [113], as “the capability of a software product to satisfy

needs, both which are explicitly stated as well as implied, when used under specified

conditions”[113]. The ISO/IEC/IEEE 24765; International Standard in the year 2017

superseded the previous ISO/IEC/IEEE International Standard - Systems and software

engineering – Vocabulary and defined software Quality [114] as:-

• “The capability of the software product to satisfy stated and implied needs when

used under specified conditions,

• The degree to which a software product satisfies stated and implied needs when

used under specified conditions,

• The extent to which a software product meets established requirements.“

This description of software quality envelops together the objective as well as the

subjective element of quality. However, one thought-provoking question that arises is:

‘Who is the Customer?’ The first thing that comes into the mind is External

Customers. That is, those people who are external to the organization and who receive

the end product (software) and services. Another category of customers who are often

forgotten or taken for granted is Internal Customers. These internal customers are the

personnel in the next phase of the software development lifecycle and are the takers of

the work done during the current phase of the software development [3].

It is quite apparent that quality cannot be added later into the system as an

afterthought. Instead, it needs to get built into the system from the very beginning. For

developing quality software, there is a need to create an efficient system not only in

terms of time and resources, but the efficiency of the code should also be a parameter.

That means consideration should be given to the expectations of both external

customers as well as internal customers. Besides, these days, reuse of the code is quite

frequent and plays a significant role in the design and development of software

systems as well [3].

3

Numerous techniques are proposed by renowned researchers that are required to

quantify the quality of the software as quantification plays a vital role in its

implementation. However, there cannot be one single way to measure quality in a

variety of software products as they are developed using different platforms for

numerous applications. In the absence of a single measure, there is a disparity

between measuring software quality for different types of software. Hence there are

variations in measuring and improving software quality in an embedded system

(where the prominence is on risk management), in business software (with emphasis

on cost and maintainability management) and in mobile computing (where importance

is on user-centric software application on the smartphone depends on the quality of

software across all types of software layers).

To facilitate improvement in business performance and to ensure quality maintenance;

the developers and researchers adopt the latest software development approaches

[2][4]. The subsequent section 1.2 briefs the broad categories of the types of

programming.

1.2 TYPES OF PROGRAMMING

Today’s commercial environment is changing faster than at any time in history. With

the purpose to meet all the types of requirement, various latest software development

methodologies keep on evolving with time. Standard software development

methodologies mainly comprise of module-oriented, object-oriented, and aspect-

oriented programming (AOP) methodology. Earlier the Structured programming

technique, also known as modular programming, was introduced. Modular

Programming(MOP) [2][4] is a technique of designing a software that is established

on the concept of modules. Each module has a well-defined interface; purposely

designed to accomplish typically only one function and encloses everything essential

to achieve it. This programming technique amplifies the degree to which software is

organized into separate, interchangeable components by breaking down larger

program functions into smaller modules. After modular programming, Object-

Oriented Programming (OOP) technique [2][4] came into the picture. Concept of

classes and objects forms the basis for object-oriented programming paradigm to

design computer programs and applications. Precisely objects are the data structures

4

that consist of attributes (data fields and methods) together with their interactions.

OOP technique includes features like data abstraction, encapsulation, messaging,

modularity, polymorphism, and inheritance.

Aspect-Oriented Software Development (AOSD) [5] is the modern programming

paradigm and is being deployed to design and develop software systems. AOSD is a

promising technology of software development that seeks new modularizations of

software systems intending to segregate secondary or supporting functions from the

program's primary business logic [6][7]. Quality assessment of such software systems

has been an issue of great importance. Therefore the AOSD approach has been

exercised in the thesis to assess the quality aspects of software development and

management.

Following Section 1.3 briefs the introduction of Aspect-Oriented Software

Development.

1.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT

Aspects - a new type of abstraction, forms the underlying basis of aspect-oriented

software development. In general, as soon the scalability and complexity of software

product increases, the object-oriented systems tend to suffer from two pertinent

problems: scattered and tangled code. These problems happen for the reason that an

object-oriented software product decomposes software along one dimension only

[4][5][8]. The fundamental idea behind Aspect-oriented software development is the

principle of separation of concern [5][6]. The principle of separation of concern states

that software ought to be organized in such a manner that every program element does

one thing and one thing only. By integrating the separation of concerns in software,

there is clear traceability from requirements to implementation. Below are described,

briefly, the salient features of AOSD.

1.3.1 Separation of Concerns

Concerns are the features of the software that describe its universal and variable

functionalities. Concerns are multidimensional by nature. Separation of concerns is a

5

key concept and activity while structuring the software systems meaningfully.

Broadly there are two categories of concerns.

- Core concerns

- Secondary concerns

Core concerns are the functional concerns that relate to the primary purpose of a

system. While secondary concerns are the concerns that relate to the non-functional

and Quality of Service requirements of a system. These types of non-functional

concerns spread over various non-related classes; hence, also known as crosscutting

concerns [5][6][7]. Logging, security, performance monitoring, transaction

management are a few types of concerns that are of cross-cutting nature as they are of

the system-level.

Cross-cutting concerns cause problems with both, maintainability as well as

efficiency, of the software. For instance, if one of these cross-cutting concerns needs a

change at some point in the program’s lifetime, multiple modules need to be

modified. Cross-cutting concern wreaks havoc on the maintainability of code if not

appropriately handled as they cannot be constrained easily into modular form. These

concerns tend to hamper the modularity. Implementation of cross-cutting concerns

introduces related or even duplicated code into one or more modules that leads to the

scattering and tangling of the code. Scattered and tangled code decreases the

cohesiveness and the modularity, which in turn increases the complexity of the

software. As the complexity of the code increases, the number of defects may also

tend to grow. This increase eventually indicates a decrease in the quality of software

[9][10][11].

Crosscutting concerns can be broadly categorized into two types:

- static crosscutting

- dynamic crosscutting

Static crosscutting can alter the static structure of other elements in a program. That

means it has the power to add/modify the new members in the primary abstraction or

6

convert checked exceptions into unchecked exceptions. They are implemented using

Introduction feature in AspectJ.

Dynamic crosscutting can change the behavior of the primary abstraction. Typical

examples of crosscutting concerns are security, logging, etc. These types of

crosscutting concerns are not required to be implemented separately/individually in

core functionality.

AOSD provides an organized and systematic means to modularize cross-cutting

concerns. AOP offers explicit support for program modularity instead of spreading the

code associated with a behavioral requirement or concern throughout a program.

Various aspects related to crosscutting concerns implementation can be created and

maybe weaved in the code as and when required to execute.

Aspect-oriented program is principally composed of two parts, namely

- base code

- aspect code

The base code encapsulates the primary functional concerns, and classes are used for

their implementation. The aspect code encapsulates the functionality that cross-cuts

and co-exists with the other functionality and is implemented by the use of aspects.

The aspects include the code implementing the cross-cutting concern (advice) along

with the place where it should be executed in a program (pointcut). The aspect-

oriented code eventually transformed into object-oriented code/base code with the

aspects integrated into the code by the aspect weaver [5]. Aspects are designed to

implement crosscutting concern not only easily maintainable but more reusable. Both

the base code and aspect code must run in a well-coordinated manner to achieve the

objective.

The overview of the Aspect-Oriented Programming Methodology is composed of six

foremost concepts [5][6] as depicted in the following Figure 1.1.

 Aspect

 Joinpoint

7

 Pointcut

 Advice

 Introduction (ITD)

 Weaving

Figure 1.1: Aspect-Oriented Programming Methodology

Defining functional

concerns

Aspect Oriented

Programming Methodology

Compilation

Weaving

Execution

Defining Aspects

Attaching

aspects to the

code in the form

of pointcuts

Defining

crosscutting

concerns

8

The primary concepts and terminologies introduced by Aspect-oriented software

[5][6] development are summarized as follows:

A. Aspect: It is a modular unit for the representation of crosscutting concern that

defines when, where, and how of crosscutting concern’s invocation and

implementation. It is the basic unit of modularization for the implementation of

crosscutting concerns.

B. Joinpoint: It specifies the well-defined location in the code at which cross-

cutting concern needs to be called.

C. Pointcut: On the basis of specific criteria, a set of joinpoints in the base code is

chosen by the pointcut where the crosscutting code needs to be woven.

D. Advice: It is a construct similar to the method used to define cross-cutting code.

It is the behavior executed before, after, or around the particular join point when

reached during the execution of the base code.

E. Introduction (ITD): It is used to add new variables or methods to a class and

notifies if the class implements an interface.

F. Weaving: It weaves the appropriate advice at the appropriate join point. Figure

1.2 displays the basic functioning of aspect weaving in AOP software. If the code

is woven at compile-time, then it is called Static aspect weaving. If the code is

woven at run time, then it is called Dynamic aspect weaving [6].

Figure 1.2: Aspect Weaving in Aspect-Oriented Programming

Class C

Aspect Weaver

Aspect1 Aspect 2 Aspect 3

Classes with weaved in

concerns

Class A Class B

9

Aspect-oriented programming can significantly reduce the code size of an application

by eliminating scattering and tangling in the code. Aspect-oriented programming is

expected to have a positive effect on performance, code size, modularity, and

evolution [9]. Aspect-oriented programming does not replace object-oriented

programming; rather, it enhances its ability to implement crosscutting concerns in a

clean, modular way by the use of aspects [1][2].

Aspect-oriented programming is implemented as an extension to other programming

languages like AspectC++, AspectJ or by extending libraries like SpringAOP.

AspectJ has become the de facto standard for the Aspect-oriented programming

languages. It is a simple and practical advancement of the Java programming

language that permits the usage of aspect-orientation techniques. AspectJ has a

separate set of terminology for modular implementation of crosscutting concerns

along with the terminology used in Java. Crosscutting concerns are implemented

using Joinpoint, Pointcut, Advice, and Weaving feature of AspectJ.

 AspectJ

AspectJ [111] is the most established and predominantly used representative of the

Aspect-oriented programming languages. The primary intention of AspectJ is to

provide a standardized mechanism to software developers for modularization of a

non-functional and cross-cutting concern that does not fit cleanly into a class-object

model. It is an aspect-oriented extension to an object-oriented language, Java. It

provides a separate construct for programming code called advice that is weaved into

the functional core at specific locations called join points. The advice code can be

fabricated either before or after these join points. It also provides the pointcut

construct for indicating the joinpoints where advice can be executed [6].

Since aspect-oriented and object-oriented software programming paradigms are

broadly centered on the separation of concerns related to primary and secondary

concerns; so a comparison of the two approaches is given in the next section. Also,

the application areas of aspect-oriented approach are explored alongside.

10

1.3.2 Aspect-Oriented vs Object-Oriented Systems

Currently, object-oriented software systems and aspect-oriented software systems are

the paradigms that are accessible and most potent in the software industry [5]. Object-

oriented software development is a software development which is based on the

objects. Objects are the real-world entities that are represented using classes

consisting of data fields and methods together along with their interactions. AOP’s

idea of the separation of concern ensures modularity. OOP enhances vertical

relationships in the form of inheritance but not horizontal relationships. In a well-

implemented object-oriented program, functionalities are spread all over the classes in

the system.

Traditionally the focus of the software industry was to provide more and more

functionality (core concern) in a software product. Over the last decade, the attention

of the software industry has shifted from delivering more functionality towards

improving quality as perceived by the end-users. As the focus shifted on to improving

the quality of the software product, the need for non-functional requirements

(secondary concern) has become mandatory. These concerns are generally

crosscutting and their implementation, lead to tangled and scattered code. Such code

leads to a lot of redundancy, which is not only difficult to maintain but to enhance too.

The manner in which Aspect-oriented approach handles cross-cutting concerns also

ensures quality in the final code. Cross-cutting concerns cause problems with both

maintainability and efficiency. If they are not handled properly, they make

maintainability very difficult. If one of these crosscutting concerns needs to be

changed at some point in the program’s lifetime, multiple modules need to be

modified. Moreover, cross-cutting concerns cannot be constrained easily into a

modular form. These type of concerns tend to destroy the modularity of the software.

The issues related to duplicate scattered and tangled code; decreased cohesiveness and

the modularity; increased software complexity; hence the decreased overall quality of

software; have been addressed in the aspect-oriented programming paradigm

approach [9].

11

 Applicability of AOP Approach in Modern Systems

Modern systems often require connecting existing systems that are distributed

physically through the usage of internet. Extensive and heterogeneous data of the

Internet of Storage has posed enormous storage challenges which have resulted in

making storage a significant research trend of the data management of the Internet of

Things (IoT). Data being one of the most ethical aspects of IoT are collected from

different classifications of sensors and embodies billions of objects. After receiving

the data, the processing procedure follows that encompasses the processes of

extracting specific information, cleaning, and de-duplicating. The processed data is

transmitted to the customized processing module. This customized processing module

enables users to process the data according to their own specific needs, such as

normalizing integral elements to some value or reducing the dimensions of a record to

decrease the scale of the data. It principally requires users to implement the code by

programming manually [12].

Furthermore, with the development of information technology and wireless technique,

a vast amount of data is collected via sensors used in electronic devices. This

collected data can prove to be of immense use at the real-time if processed

appropriately. However, data analysis requires hardcore coding to implement

algorithms. Agile modeling and aspect-oriented approach can prove to be an excellent

option to implement these types of module. Agile modeling helps to incorporate new

idea /option and changing requirements and design aspects whereas AO approach

enables to develop extensible programming code for such kind of environment [116].

Aspect-Oriented Programming can also pose to be a good option to implement custom

processing module in data storage management of IoT and benefited. Due to this kind

of programming technique, addition or deletion of customized functions to the module

can be done dynamically without rebuilding the original database code and restarting

the running program [12]. AOP is also suitable for current large scale dual reality

applications like smart cities and smart factories. Such smart environments produce

extensive data in real-time that needs lots of development as well as maintenance

efforts. Maintenance of such smart environments requires a plug-in mechanism that

can implement cross-cutting concern regarding changing data and services; that

supports reusability and extensibility [13].

12

The major identified literature gaps, along with the proposed solutions, are briefly

noted in the next section.

1.4 CHALLENGES ADDRESSED AND SOLUTIONS PROPOSED

A critical glance at the existing literature indicates the following issues need to be

addressed towards the building of a software quality model for aspect-oriented

systems.

 Comprehensive and comparative analysis of existing quality models and

metrics: Aspect-oriented approach is relatively a new paradigm built based on

Object-Oriented approach. It aims at reduction of the scattered and tangled code

and hence improves the quality. There is scope for comparative analysis based on

quality evaluation between Object-oriented and Aspect-oriented methodologies.

Solution: To ensure a comprehensive analysis of the existing quality models and

metrics, detailed and exhaustive literature has been reviewed concerning object-

oriented and aspect-oriented software system, and their relative comparison has

been made. Work is published in [7][17][18].

 Realistic quality model for Aspect-oriented systems: Quality model

provides the basis for specifying quality requirements and evaluating quality.

Existing Quality models are limited to software quality characteristics for

structured, i.e., Module oriented and object-oriented methodologies. There is a

need to explore and design quality models for aspect-oriented systems.

Solution: The characteristics of Aspect-oriented Methodologies related to the

quality of the software has been identified and analyzed. In this approach, a novel

quality model has been developed on the guidelines of ISO25010 (latest ISO

standard) for Aspect-oriented software systems Work published in [8].

 Validation of the proposed quality characteristics: There is a need for

validation of the proposed quality characteristics for defining an objective

measure of project quality.

13

Solution: To ascertain the accuracy and to enhance the confidence in the proposed

quality characteristics, these have been investigated and validated via multivariate

decision-making process. In this approach, the Analytical Hierarchical Process

(AHP) technique is used as it appropriately fits for the proposed hierarchical model

for the software quality. With the use of the AHP technique [19], corresponding

weights of the sub-characteristics are evaluated, and their validity is ensured. Work

published in [3][108][21] and communicated in [20].

 Development/Extension of metrics for Aspect-Oriented Systems and

validation: For the current metrics suite for Aspect-Oriented, the validation of

these metrics in real-world software development settings is limited and need to be

investigated further for a different environment. Enormous research effort has

gone into defining parameters for Object-Oriented methodology but Aspect-

Oriented methodology, being a relatively recent paradigm, is having

comparatively lesser number of measurement frameworks for evaluating quality

characteristics.

Solution: A novel set of metrics has been developed for aspect-oriented systems.

Also, the proposed metric is validated. Published in [21][22] and Communicated in

[20]

 Quantitative measurement of Quality: There is a need for measuring

various quality attributes for defining an objective measure of software product

quality in order to assist the decision making. An objective and quantitative

estimate of quality attributes is required as this help to measure the quality of the

software product.

Solution: With the aim to evaluate the proposed quality characteristics, a

framework for evaluation is defined. Using the defined framework, the sub-

characteristics of quality are evaluated. Also, a correlation is established between

the sub-characteristics and the proposed quality characteristic. Published in [21]

and communicated in [20].

14

1.5 ORGANIZATION OF THESIS

This work is divided into seven chapters. The following is an outline of the contents

of the thesis:

Figure 1.3: Organization of Thesis

15

 Chapter I: This chapter commences with the significance of the software

quality in today’s technological world. Different types of programming

methodologies are listed with a particular emphasis on Aspect-oriented

programming methodology. The elementary concepts and the architecture of the

AOSD are elaborated along with its applicability in modern systems. In the end,

the challenges involved and proposed solutions are discussed in this chapter.

 Chapter II: A comprehensive and exhaustive literature survey of selected

publications related to different existing software quality models is carried out. A

detailed description of various software metrics for the software quality attributes

in different programming methodologies has also been presented. The influence of

the AOP metrics on the trustworthiness hence on software quality is studied, and

the findings are reported in this Chapter. Also, the various techniques for solving

Multi-criteria decision problems have been identified and enumerated. Finally, the

chapter wraps up with a summary of the research gaps identified in the literature

review

 Chapter III: In this chapter, a novel software quality model for Aspect-

oriented programming methodology is proposed. In addition, the relevance of the

proposed sub-characteristics added in the newly proposed model is discussed in

detailed.

 Chapter IV: The validation of the newly added attributes under proposed

quality model using Analytical Hierarchy Process (AHP) technique of Multi-

Criteria Decision Method (MCDM) is done, and the details are provided in this

Chapter.

 Chapter V: The investigative comparison of the object-oriented program and

the aspect-oriented program made using a collection of software metrics is

highlighted in this chapter. The details of the statistical comparison of the metrics

collected and visualized are presented in this Chapter, along with the result

analysis.

 Chapter VI: This chapter presents three newly proposed metrics for the

various quality characteristics concerning aspect-oriented programming

methodology. This chapter also presents the empirical and theoretical validation of

16

the proposed metric by using the exemplary case studies or a range of AspectJ

packages accessible as an open-source in the repository of AspectJ or embedded

with the Eclipse platform.

 Chapter VII: Finally, this Chapter summarizes and concludes our

contributions and provides guidelines or directions for the future work in this area.

 The bibliography includes references to relevant publications in this research

work.

A brief survey on existing software quality models and metrics is carried out, and

their limitations are reported as identified in the following Chapter II. Besides, the

impact of AOP on software quality all along with the existing Multi-Criteria decision

making methods are discussed in Chapter II.

17

CHAPTER II

SOFTWARE QUALITY MODELS, METRICS AND

MULTI-CRITERIA DECISION MAKING

Literature has been reviewed from four perspectives as presented in Figure 2.1;

specifically, existing software quality models, the various quality metrics for the

different software programming approaches, particular emphasis on the analysis of

aspect-oriented metrics on software quality and the various available multi-criteria

decision making methodologies.

2.1 QUALITY MODELS

A software quality model is used to obtain data that help in both specification and

evaluation of software quality. Typically, software quality models form a standardized

approach to measure software product. That is, software quality models act as a base

for evaluation and are used as a means to assess the quality of the software product. It

can be used to reassure that the final software product conforms to the expected

standards. Different researchers have proposed different software quality models to

help measure the quality of software products. There have been various notable

models of software quality:-

- Mc Call Quality Model

- Boehm Quality Model

- Standard ISO 9126

- FURPS Quality Model

- Ghezzi Quality Model

- Dromey Quality Model

- Standard ISO 25010

18

Figure 2.1: Classification of Literature Review

19

2.1.1 McCall Quality Model

Jim McCall [23] identified three main perspectives for characterizing the quality

attributes of a software product, namely product revision, product transition, and

product operation. The Mc Call’s software quality model identified eleven quality

factors (or attributes) that could affect the quality of the software product. These

quality factors (or attributes) are categorized under three different categories by

keeping three main perspectives in mind.

The first perspective, product operation, is related to functional operations so that the

software corresponds to its requirement specifications given by the user.

The second perspective, product transition, is related to the adaptability so that the

software is easy to relocate to the new environments.

The third perspective, product revision, is related to change so that the software

product is able to make changes itself as per the requirement.

A set of quality criteria or the way of measurements are defined for each of the quality

factors of the three perspectives, as shown in Figure 2.2.

A quantitative measure for each quality factor (or attribute) of the software product

could be assessed by assessing its corresponding quality criteria. However, to measure

overall quality, all specific measures need to be combined by weighted summation of

each attribute [24].

20

Figure 2.2: Mc Call Software Quality Model

Limitations

The limitations in pretext to Mc Call software quality model are listed as under:

- It is challenging to use Mc Call model to set peruse and specific quality

requirements as many of the metrics can be measured only subjectively [2].

- Some of the quality factors cannot be defined or even meaningful at an early stage

for non-technical stakeholders.

- This model is not according to the criteria defined in the IEEE standard for

software quality metrics methodology for a top to bottom approach to quality

engineering.

- Additionally, this model is only specific to product perspective of quality.

Quality Criteria’s

Quality Criteria’s

21

2.1.2 Boehm Quality Model

Barry W. Boehm [25][26] defined a gradable model of software quality

characteristics, in attempting to qualitatively characterize software quality as a set of

attributes and metrics. He identified seven quality factors (or attributes) that could

affect the quality of the software product. These quality factors were categorized

according to the three primary uses of the software.

First primary use or “general utility” is related to the ease, reliable, and efficient use

of software system, termed As–is.

Second primary use or “general utility” is related to the ease of maintenance of

software so that it is easy to understand, modify, and retest the software.

Third primary use or “general utility” is related to the change in the environment of

the software.

Figure 2.3: Boehm Software Quality Model

Quality factors associated with the primary uses form the next level of Boehm's

hierarchical model [24] as listed in Figure 2.3.

Ways of measurements smartphone for each of the seven quality factors of the three

essential uses/general utility [24]. These quality factors are further broken down into

measurable properties known as primitive characteristics or constructs that may be

measured so as to evaluate the overall quality of the software.

22

Limitations

List of limitations with regards to Boehm software quality model is given as under:

- The primary focus of Boehm’s software quality model is only on maintainability.

- Also, in Boehm model, all definitions of the attributes of the software quality begin

with “Code possesses the characteristic [….]”; which makes the measurement of

quality challenging to understand for non-technical stakeholders at an early stage

of software development.

2.1.3 Standard ISO 9126

Initially, the ISO/IEC 9126 [27] is an international standard software quality model

that was presented with an idea to standardize the software quality and create a robust

framework for assessing the software. Gradually it became an essential criterion for

customers to accept the product. Later the extended version of the ISO/IEC 9126

quality model was published consisting of 1 International standard and 3 Technical

Reports. It consisted of 2 parts:

 Product Quality Model

 Quality In Use Model

The ISO quality model [27] presented in the first part of the standard, ISO/IEC 9126-

1 categorizes software quality in a structured set of characteristics and sub-

characteristics as functionality, reliability, usability, efficiency, maintainability,

portability. Each quality sub-characteristic is a result of the presence of some internal

software attribute and is externally noticeable when the software is used as a part of a

computer system. Hence, each quality sub-characteristic can be further divided into

attributes which can be verified or measured in the software product [28].

Product quality model enumerates six quality characteristics related to internal and

external quality [27][28] as displayed in Figure 2.4.

23

Figure 2.4: ISO 9126 Software Quality Model

Limitations

Various limitations related to ISO/IEC 9126 software quality model are listed as

under:

- It describes “what” characteristics should be specified, measured & evaluated, but

not “how” these characteristics are to be measured. It specifies characteristics, but

no particular metrics were given.

- Security is a vital concern, but it is just a sub-characteristic for functionality

characteristic which undervalues its importance.

- There is no sub-characteristic related to the availability of the software system that

is an essential feature for software to be reliable.

- Efficiency sub-characteristic is measured only on the basis of resource utilization

and time consumed. No emphasis is given on how optimized the code is written,

which plays a crucial role in software efficiency.

- For the software to be maintainable and portable, it has to be reversible and

extensible, whereas both these features are missing in the current ISO 9126

standard.

24

- Also, to be maintainable; traceability features also play a significant role which is

not present in the ISO 9126.

- Fundamental modularity feature is missing from the functionality characteristics.

- Usability characteristic misses the help and troubleshooting sub-characteristics,

which are imperative for a system to be usable.

2.1.4 FURPS Quality Model

Robert Grady [58] at Hewlett Packard presented a hierarchical quality model named

FURPS. FURPS is an acronym that represents the five software quality attributes,

namely Functionality, Usability, Reliability, Performance, and Supportability.

Classical FURPS quality model identified two categories of requirements.

 Functional Requirements

 Non- Functional Requirements

The Functionality (F) attribute comprises of the functional requirements that are

defined by the input and the expected output of the software while the remaining

attributes (URPS) comprises of the non- functional requirements that are defined

by the design, implementation, interface and physical requirements of the software

as displayed in Figure 2.5.

Figure 2.5: FURPS Quality Model

Functional

Requirements Non-Functional Requirements

25

Limitations

Various limitations related to FURPS quality model are enumerated as follows:

- This model is user-centric and disregards the developer’s concerns.

- It fails to take into account some of the vital characteristics of the software product

like portability, traceability, and maintainability.

2.1.5 Ghezzi Quality Model

Ghezzi Model [60] is built on the idea that the internal qualities dealing with the

structure of software can positively assist the software developers in achieving a

combined effect both in terms of external as well as internal qualities of software. The

overall qualities can be namely accuracy, flexibility, integrity, maintainability,

portability, reliability, reusability, and usability, as displayed in Figure 2.6.

Figure 2.6: Ghezzi Quality Model

26

Limitations

Various limitations related to Ghezzi quality model are enumerated as follows:

- As Ghezzi quality model deals and focuses mainly on the structure of the software,

not the functionality performed by the software hence the primary functionality

feature of the software is undervalued in this model.

- This model misses on the testability, robustness, and security attributes of the

software.

2.1.6 Dromey Quality Model

Dromey Quality model [68] is designed on the foundation of the relationships that are

present in between quality attributes and the software properties. In this model, the

emphasis lies in the evaluation of one software’s quality with another.

Figure 2.7: Dromey Quality Model

27

Dromey’s quality model is a layered model defined with two layers, as displayed in

Figure 2.7.

 High-level attributes

 Software product properties

The primary advantage of this model is that it helps to find the quality defects in

the software product developed and suggest the software properties that need to

be reviewed.

Limitations

Various limitations related to Dromey quality model are enumerated as follows:

- Foremost limitation of Dromey’s quality model is that it is short of the criteria for

measurement of the software quality.

- The model has not been validated for its correctness.

- No standard means is given to measure software product properties.

2.1.7 Standard ISO/IEC 25010

Periodically updating /revision of the software quality models is a significant process

as it improves the goodness value and relevance. Reviews include identification of the

factors that are found to be substantial as well as the features that have gradually

become irrelevant or outdated in the current scenario [29]. The ISO/International

Standard Organization and IEC (International Electrotechnical Commission)

established a joint technical committee ISO/IEC JTCI, which prepared ISO/IEC

25010 software quality standard [30]. The first edition of this standard, technically

revised the ISO/IEC 9126-1:2001 and replaced it.

This International Standard defines a software product quality model to be composed

of eight characteristics, which are further subdivided into sub-characteristics that

could be measured internally or externally. These are functional suitability, reliability,

usability, security, performance efficiency, maintainability, portability, compatibility,

as shown in Figure 2.8.

28

F
u

n
ct

io
n

a
l

S
u

it
a

b
il

it
y

F
u
n
ct

io
n
al

co

m
p

le
te

n
es

s
F

u
n
ct

io
n
al

co

rr
ec

tn
es

s
F

u
n
ct

io
n
al

ap

p
ro

p
ri

at
en

es
s

R
el

ia
b

il
it

y

M
at

u
ri

ty

F
au

lt

T
o

le
ra

n
ce

R

ec
o

v
er

ab
il

it
y

A
v
ai

la
b

il
it

y

U
sa

b
il

it
y

A

p
p

ro
p

ri
at

en
es

s
re

co
g
n
iz

ab
il

it
y

L
ea

rn

ab
il

it
y

O
p

er
ab

il
it

y

U
se

r
er

ro
r

p
ro

te
ct

io
n

U
se

r
in

te
rf

ac
e

ae
st

h
et

ic
s

A
cc

es
si

b
il

it
y

P
er

fo
rm

a
n

ce

E
ff

ic
ie

n
cy

T

im
e

B
eh

av
io

r
R

es
o

u
rc

e
U

ti
li

za
ti

o
n

C
ap

ac
it

y

M
a

in
ta

in
a

b
il

it
y

M
o

d
u
la

ri
ty

R

eu
sa

b
il

it
y

A
n
al

y
za

b
il

it
y

M
o

d
if

ia
b

il
it

y

T
es

ta
b

il
it

y

P
o

rt
a

b
il

it
y

A
d

o
p

ta
b

il
it

y

In
st

al
la

b
il

it
y

R
ep

la
ce

ab
il

it
y

S
ec

u
ri

ty

C
o

n
fi

d
en

ti
al

it
y

In
te

g
ri

ty

N
o

n
-

re
p

u
d

ia
ti

o
n

A
cc

o
u
n
ta

b
il

it
y

A
u
th

en
ti

ci
ty

C
o

m
p

a
ti

b
il

it
y

C

o
-

ex
is

te
n
ce

In

te
ro

p
er

ab
il

it
y

Figure 2.8: ISO 25010 Quality Model

29

Amendments

Several limitations of ISO/IEC 9126 were tried to be addressed in this new quality

model ISO/IEC 25010 with some amendments [30] as enumerated below:

- Revised Product Quality model specifies eight primary quality characteristics

instead of earlier six quality characteristics.

- Security, which earlier sub characteristic of functionality is promoted to stand-

alone quality characteristic, and is comprised of confidentiality, integrity, non-

repudiation, accountability, and authenticity as its sub-characteristics as shown in

Table 2.1.

Table 2.1: Security and its sub-characteristics

- Compatibility feature is added as additional quality characteristic, with Inter-

Operability and Co-existence as its sub characteristic as listed in Table 2.2. This

characteristic was not there in the previous ISO 9126 software quality standard.

Table 2.2: Compatibility and its sub-characteristics

Characteristics Sub characteristics

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Characteristics Sub characteristics

Compatibility

Inter-Operability

Co-existence

30

- Two characteristics are renamed in the new ISO25010 software quality model.

Efficiency characteristic is renamed to Performance Efficiency and Functionality

to Functional Suitability in the new model.

- List of sub-characteristics has been added under Functional Suitability,

Performance Efficiency, Usability, Reliability, and Maintainability characteristics

as enumerated in Table 2.3.

Table 2.3: List of added sub-characteristics under the corresponding

characteristic

- Further, the compliance sub-characteristics have been removed from under all

characteristics.

Although many drawbacks of ISO 9126 have been addressed in ISO 25010, still there

is the scope of improvement as few areas are left unaddressed.

Limitations

The list of constraints pertaining to ISO 25010 quality model is enumerated as under:

- Efficiency characteristic of ISO 9126, although renamed to performance efficiency

in ISO 25010, is measured only in terms of resource utilization and time consumed

along with the newly added capacity sub-characteristic. Capacity, according to ISO

25010, is the degree to which the maximum limits of a product or system

parameter meets its requirements. However, still, no weightage is given to how

efficiently the code is written and how much optimized it is.

Sub characteristic Characteristics

Functional Completeness Functional Suitability

Capacity Performance Efficiency

User error protection
Usability

Accessibility

Availability Reliability

Modularity
Maintainability

Reusability

31

- Reusability is added as a sub-characteristic to maintainability sub-characteristic, it

still misses the extensibility feature which specifies how easily code can be further

extended to added functionality/changes.

- Traceability is the main feature of maintainability, which is missing in the new ISO

25010 model too.

- Even, user-error protection and accessibility have been added as new sub-

characteristics of usability, but still, it does not includes help and troubleshooting

as a sub-characteristic which might turn to be essential for any system to be usable.

Table 2.4 summarizes and compares the various software quality models with regard

to the quality attributes that they majorly cover in their respective quality framework.

32

Table 2.4: Comparison of the various software quality models concerning quality

attributes
S

.
N

o
.

Q
u

a
li

ty

A
tt

ri
b

u
te

M
c

C
a
ll

B
o
eh

m

S
ta

n
d

a
rd

IS
O

 9
1
2
6

F
U

R
P

S

G
h

ez
zi

D
ro

m
ey

S
ta

n
d

a
rd

IS
O

 2
5
0
1
0

1 Correctness

2 Reliability

3 Efficiency

4 Integrity

5 Usability

6 Maintainability

7 Flexibility

 8 Testability

9 Portability

10 Reusability

11 Inter-Operability

12
Human

Engineering

 13 Understandability

 14 Modifiability

33

S
.
N

o
.

Q
u

a
li

ty

A
tt

ri
b

u
te

M
c

C
a
ll

B
o
eh

m

S
ta

n
d

a
rd

IS
O

 9
1
2
6

F
U

R
P

S

G
h

ez
zi

D
ro

m
ey

S
ta

n
d

a
rd

IS
O

 2
5
0
1
0

15
Device

independence

16

Self-

Containedness

 17 Functionality

18 Suitability

 19 Accuracy

 20 Security

21 Maturity

22 Fault Tolerance

23 Recoverability

24 Learnability

25 Learnability

26 Attractiveness

 27 Time Behaviour

28
Resource

Utilization

34

S
.
N

o
.

Q
u

a
li

ty

A
tt

ri
b

u
te

M
c

C
a
ll

B
o
eh

m

S
ta

n
d

a
rd

IS
O

 9
1
2
6

F
U

R
P

S

G
h

ez
zi

D
ro

m
ey

S
ta

n
d

a
rd

IS
O

 2
5
0
1
0

29 Analyzability

30 Changeability

 31 Stability

 32 Adoptability

 33 Instability

 34 Coexistence

35 Replaceability

36 Performance

37 Supportability

 38 Integrity

39 Availability

40
Appropriateness

Recognisability

41 Operability

35

2.2 METRICS FOR SOFTWARE SYSTEMS

As a general rule, software quality assurance monitors software engineering processes

and methods and hence ensures quality in software with the aid of software quality

models. Software engineer requires many Software quality models, such as

maintainability, reusability, and reliability, to augment the quality of software [2][31].

Software metrics allow for the measurement of the internal software quality attributes

and assists in the analysis, assessment, control, and improvement of software products

[32]. Software quality models and software metrics together play a crucial role in

software quality measurement. The following section aims to survey various available

metrics for the software systems.

Software metrics can be outlined as the continuous application of measurement-based

techniques to the software development process and its products to provide

meaningful and timely management information, along with the use of those

techniques to boost that process and its products.

Software engineer collects the measure and develops the metrics, hence obtain the

indicators which lead to informed decision making. By the use of metrics, we can

assess the product quality on an ongoing basis that could affectively assist in

predicting the cost of maintenance and fault rectification in the same or even similar

projects. Hence they could significantly contribute towards the overall improvement

of the software as well as the software development process [33].

There are various metrics available to measure the quality attributes depending on the

programming methodology used. They are discussed in the following section.

2.2.1 Metrics for Module-Oriented Systems (MOS)

The popular metrics for module-oriented systems [2] are as follows:

a) Lines Of Code (LOC): LOC is defined as the size of the Module Oriented System

in terms of Lines Of Code.

36

b) McCabe’s Cyclomatic Complexity: This metric measures the complexity of the

control flow graph of a method or procedure.

c) Halstead Complexity: This metric computes the complexity on the basis of the

number of operators and operands used in the source code.

The list of several module-oriented software metrics along with the respective

module-oriented features that they influence are listed in Table 2.5.

Table 2.5: Various MOS features measured in terms of metrics

The next section provides a detailed review of the prevalent metrics for object-

oriented software systems.

2.2.2 Metrics for Object-Oriented Systems

The metrics for object-oriented software systems are oriented to the characteristics of

object-oriented software like encapsulation, inheritance, polymorphism, information

hiding, massaging, localization, and object abstraction techniques. These attributes

distinguish the object-oriented software from Module oriented software [34].

A) Chidamber and Kamerer (CK) metrics suite

Chidamber and Kamerer focused on the development of metrics that could be applied

onto the classes as these are class-based metrics [35]. In object-oriented System

classes are the fundamental means to encapsulate data (attributes) and methods

Feature Metrics Used

Size LOC

Complexity Cyclomatic complexity, Halstead complexity

Maintainability
Number of procedure parameters, Cyclomatic complexity,

LOC, length of the user manual

Usability Number of error messages, Length of the user manual

Reliability Cyclomatic complexity, LOC, length of the user manual

37

(operations) into one single unit. The list of several Chidamber and Kamerer object-

oriented software metrics along with the particular object-oriented features that they

influence are enumerated in Table 2.6.

a) Weighted Methods per Class (WMC): The WMC counts the number of methods

implemented in a class or the sum of the complexities of the method (measured by

Cyclomatic complexity) and is measured using Equation 2.1.

b) Response For a Class (RFC): RFC counts the number of methods within a set

which can be executed in response to a message sent to an object. It determines the

degree of communication between the objects. As the value of RFC increases, the

testing, debugging, and the overall maintenance turn into complicated.

c) Lack of Cohesion of Methods (LCOM): LCOM measures the degree of similarity

between methods. A higher value of LCOM signifies that the class should break

down into two or more sub-classes.

d) Coupling between object classes (CBO): CBO counts the number of other classes

to which a class is coupled through its member functions. A higher value of CBO

implies excessive dependency on different classes that decrements the modular

design and obstructs its reuse. Hence, lower CBO value is desirable.

Figure 2.9: Class hierarchy example

A

B

D E

F

C

38

e) Depth of Inheritance Tree (DIT): DIT metric measures the length from the class

node to the root node (i.e., base class).The deeper the class, more influence on the

behaviour from its superclasses, hence increase in complexity. In Figure 2.9, the

DIT value is 4.

f) Number of Children (NOC): NOC metric counts the number of subclasses

immediately subordinate to a class. As the value of NOC increases, the reusability

increases. But alongside the effort required for testing also increases. Hence the

ideal value of NOC is relative. In Figure 2.9, class ‘B’ has NOC value as 2 as it has

two children, D, and E that are immediate subclasses of B.

Table 2.6: Various OOS features measured in terms of CK metrics

The objective of the WMC metric is to symbolize the complexity of the complete

software system, whereas the rest of the five metrics objective is to indicate the

complexity of a specific class. The complexity of a class is an indicator of the amount

of effort required for the implementation of testing. Hence WMC should be kept as

low as is reasonable.

B) Lorenz and Kidd(LK) metrics suite

Lorenz and Kidd [36] introduced 11 metrics and classified the object-oriented metrics

into three broad categories.

 Class Size

 Class Inheritance

 Class Internals

Feature Metric used

Encapsulation CS

Message Passing COF

Inheritance MIF, AIF

Polymorphism PF

39

a) Class Size (CS) Metrics: CS metrics are a set of six metrics based on a count of the

number of operations and the number of attributes in a particular class.

- Number of Public Methods (NPM)

- Number of Methods(NM)

- Number of Public Variables per class(NPV)

- Number of Variables per class(NV)

- Number of Class Variables(NCV)

- Number of Class Methods(NCM)

b) Class Inheritance Metrics: Class Inheritance metrics are composed of a set of three

metrics based on the number of operations that are inherited from the super-class;

the number of inherited operations that are overridden, i.e., redefined by a subclass

and the number of newly added operations added by a subclass.

- Number of Operations Inherited (NOI)

- Number of Operations Overridden (NOO)

- Number of Added Operations (NAO)

c) Class Internal Metrics: It enumerates the set of two metrics that looks at the

general characteristics of the classes.

- Average Parameter per Method (APM): APM metric measures the average

degree of parameter usage in the method. It is estimated as given in Equation 2.2.

- Specialization Index (SI): SI metric measures the degree of specialization for a

subclass. It is measured as expressed in Equation 2.3.

The list of several Lorenz and Kidd object-oriented software metrics along with the

particular object-oriented features that they influence are enumerated in Table 2.7.

40

Table 2.7: Various OOS features measured in terms of LK metrics

C) Metrics for Object-Oriented Design (MOOD) suite

Abrew et al. [115] presented the list of several object-oriented software metrics as

MOOD suite. Later these metrics were embedded in a quality model and empirically

validated too. It considered the invisibility of methods as a base for proposing two

metrics MHF and AHF. Invisibility of a method is the percentage of total classes from

which the specified method is not visible. In this, the inherited methods are not

considered.

The metrics composing the MOOD suite are as follows:

a) Method Hiding Factor (MHF): This metric is expressed as the ratio of the sum of

the invisibilities of all methods defined in all classes to the total number of

methods described in the system under consideration.

b) Attribute Hiding Factor (AHF): This metric is defined as the ratio of the sum of the

invisibilities of all attributes defined in all classes to the total number of methods

defined in the system under consideration.

c) Coupling Factor (COF): COF metric is the ratio of the actual number of couplings

not imputable to inheritance to the maximum possible number of couplings in the

system.

d) Method Inheritance Factor (MIF): MIF metric is calculated as the ratio of the sum

of the inherited methods in all classes of the system under consideration to the total

Feature Metric used

Class Class Size Metrics

Polymorphism NOO, NAO

Inheritance
Class Inheritance

Metrics and SI

41

number of available methods for all the classes. Here in this, all methods, which

are local as well as inherited are considered.

e) Attribute Inheritance Factor (AIF): AIF metric is calculated as the ratio of the sum

of the inherited attributes in all classes of the system under consideration to the

total number of available attributes (that are local as well as inherited) for all the

classes.

f) Polymorphism Factor (PF): PF metric is defined as the ratio of the actual number

of a possible different polymorphic situation for class Ci to the maximum number

of a possible distinct polymorphic situation for class Ci.

MOOD object-oriented software metrics along with the respective object-oriented

features that they influence is enumerated in Table 2.8.

Table 2.8: Various OOS features measured in terms of MOOD metrics

As these metrics are expressed in a ratio where 0% means ‘no use’ and 100% means

‘max use.’ MOOD metrics suite through experimental data analysis [34][115] is

found to be reasonably independent of size.

The discussion of the prevalent metrics for aspect-oriented software systems is

covered in the subsequent sections.

Feature Metric used

Encapsulation MHF, AHF

Message Passing COF

Inheritance MIF, AIF

Polymorphism PF

42

2.2.3 Metrics for Aspect-Oriented Systems

With the continuous increase in the dependency on the software, the need for quality

software has increased manifold. Growing awareness among the customers has

enforced the quality to be measured quantitatively. Metric measurement can be

effectively used to assess the quality of the software product and assist in timely

decision making. Software metrics are the measurement techniques that are applied to

software processes and products for measuring the quality of the software

quantitatively to get well-timed and meaningful engineering and management

information so as to improvise them. They are considered as the primary indicator of

the imperfection detection/prediction in the software process or product and further

software maintenance. It is concerned with calculating a numeric value for an

attribute for software process/product.

Table 2.9: AOP metrics proposed by various authors for aspect-oriented features

Several studies have been performed to define and assess metrics for Aspect-oriented

software systems. The studies focused on determining the effect of aspect introduction

on various primary software quality attributes such as size, complexity, cohesion, and

coupling. However, most of the defined metrics focus on specific fields, methods, or

advice [117]. An outline of software measures proposed by various authors with

respect to aspect-oriented features is given in Table 2.9.

A brief summarization of the existing metrics that have been proposed for the aspects

are as follows:

Author #Metrics Coupling Cohesion
Comple-

xity

Cross-

cutting

Inherit-

ance
Size

Zhao and Xu
10 +6

metrics

Ceccato and

Tonella

10

metrics

Roberto and

Sven Apel

10

metrics

Sant' Anna et al.
10 + 11

metrics

Kumar et al.
6 +1 +1

metrics

43

A) Zhao and Xu Metrics

Zhao and Xu [31], based on an aspect dependency graph, proposed cohesion measures

for aspect-oriented systems. The measure uses inter-module and module-attribute

dependencies. Zhao and Xu defined cohesion measures for aspect-oriented systems. It

is based on the aspect dependency graph. They presented two ways for measuring

aspect cohesion based on inter-attributes (), inter-module () and module-

attribute () dependencies. In first way, aspect cohesion for an aspect A is to be

defined and represented as 3 tuples as Equation 2.4.

Second way is of measuring aspect cohesion as a whole and is expressed as Equation

2.5:

Where k = number of attributes in aspect ‘A’ and n= number of modules in aspect

‘A’. Parameter weights of is arbitrary.

This approach suggests a sophisticated way to measure aspect cohesion that may be

problematic to use in real-world development. Moreover, the generation of such

dependency graphs is also time-consuming.

Zhao and Xu [38] also use a similar framework to define measurements for aspect

coupling. His coupling measure is defined on the number of dependencies between

aspect and classes, that is, attribute-class, module-class, module-method and aspect-

inheritance dependencies. The metric focused only on the dependencies between class

and aspect. Coupling in between aspects and in between classes are not considered

during measurement.

44

B) Ceccato and Tonella AOP Metrics

Ceccato and Tonella [39] revised the well-known Chidamber and Kemerer’s (CK)

metrics suite [35] for object-oriented and adapted or extended it to make it applicable

for Aspect-oriented. In this metric suite, four coupling metrics were proposed along

with measures for cohesion, inheritance, and the crosscutting feature of aspect-

oriented programming. They termed classes and aspects as module and methods,

advices and introductions as operation. They defined ten different AOP metrics,

namely -:

a) Coupling on Advice Execution (CAE): CAE is calculated by counting the number

of aspects containing advices which are possibly triggered by the execution of

operations in a given module.—New metric

b) Coupling on Intercepted Module (CIM): CIM is calculated by counting the number

of modules or interfaces which are explicitly named in the pointcuts belonging to a

given aspect.—New metric.

c) Coupling on Method Calls (CMC): CMC is calculated by counting a number of

modules or interfaces which have declaring methods that are possibly called by a

given module. —Derived from CBO (Coupling Between Objects) OO metric.

d) Coupling on Field Access (CFA): CFA is calculated by counting a number of

modules or interfaces which have declaring fields that are accessed by a given

module.—Derived from CBO (Coupling Between Objects) OO metric.

e) Response For a Module (RFM): RFM is calculated by counting to methods and

advices which may be potentially executed in response to a message that is

received by a given module. -- Derived from RFM (Response For a Method) OO

metric.

f) Lack of Cohesion in Operations (LCO): LCO is calculated by counting the number

of pairs of operations working on different class fields minus the number of pairs

of operations working on common fields.—Derived from LCOM(Lack of

Cohesion in Methods) OO metric

g) Crosscutting degree of an Aspect (CDA): CDA is calculated by counting the

number of modules that are affected by the pointcuts and introductions in a given

aspect.—New metric

45

h) Weighted Operations in Module (WOM): WOM is calculated by counting the

number of operations in a given module.—Derived from WOM OO metric.

i) Depth of Inheritance Tree (DIT): DIT is calculated by measuring the length of the

longest path from a given module to the class/aspect hierarchy root.—Derived

from DIT OO metric.

j) Number of Children (NOC): NOC is calculated by counting the number of

immediate sub-classes or sub-aspects of a given module.—Derived from DIT OO

metric.

However, the limitation of this set of metrics is that they were only applicable to

small-sized software (250+LOC).

Bartsch and Harrison [40] evaluated five aspect-oriented coupling metrics by

Ceccato and Tonella work, namely CAE, CIM, CFA, CMC, and CDA. It argued that

none other than CDA of them are entirely valid without changes from the

measurement theory point of view.

C) Roberto and Sven Apel Crosscutting Metrics

Roberto and Apel [41] proposed metrics that could only identify the crosscutting

relations and measure and characterize crosscutting in aspect-oriented programming.

A range of basic code metrics for measuring and characterizing crosscutting in aspect-

oriented programming is proposed. These metrics are categorizing crosscutting into

program structure metrics and feature crosscutting metrics.

The program structure metrics highlight the contribution of aspects to the overall

structure of programs that are measured in lines of code. Various Program structure

metrics are defined as follows:-

a) Number Of Features (NOF): NOF is calculated by counting the number of features

in a program.

b) Number Of Aspects (NOA): NOA is calculated by counting the number of aspects

in a program.

c) Number of Classes and Interfaces (NCI): NCI is calculated by counting the

number of classes and interfaces in a program.

46

d) Base Code Fraction (BCF): BCF is calculated by the number of lines of code that

comes from standard Java classes and interfaces relative to the lines of code in a

program.

e) Aspects Code Fraction (ACF): ACF is calculated by the number of lines of code

that come from aspects relative to the lines of code in a program.

f) Introductions Fraction (IF): IF is calculated by the number of lines of code that

come from introductions or inter-type declarations relative to the lines of code in a

program.

g) Advice Fraction (AF): AF is calculated by the number of lines of code that come

from pieces of advice relative to the lines of code in a program.

However, the feature crosscutting metrics adapt the concept of homogeneous concern

and heterogeneous concern to features and provide quantitative criteria to classify

within a spectrum that goes from homogeneous to heterogeneous according to the

number and type of crosscuts they implement.

a) Feature Crosscutting Degree (FCD): FCD is calculated by counting the number of

classes that are crosscut by all pieces of advice in a feature and by the

Introductions.

b) Advice Crosscutting Degree (ACD): ACD is calculated by counting the number of

classes that are crosscut exclusively by the pieces of advice in a feature.

c) Homogeneity Quotient (HQ): HQ is calculated by the division of the advice

crosscutting degree by the feature crosscutting degree.

d) Program Homogeneity Quotient (PHQ): PHQ is calculated by the summation of

the homogeneity quotients for all the features in a program, divided by the number

of features.

These metrics take only crosscutting relations into account which are generated by

pointcut shadows and introductions.

47

D) Sant Anna et al. Metrics

Sant Anna et al. [43] proposed a framework based on a suite of metrics and quality

model to assess the reusability and maintainability characteristics for AOSD. The

metrics suite was composed of 5 design metrics and 5 code metrics, which were based

on the separation of concerns, coupling, cohesion, and size attributes.

Sant Anna et al. [44] also proposed a concern driven measurement framework to

assess the modularity of the software architecture. The framework includes the suite

of metrics based on concerns along with the way to document the concerns in the

architecture. The metric suite was composed of 11 metrics in 4 categories, namely

complexity, coupling, cohesion, and separation of concern.

Since the obtained metric value is not normalized to a specific range, hence it is

difficult to interpret from the obtained results.

E) Kumar et al. AOP Metrics

Kumar et al. [45] studied the connections that lead to the coupling in aspect-oriented

software systems. They included HyperJ, CeaserJ, and AspectJ in their framework.

They identified 23 types of connections between the relevant elements for the

coupling measure.

Kumar et al. [47] proposed six coupling metrics for the generic aspect-oriented

systems namely Coupling on Attribute Type (CoAT), Coupling on Parameter Type

(CoPT), Coupling on Attribute Reference (CoAR), Coupling on Operation Invocation

(CoOI), Coupling on Inheritance (CoI) and Coupling on High Level Association

(CoHA).

Also, they proposed one cohesion metric [48], Unified Aspect Cohesion (UACoh)

based on connections between the members of the component. The proposed cohesion

metric is a generic and unified metric that means, the metric is applicable to most of

the AOP languages. Six different types of connections are identified that could affect

cohesion. The UACoh is defined as in Equation 2.6:

48

Where

ANC = actual number of connections,

MNC = maximum number of connections

The complexity metric of the aspect-oriented system (CMPX) [49] is also proposed.

CMPX is identified as dependent on two factors present in the component, namely

- code complexity

- interaction complexity

Code complexity of an aspect-oriented component (class / aspect) is considered to be

due to the complexity of the attributes, operations (methods / advice) and nested

components present in the component.

Interaction complexity of an aspect-oriented component (class / aspect) is considered

to be due to invocation of the operations, reference to the attribute and due to the

execution of the statements that cause an interaction between the components that is

between classes, between aspects and between class and aspect.

Kumar et al. [46] extended the work to ascertain the correlation between UACoh

value and changeability. The findings conclude that UACoh cohesion metric could

not be used as an indicator for assessing changeability of aspect-oriented software

system.

The proposed framework of metrics has not been empirically validated and has not

been applied to case study applications.

Although a lot of research effort has gone into defining metrics for Object-Oriented

methodology but Aspect-Oriented methodology, being a relatively new paradigm, is

having comparatively lesser number of extensive measurement frameworks [47][50].

The next section describes the brief summary of the prevalent Aspect-Oriented

metrics along with their influence on the quality of the software to better understand

the concept and the relevance.

49

2.3 AOP METRICS AND SOFTWARE QUALITY

Trustworthy software systems form the basis for quality software systems.

Trustworthiness is the ability of the system to produce expected results despite all

odds. It is the assurance that the trusted system will imbibe into the customers, that

despite environmental disruptions, intentional or unintentional faults or attacks, it will

perform as expected. Various characteristics are covered under trustworthiness like

correctness, security, privacy, safety, survivability, and quality of service. Each

characteristic acts as a pillar to develop trustworthy software systems. Presence of the

characteristics adds to the trustworthiness while its absence decreases the

trustworthiness. Each characteristic can have sub-attributes, which can be assessed

using corresponding software metrics [14][15].

Figure 2.10: Attributes of Trustworthy Software

Developing trustworthy software is the new focus of software developers, along with

the functional software. Software metrics are the way to quantify the qualitative

50

attributes of the software. Various researchers have proposed different software

metrics to measure the numerous attributes of the software. The aspect-oriented

software development approach is a relatively new approach for software

development that is gaining attention; hence, a few software metrics are proposed and

validated till date. Separation of concerns is an important concept and activity in

structuring the software systems meaningfully and can play an essential role in adding

the trustworthiness to the software.

Trustworthiness can be considered as a subset of software quality that adds

confidence into the customer towards the software product. Security and

dependability are regarded as the fundamental pillars to build trustworthiness. The

programming language chosen do affect these two features and ultimately on

trustworthiness and quality. The various attributes identified to influence the

trustworthiness of the software are shown in Figure 2.10. In aspect-oriented

programming, the focus is on to proper handling of scattered and tangled code and

increase the modularity using the design unit called Aspect. Safonov [16] in his book

demonstrated the typical trustworthy concerns like security checks; multithreaded

safety is implemented using Aspect-oriented programming. Accordingly, aspect-

oriented programming is an adequate tool to implement trust in the software.

To investigate, which software metrics help assess the quality of aspect-oriented

software, a systematic investigation have been conducted and hence the relationship

of the AOP metrics with quality is analyzed. Overall 65 AOP metrics based on

aspects, join points, pointcuts, introductions, etc. for aspect-oriented programming

approach have been collected and their connectivity with the overall software quality

is analyzed. Also, in the discussion of the metrics, various metrics are identified to

affect precisely complexity, extensibility, reusability, encapsulation, and

understandability of the Aspect-oriented Software.

Various Aspect-Oriented Metrics proposed by the researchers have been studied, and

its effect on the trustworthiness [17] and hence on quality of the aspect-oriented

software are inspected and enumerated in Table 2.10.

51

S
.N

o
.

A
u

th
o

r
T

it
le

#

M
et

ri
cs

M

et
ri

c
F

ea
tu

re

1

Z
h

a
o
 a

n
d

 X
u

[3
8
]

M
ea

su
ri

n
g
 C

o
u
p
li

n
g

in
 A

sp
ec

t-
O

ri
en

te
d

S
y
st

em
s

1
0
 m

et
ri

cs
 i

n
 4

ca
te

g
o
ri

es

1
.
at

tr
ib

u
te

-c
la

ss
 d

ep
en

d
en

cy

C
o
u
p
li

n
g

2
.
m

o
d
u
le

-c
la

ss
 d

ep
en

d
en

cy

(a
d
v
ic

e-
cl

as
s,

 i
n
te

rt
y
p
e-

cl
as

s,

m
et

h
o
d

-c
la

ss
,
an

d
 p

o
in

tc
u
t-

cl
as

s
d
ep

en
d

en
c
y
)

3
.
m

o
d
u
le

-m
et

h
o
d

d
ep

en
d
en

c
y
 (

ad
v
ic

e-
m

et
h
o
d
,

in
te

rt
y
p
e-

m
et

h
o
d
,
m

et
h
o

d
-

m
et

h
o
d
,
an

d
 p

o
in

tc
u
t-

m
et

h
o
d

d
ep

en
d
en

c
y
)

4
.a

sp
ec

t-
in

h
er

it
an

ce

d
ep

en
d
en

c
y

2

Z
h

a
o
 a

n
d

 X
u

[3
7
]

M
ea

su
ri

n
g
 A

sp
ec

t

C
o
h
es

io
n

6
 m

et
ri

cs
 i

n
 3

ca
te

g
o
ri

es

1
.
in

te
r-

at
tr

ib
u
te

 d
ep

en
d
en

cy

C
o
h
es

io
n

2
.
in

te
r-

m
o
d
u
le

 d
ep

en
d

en
cy

3
.
m

o
d
u
le

-a
tt

ri
b
u
te

d
ep

en
d
en

c
y
 (

ad
v
ic

e-

at
tr

ib
u
te

,
in

te
rt

y
p

e
-a

tt
ri

b
u
te

,

m
et

h
o
d

-a
tt

ri
b
u
te

,
an

d
 a

d
v
ic

e-

at
tr

ib
u
te

)

3

C
ec

ca
to

 a
n

d

T
o
n

el
la

 [
3
9
]

M
ea

su
ri

n
g
 t

h
e

E
ff

ec
ts

 o
f

S
o
ft

w
ar

e

A
sp

ec
ti

za
ti

o
n

1
0
 m

et
ri

cs

W
O

M

C
o
m

p
le

x
it

y

D
IT

,
N

O
C

In

h
er

it
an

ce

T
a
b

le
 2

.1
0
:

R
el

ev
a
n

ce
 o

f
th

e
A

O
P

 m
e
tr

ic
s

w
it

h
 t

h
e

q
u

a
li

ty
 a

tt
ri

b
u

te
s

52

C
A

E
,C

IM
,C

M
C

,C
F

A

C
o
u
p
li

n
g

R
F

M

M
es

sa
g
e

co
m

m
u
n
ic

at
io

n

L
C

O

C
o
h
es

io
n

C
D

A

C
ro

ss
cu

tt
in

g
 n

at
u
re

4

R
o
b

er
to

 a
n

d

S
v
en

 A
p

el
 e

t

a
l.

 [
4
1
]

M
ea

su
ri

n
g
 a

n
d

C
h
ar

ac
te

ri
zi

n
g

C
ro

ss
cu

tt
in

g
 i

n

A
sp

ec
t-

B
as

ed

P
ro

g
ra

m
s:

 B
as

ic

M
et

ri
cs

 a
n
d
 C

as
e

S
tu

d
ie

s

1
0
 m

et
ri

cs
 i

n
 2

ca
te

g
o
ri

es

1
.p

ro
g
ra

m
 s

tr
u
ct

u
re

 m
et

ri
cs

(N
O

F
,N

O
A

,N
C

I,
B

C
F

,A
C

F
,

IF
)

C
ro

ss
cu

tt
in

g
 n

at
u
re

2
.
fe

at
u
re

 c
ro

ss
cu

tt
in

g

m
et

ri
cs

(F
C

D
,A

C
D

,H
Q

,P
H

Q
)

5

S
a
n

t'
 A

n
n

a
 e

t

a
l.

 [
4
3
]

O
n
 t

h
e

R
eu

se
 a

n
d

M
ai

n
te

n
an

ce
 o

f

A
sp

ec
t-

O
ri

en
te

d

S
o
ft

w
ar

e:
 A

n

A
ss

es
sm

en
t

F
ra

m
ew

o
rk

1
0
 m

et
ri

cs
 i

n
 4

ca
te

g
o
ri

es

1
.
S

o
C

 m
et

ri
cs

(C
D

C
,C

D
O

,C
D

L
O

C
)

C
o
n
ce

rn

2
.
C

o
u
p
li

n
g
 m

et
ri

c

(C
B

C
,D

IT
)

C
o
u
p
li

n
g

3
.
C

o
h
es

io
n
 m

et
ri

c
(L

C
O

O
)

C
o
h
es

io
n

4
.
S

iz
e

m
et

ri
c

(V
S

,L
O

C
,N

O
A

,W
O

C
)

S
iz

e

6

S
a
n

t'
 A

n
n

a
 e

t

a
l.

[4

4
]

O
n
 t

h
e

M
o
d
u
la

ri
ty

A
ss

es
sm

en
t

o
f

S
o
ft

w
ar

e

A
rc

h
it

ec
tu

re
s:

 D
o
 m

y

ar
ch

it
ec

tu
ra

l

co
n
ce

rn
s

co
u
n
t?

1
1
 m

et
ri

cs

C
D

A
C

,C
D

A
I,

C
D

A
O

C

o
n
ce

rn

C
IB

C
,I

IB
C

,O
O

B
C

,A
C

,E
C

C

o
u
p
li

n
g

53

L
C

C

C
o
h
es

io
n

N
o
.
O

f
In

te
rf

ac
es

,
N

o
.
O

f

O
p
er

at
io

n
s

C
o
m

p
le

x
it

y

7

K
u

m
a
r

e
t

a
l.

[4
7
]

G
en

er
al

iz
ed

C
o
u
p
li

n
g
 M

ea
su

re

fo
r

A
sp

ec
t-

O
ri

en
te

d

S
y
st

em
s

6
 m

et
ri

cs

C
o
u
p
li

n
g
 o

n
 A

tt
ri

b
u
te

T
y
p
e(

C
o
A

T
),

C
o
u
p
li

n
g
 o

n
 P

ar
am

et
er

T
y
p
e(

C
o
P

T
),

 C
o
u
p
li

n
g
 o

n
 A

tt
ri

b
u
te

R
ef

er
en

ce
(C

o
A

R
),

C
o
u
p
li

n
g
 o

n
 O

p
er

at
io

n

In
v
o

ca
ti

o
n
(C

o
O

I)
,

C
o
u
p
li

n
g
 o

n

In
h

er
it

an
ce

(C
o

I)
 ,

C
o
u
p
li

n
g
 o

n
 H

ig
h
 L

ev
el

A
ss

o
ci

at
io

n
 (

C
o
H

A
)

C
o
u
p
li

n
g

8

K
u

m
a
r

e
t

a
l.

[4
8
]

U
n
if

ie
d
 C

o
h

es
io

n

M
ea

su
re

s
fo

r
A

sp
ec

t-

O
ri

en
te

d
 S

y
st

em
s

1
 m

et
ri

c
U

n
if

ie
d
 a

sp
ec

t
co

h
es

io
n

(U
A

C
o
h
)

C
o
h
es

io
n

9

K
u

m
a
r

e
t

a
l.

[4
9
]

A
 F

u
zz

y
 L

o
g
ic

A
p
p
ro

ac
h
 t

o
 M

ea
su

re

C
o
m

p
le

x
it

y
 o

f

G
en

er
ic

 A
sp

ec
t-

O
ri

en
te

d
 S

y
st

em
s

1
 m

et
ri

c

C
o
m

p
le

x
it

y
 m

et
ri

c
o
f

th
e

as
p
ec

t-
o
ri

en
te

d
 s

y
st

em

(C
M

P
X

A
O

S
)

C
o
m

p
le

x
it

y

54

2.3.1 AOP Metrics Analysis

Various metrics proposed in the literature have been analyzed to see the impact of

aspect orientation on software development metrics and explore the effect on

trustworthy characteristics and hence, quality and summarized in Table 2.10. The

term module applies to both classes & aspects as the metrics are either adapted or

extended and are applicable to both the modularisation units. Similarly, the term

operation applies to both methods of the class and advises/ introductions of the

aspect.

1) CAE (Coupling on Advice Execution):

This metric depicts the coupling between the given module and the aspect containing

advice which may alter the behavior of the operation. Higher values of CAE indicates

high coupling of the aspects with the given module and low accessibility.

2) CIM (Coupling on Intercepted Module):

This metric captures the direct knowledge an aspect has about the rest of the system.

A higher value of CIM indicates high coupling of the aspect with the application and

hence low reusability.

3) CMC (Coupling on Method Call):

This metric depicts coupling between the module and the methods from different

modules. A higher value of CMC indicates the higher dependency from the methods

of other modules to the given module. As a functionality of the given module cannot

be readily isolated from the other modules; hence, higher values lead to low

reusability.

4) CFA (Coupling on Field Access):

This metric depicts coupling between module & the fields from different modules. A

higher value of CFA indicates the higher dependency from the fields of other modules

to the given modules. As the aspect can access class fields to perform their function;

hence, higher values lead to low extensibility.

55

5) RFM (Response For a Module):

This metric depicts the potential communication between the given module and the

other modules. In AOP software, implicit responses may be generated due to pointcut

interception, increasing the complexity hence lower understandability.

6) LCO (Lack of Cohesion in Operations):

This metric depicts the cohesiveness of the operations within a given module. Lower

values of LCO indicates all the operations in a given module are sharing a standard

data structure hence promotes encapsulation.

7) CDA (Crosscutting Degree of an Aspect):

This metric depicts all the modules that may be possibly affected by an aspect. Hence

it gives the overall impact of an aspect on the other modules. Higher the value of

CDA indicates the degree of generality of an aspect therefore easily extensible.

8) WOM (Weighted Operations in a Module):

This metric depicts the internal complexity of a module in terms of a number of

implemented functions. A higher value of WOM indicates more application-specific

module, limiting the extensibility.

9) DIT (Depth of Inheritance Tree):

This metric depicts the scope of the properties of the class. More is the value of DIT

indicates deeper class/ aspect thus more complex to understand & change.

10) NOC (Number Of Children):

This metric depicts the scope of the properties of the class but in the opposite

direction. Higher the value of NOC indicates more modules potentially dependent on

the properties inherited from the given module hence increased generality, thereby

increased reusability.

11) PHQ (Program Homogeneity Questioned):

This metric is calculated by the submission of HQ (homogeneity questing). For all the

features in the program divided by a number of features as PHQ tends to value ‘1’

then it means the program is making full use of the crosscutting capabilities of advice.

While PHQ tends to value ‘0’, then it may have one of two interpretations. Firstly, the

56

majority of class pointcuts are due to ITD’s. Secondly, majority of the features have

zero pointcuts.

To analyze the current status of the research concerning Aspect-oriented based quality

model and metrics; various software quality measurement frameworks proposed on

the basis of multiple techniques are being studied in the subsequent section.

2.3.2 Aspect-Oriented Quality Frameworks

The highlighted summary of the aspect-oriented quality frameworks studied are listed

as under:

Haijun Yang et al. [84] proposed a software product quality assessment with ISO

standards based on the fuzzy logic technique. It defined the establishment of the

software quality assessment system using fuzzy measures to quantize fuzzy

characteristics and then applied the Choquet integral for synthetic evaluation. Fuzzy

measuring is used for the maintainability, reliability, and related costs of lines of code

and the function point, which is a single characteristic of software quality. The

assessment index and corresponding importance index are adjusted during the

implementation phase to make the evaluation more accurate, scientific, and realistic.

Kevin Kam et al. [85] proposed a Fuzzy Group Analytical Hierarchy Process for

evaluating the quality of software, with judgments by a group of experts at different

levels. The international standard of software quality attributes, which contains 6

criteria with 27 sub-criteria, is applied to the attributes of software quality. The

method can help various experts, including developers, testers, and purchasers, to

measure the level of the software quality for in-house development or third-party

development.

Adesh Kumar Pandey et al. [86] proposed component-based software development

using the Analytical Network Process (ANP) to solve decision problems. ANP is a

decision analysis technique that reduces the dimensionality of problems. The model is

used to calculate the numeric value of the quality of the software component in the

biometric domain.

57

Ural Erdemir et al. [87] proposed a graph-based object-oriented software quality

visualization tool called E-Quality. E-Quality automatically extracts quality metrics

and class relations from Java source code and visualizes them on a graph-based

interactive visual environment. This visual environment effectively simplifies the

comprehension and refactoring of complex software systems. This approach helps

developers in the understanding of software quality attributes by level categorization

and perceptive visualization techniques. It provides a novel visualization for

understanding software quality attributes by level categorization and an intuitive

visualization technique.

Adam Przybyłek et al. [88] described a quasi-controlled experiment that compared the

evolution of two functionally equivalent programs developed in two different

paradigms. The study aimed to explore the claim that software developed with aspect-

oriented languages is easier to maintain and reuse than software implemented with

object-oriented languages.

Ananthi Sheshasaayee et al. [89] proposed a theoretical framework to build

maintainability model for aspect-oriented systems. The framework uses a set of static

metrics to calculate the quality attributes for aspect-oriented software. Thereafter,

based on the collected metrics, an aspect-oriented maintainability model is derived.

Further, in [90], a fuzzy logic-based algorithm for software maintainability

assessment of aspect-oriented systems is proposed.

Pradeep Kumar et al. [91] proposed a fuzzy logic-based framework is proposed to

assess the reusability of aspect-oriented systems. Separation of concern (SoC),

cohesion, coupling, size, and complexity are identified as input variables in the fuzzy

model. Rules were designed based on the input variables. Reusability is estimated

based on firing some rules on the proposed fuzzy-based AO reusability system.

Puneet Jai Kaur et at [92] proposed a package level metric for aspect-oriented system

and evaluated reusability of a package. The theoretical and empirical validation of the

metric is done in [93]. Also, the impact of the package level cohesion on reusability

measure is established using a correlation method. Finally, a framework for assessing

reusability using package-level cohesion measure in the aspect-oriented system is

proposed.

58

Blaschek et al. [94] published a patent on presenting a method and device for

automatic evaluation of the quality of the software source code. The pre-set of

evaluation rules and/or metrics is used for evaluation purposes. At least one

embodiment of the pre-set is adapted in accordance with the evaluation of an

inspection performed on the source code. Adapted set of evaluation rules and/or

metrics different from the first set formed can be used to carry out a modern control of

the internal software quality.

Nir-Buchbinder et al. [95] designed a patent for cross-concern code coverage

assessment. It presented the method of software quality assessment using Meta

information analysis. During the execution of the elements, at the time of test run,

meta-information with respect to code elements may be generated, and the coverage

of these items may be evaluated. The processor extracts this Meta information and

assigns respective metrics for quality indication.

Sarkar et al. [96] issued a patent on measuring the quality of software modularization.

Modularization evaluator is presented to be used to determine the quality and/or

degree of software source code modularization. Quality of the modularization is

evaluated using structural modularity, architectural modularity, size and similarity of

purpose perspective. The amount of changes done is incorporated so that the degree of

code enhanced or damaged modularization can be tracked.

Burrows et al. [42] reviewed various AOP maintainability studies and analyzed

whether most frequently used AO coupling metrics effectively measured the attributes

regarding maintainability. This study found that coupling between components (CBC)

and depth of inheritance tree (DIT) are the most common metric which has appeared

in nearly 66% of the studies. Some studies have also used coupling metrics especially

designed for AOP like coupling on advice execution (CAE) and a number of degree

diffusion pointcuts (dPC). However, the drawback was that these metrics are only

based on outgoing coupling connections (fan-out). Various other metrics used are

response for a module (RFM), number of children (NOC), and number of indifferent

concerns (InC). It was also found that the majority of AO metrics suite (extended or

new) did not focus on interfaced complexity.

59

From the literature survey done on quality and its characteristics framework for

aspect-oriented software systems, it is identified that efforts have been made to design

frameworks for overall quality assessment, especially for maintainability, reusability,

and modularization. No framework has been designed for assessing extensibility and

supportability feature for aspect-oriented systems.

The following section provides a review of the literature on the application of the

various identified Multi-criteria decision making approaches.

2.4 MULTI-CRITERIA DECISION MAKING

Quality model, like every model, is composed of several defined characteristics.

When multiple objectives are significant to decision making, then a multi-criteria

decision making approach comes to rescue. Multi-criteria decision making is a

potential tool that is used for analyzing multifaceted problems. It has the ability to

evaluate and pick from the different available choices or alternatives, on the basis of

various decisive factors or criteria, for the probable selection of the best appropriate

choice or alternative. There are three necessary steps involved in utilizing any of the

decision making technique that involves quantitative analysis of the alternatives.

Step 1: Determine relevant criteria and alternatives.

Step 2: Calculate quantitative value to determine the relative importance of the criteria

and the impact of alternatives on these criteria.

Step 3: Assess the ranking of each alternative.

There are a number of Multi-criteria decision making techniques available in the

literature. A fine literature review reveals that specific MCDM methods are better

appropriate for certain applications while a few for some other applications. A few of

the various techniques available that work as a powerful tool to solve various

complex, multi-dimensional decision-making (MCDM) real-world problems are:

- Weighted Summation Method (WSM)

- Weighted Product Method (WPM)

60

- Analytical Hierarchical Process (AHP)

- Analytical Network Process (ANP)

- Interpretive Structural Modelling (ISM) Approach

- TOPSIS

2.4.1 Weighted Summation Method

The Weighted Sum Method [118] is one of the initial and most frequently used

methods for one-dimensional problems. For multi-dimensional problems where a

number of criteria and alternatives exist, the WSM is extended on the basis of additive

utility assumption. Accordingly, the WSM measure, as given in Equation 2.7 in order

to calculate the summated value, is evaluated for each alternative as:

Where WSMi is the Weighted Sum Measure for ‘i
th

’ alternative, m is the number of

criteria, n is the number of alternatives, wj is the weight of j
th

 criteria, xij is the score

of i
th

alternative concerning j
th

 criteria.

The total score that is a weighted sum measure of each alternative is evaluated as the

summation of the products as given in the equation. This approach is straightforward

and easy to use but only applies to the cases in which all the criteria are additive, and

their units are the same. Otherwise, the additive utility assumption is violated, and the

results are not consistent.

2.4.2 Weighted Product Method

The Weighted Product Method [119] is the modification of the Weighted Sum

Method and is considered to overcome the weakness of WSM. In this method, the

total score is evaluated by multiplication rather than addition. According to WPM, to

select from various available alternatives, each alternative is compared with the other

alternative(s) by finding the product, as shown in Equation 2.8.

61

Where , n is the number of alternatives, m is the number of criteria, aj is

the value of A
th

 alternative with respect to j
th

 criteria, bj is the value of B
th

 alternative

with respect to j
th

 criteria, and wj is the weight of j
th

criteria.

The ratio of indicates alternative A is more desirable than

alternative B if the criteria are benefiting criteria vice versa in case of cost criteria.

The best alternative is the one that is better than or at least equal to all the other

alternatives.

WPM’s mathematical structure eliminates the units of measure; hence, it is also

known as dimensionless analysis and is apt for both one as well as many dimensional

problems. Moreover, the approach uses relative values than actual values; hence,

more decisive.

2.4.3 Analytical Hierarchical Process

AHP [19][69] is a multi-criteria decision technique that is used to convert the

multidimensional problem into a single-dimensional. AHP is hierarchical and linear.

In AHP, the problems are initially decomposed into a hierarchy of criteria and

alternatives and then arranged in a hierarchical tree. The goal is on the top of the

hierarchical tree, whereas alternatives are at the lower levels. This information is then

synthesized to determine the relative ranking of alternatives. Both qualitative and

quantitative criteria can be compared using informed judgment to derive weights and

priorities. The essential feature of AHP is the use of pairwise comparisons to estimate

the weights for the criteria and to compare the alternatives with respect to those

criteria.

 Using pairwise comparison, the relative importance of one criterion over another is

expressed in a matrix as where ‘n’ is the number of alternatives. Normalized

matrix is evaluated, as shown in Equation 2.9.

62

For each element naij of the normalized matrix where aij is the element of the matrix

 which is divided by the sum of eij that is the element of the corresponding

column of matrix.

Based on the normalized matrix, the criteria weights and eigenvector are evaluated.

As proposed by Thomas L. Saaty, the Eigenvector can be used to get a ranking of

priorities from the pairwise matrix.

The AHP process provides a logical framework to determine the benefits of each

alternative. The AHP has the ability to handle more extensive problems and is ideal

for problems that compare performances among the available alternatives. Sensitivity

analysis combined with the original AHP is considered as better consistent than the

initial approach.

2.4.4 Analytical Network Process

Analytic Network Process [70] is an extension of the Analytic Hierarchy Process.

AHP being the basic building block of ANP provides the general framework to deal

with decisions without making assumptions about the independence of higher-level

elements from the lower-level elements and about the independence of the elements

within a level. ANP is the generalized form of AHP and is non-linear, unlike AHP.

There is no need to specify levels as in a hierarchy (as in AHP) since ANP uses a

network structure. ANP is a useful tool for prediction in cases of complex and

networked decision making where the criteria are interdependent. ANP is also

valuable for representing a variety of competitors with their surmised interactions and

their relative strengths to wield influence in making a decision.

2.4.5 Interpretive Structural Modelling

Interpretive Structural Modelling (ISM) [120] is a methodology that works as a

positive means to comprehend an ill-structured and complex model of the system.

ISM methodology looks for the inter-relationships between the various

organized/structured elements identified as helpful for analysis. ISM methodology

63

interprets the complex system by the systematic application of graph theory, in an

iterative manner. It results in a directed graph of a complex system for a given relative

relationship amongst a set of elements. ISM modifies unclear and poorly expressed

models of systems to evident, well-defined models that may be useful for numerous

purposes. It is a computer-assisted interactive learning process whereby organized

models are produced and studied. Structural models, therefore, made portray the

structure of a complicated issue, a system or a field of study in patterns carefully

designed utilizing graphics and words. However, ISM does not provide any

statistically validated models.

2.4.6 Technique for Order Preference by Similarity to Ideal Solution

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

methodology [121] got introduced as an alternative technique for Multi-Criteria

decision-making. Sooner it is becoming one of the preferred variants of MCDM. In

this approach, geometric distance is evaluated based on which the best alternative is

chosen. Therefore, TOPSIS approach requires the prior evaluation of positive ideal

solution (represented as A+) and negative ideal solution (represented as A-) as given

in Equation 2.10 and Equation 2.11 respectively.

Where

 criteria associated with the negative impact,

 criteria associated with the positive impact,

 n is the number of alternatives.

Where

64

 criteria associated with the negative impact,

 criteria associated with the positive impact,

 n is the number of alternatives.

The presumption is that each criterion either increases or decreases the utility,

monotonically. Hence, the Euclidean distance approach is used, in general, in TOPSIS

for analyzing the proximity of the alternatives to the ideal solution. The alternative

having the smallest geometric distance from the positive ideal solution (represented as

di+) and largest geometric distance from the negative ideal solution (represented as di-)

is considered the preferable one.

Distance from Positive Ideal Solution is computed as shown in Equation 2.12.

Where (2.12)

Distance from Negative Ideal Solution is computed using Equation 2.13.

 Where (2.13)

Finally, a similarity to the ideal solution is computed. Generally, the similarity is

calculated to negative ideal solution and represented as si- as shown in Equation 2.14.

65

The range of the similarity is that means

si-= 0 iff the alternative coincides with the negative ideal solution (as di-=0)

si+= 1 iff the alternative coincides with the positive ideal solution (as di+=0)

The ranking of the alternatives is done in the decreasing order of similarity (si-).

However, TOPSIS depends on the computation of the Euclidean distance that does

not consider the correlation of the attributes in between. Moreover, it is difficult to

compute weight hence maintain the consistency of the selection of the alternative.

The limitations and research gaps identified in the literature so forth are summarized

in the following section.

2.5 REVIEW SUMMARY

After the critical look at the available literature, the findings of the research gaps in

the literature review are as follows:-

 Need for AOP Software Quality Model:

Every novel software development methodology offers specific techniques that deal

with the limitations of the former methodologies. Consequently, it becomes

noteworthy to have a quality model in order to understand as well as to measure the

impact of a new methodology. After the thorough survey on the existing literature

concerning current software quality models, it was found that every model has its own

limitations and hence, there is a scope of improvement. Furthermore, the numbers of

quality models are very few that capture the effect of aspectization. Considering all,

the limitations of the previously available models and the prospective advantages of

aspect-oriented software development, there is a need for a quality model that

determine the overall effects on the quality attributes as the outcome of aspectization.

 Validation of the proposed AOP Software Quality Model:

The SWOT analysis of the literature review suggests that AHP is quite easy to use as

well as scalable. Besides, the hierarchy structure problem can easily be fitted into the

66

AHP approach. Moreover, the AHP technique is not data intensive. All these features

of the AHP technique make it apt for the validation of the proposed quality model.

 Comparison of AOP and OOP on the basis of metrics:

Although there are, various metrics projected by the authors, to determine the estimate

of the impact of aspect-orientation on the software development methodology.

However, relatively less work is done in the field of relative comparison between an

aspect-oriented software system and their object-oriented equivalent.

 AO System Coupling Metric:

It was identified that although metrics exist for assessing the coupling of aspect-

oriented systems, they are at the basic levels of fields, methods, classes, or are aspects

as standalone entities. Only a few metrics exist for the measurement of software

quality attributes at a higher level of abstraction in AO systems. Hence, there is a need

for one metric for complete Aspect-oriented Software System Coupling.

 Supportability Metric:

Though, software product supportability is an essential feature for improving quality.

But there is no proper way to measure the Supportability characteristic of the

software. Hence, there is a need for a metric for measuring supportability using the

obtrusive data collection approach that may be used to early diagnosis of the specific

software weakness in terms of usage easiness and the acceptance of the customer.

 Extensibility Framework:

Even if all the researchers agreed on the point that Aspect-oriented approach could

contribute positively to extending the software design and code dynamically.

However, still, there is a vacancy for a formal framework for evaluating the

extensibility of the software. Hence there is a need for formal proposal and validation

of extensibility metric for Aspect-oriented Software System. Such a framework will

help software developers in selecting software that can be easily extensible.

67

With a view to resolve the aforementioned issues and to fill in the research gaps,

various optimized solutions along with their validation are presented in the

subsequent Chapters.

Considering the various limitations identified with regards to existing quality models

as listed in this Chapter, and to incorporate the prospective advantages of aspect-

oriented software development, an enhanced software quality model is proposed by

augmenting a few new characteristics to the existing ISO25010 quality model. The

details of the proposed software quality model are presented in the next Chapter III.

68

69

CHAPTER III

QUALITY MODEL FOR ASPECT-ORIENTED SYSTEMS

3.1 INTRODUCTION

The quality of the system is the degree to which the system satisfies the stated and

implied needs of its various stakeholders, and hence provides value. These stated and

implied needs are represented through quality models. A quality model is a

hierarchical decomposition that categories the product quality into a set of

characteristics, which are further divided into sub-characteristics [45], as

demonstrated in Figure 3.1.

Figure 3.1: Hierarchical Software Quality Model

Quality of a particular characteristic can be measured by measuring quality attribute

or attributes associated with that characteristic or set of sub-characteristics that

compose the characteristic. That is, it is possible to measure directly or by

computationally combining the collection of quality attributes [30][45].

In Chapter II, the different software quality models are reviewed, and it is evident that

each of the models mentioned has its limitations. Moreover, even though a number of

quality models have been proposed for object-oriented software system but only a few

70

of them are capturing the advantages of aspect-orientation. Considering the

limitations of the previously available models, and the prospective benefits of aspect-

oriented software development, the missing characteristics that are relevant for the

modern-day software are augmented to enhance the existing ISO25010 quality model

are identified. Thereafter a novel quality model for Aspect-Oriented software quality

model on the concept of ISO 25010 is proposed. The detail discussion of the proposed

quality model framework is given in the following sections.

3.2 A NOVEL SOFTWARE QUALITY MODEL FOR ASPECT ORIENTED

SYSTEM

A lot of hard work and labor is invested in delivering a quality product. The primary

aim of any developer is to provide the product with all the three rights; that is, right

product, at the right time with the right functionalities. As every customer expects that

the best outcome is delivered to them, hence the onus to ensure that lies with the

developers and testers.

In this section, a novel software product quality model is proposed to incorporate the

modern-day software features. The proposed software quality model is inspired from

ISO/IEC 25010, which has recently replaced the ISO/IEC 9126 product quality

model. The proposed model is depicted in Figure 3.2.

Once the software is deployed, it needs to fulfill the expected level of performance. It

needs to be reliable, available, and even scalable if required. If the coding lacks these

run-time quality attributes, then it is considered as useless regardless of how proper

the coding is in terms of the user interface or features. Hence these quality attributes

are needed to be designed and coded carefully into the system to make it usable. All

these are the run time attributes of the software product or project that enhances the

confidence in the customer/end-user, which ultimately boost the software quality.

71

Figure 3.2: New Proposed Software Quality Model

72

In present times, software systems are highly complex systems that should work in

real-time. While developing software applications, building reliable systems become

difficult, but they are necessary as their failure may result in tremendous economic

cost or loss of life and even complete mission failure. Unreliable systems are liable to

be rejected by the customers as they may cause a considerable information loss.

Reliability invokes a sense of trust and has become an integral expectation by the

customer. Planned software engineering significantly reduces the risk of the

development of unreliable software system. Reliability characteristic of the system is

composed of hardware reliability and software reliability. While developing software,

the concern is on software reliability. Software Reliability, in general, is understood

as the probability that the system will continue to perform its intended functions for a

defined period of time under a specified set of the environment conditions.

Additionally, users perceive software in a way that represents its functions. Even

minute details in the user interface affect the impression of the overall software

product on the customers. One of the fundamental reasons for the aversion among

users of the interactive software is it being unfriendly, sophisticated, and low-quality

user-interfaces. Software with poor user interface design not only waste the time of its

users but also disappoints them and adds to their frustration. Incorporating affable

‘ease of use’ in software is a tedious task in itself. Ideally, the source code should be

written in a manner that reduces the effort required to comprehend its behavior. Most

source code programming style guides often strain on enhancing the readability of the

software. They focus on following the language-specific conventions in order to

reduce the outlay of source code maintenance [51][52][53]. Traditionally, with the

focus entirely on the functionality of the software, the efforts were mainly devoted to

improving the efficiency of the software in terms of time, memory, and cost [54].

However, in this day and age, the extent to which the customer can effectively and

efficiently use a software product with reasonable satisfaction has a significant role in

gaining acceptance for the software from prospective customers. This change in the

current scenario has led to an emphasis on the usability features of the software.

Consequently, Usability has emerged as one of the critical elements of software

quality. It has been considered a vital quality characteristic by various quality models

[55][56]. It is a relative term, which cannot be defined in an absolute sense; instead, it

can be defined only in a particular context. It is dependent on what are the

73

specifications of the product to be developed? Who will be the specified users? What

specified goals are to be achieved by developing that software product? Moreover,

what will be the specified context of the usage of that software? [57]

Considering all the transformation in the present-day state of affairs, four relevant

characteristics are identified to be missing in the latest software quality model, ISO

25010, and hence augmented in the proposed software quality model, as follows:

I. Extensibility in Software Maintainability

II. Scalability in Reliability

III. Supportability in Usability

IV. Optimized code in Performance Efficiency

The detailed discussion of the relevance of the proposed characteristics is presented in

the subsequent sections. In the next section, the details of the extensibility attribute in

software maintainability are given.

3.3 EXTENSIBILITY

Extensibility can be defined as a systematic measure of the ability to extend or

enhance the current software and the degree of effort required to implement the

extension while minimizing impact to existing system functions. Software

development process leads to the delivery of high-quality software product that

satisfies the user requirements. Accordingly, the developed software product should

eventually be able to change or evolve after delivery.

Change is pervasive in software development. For any software product to be

maintainable, it is the easiness with which it incorporates any change. The change can

be corrective, adaptive, perfective (enhancement) or preventive [45].

 Corrective change is to correct defects in the software.

 Adaptive change results in the modification in the software to accommodate

changes to its external environment.

 Perfective change extends the software beyond its original functional

requirement.

74

 Preventive change is to make computer programs easily corrective, adaptive,

and perfective.

The mapping of these different types of changes on to the related maintainability

sub-characteristics is highlighted in Table 3.1.

Table 3.1: Type of Change concerning maintainability sub-characteristics

As shown in Table 3.1, there is no sub-characteristic related to perfective change; and

hence, there is a need for an added new sub-characteristic named Extensibility.

3.3.1 Software Extensibility in Existing Quality Models

Different quality models have been studied in an attempted to identify the importance

of software extensibility aspect concerning maintainability.

Jim Mac Call [23] identified expandability under the flexibility criteria for the product

revision perspective that defines the ability of the software product to go undergo

changes, including error corrections and system adaptations.

Barry W. Boehm [25][26] aggregated the augmentability feature within the scope of

modifiability characteristics of the defined hierarchical software quality model. That

is, augmentability is considered as necessary characteristics for modifiability. As per

the software quality model defined, the augmentability is described as the extent to

which the code could comfortably accommodate expansion in component computable

functions in data storage requirements.

Type of Change Maintainability sub-characteristics

Corrective Modifiability

Adaptive Reusability

Perfective NONE

Preventive Modularity, analyzability, modifiability

75

In Robert Grady’s FURPS (Functionality, Usability, Reliability, Performance, and

Supportability) Quality Model [58], the supportability characteristics include

extensibility as an explicit Quality Aspect in concern to supportability.

ISO 9126 quality model [27] does not explicitly address extensibility characteristics

to represent future growth of the software. However, the argument may be that the

enhancement of new features, type of change, is embedded within the kinds of

modifications defined in the quality model. That is, corrections, improvement, or

adoptions of the software to changes in the environment, requirements, and functional

specifications. But, then although changeability/ modifiability are separately taken as

sub-characteristic in maintainability characteristic and adaptability sub-characteristic

is separately taken as sub-characteristic in portability characteristic. However, there is

no separate sub-characteristic of extensibility for improvements.

ISO 25010 [30] made an amendment in ISO 9126 and reusability is added as sub-

characteristic to maintainability, but it still misses the extensibility feature as it tells

how easily code can be extended to added further functionality/changes, etc.

Table 3.2: Extensibility Attribute Coverage in Quality Models

The coverage of extensibility attribute in the software quality models is summarized

in Table 3.2, indicating that extensibility sub-characteristic is partially, implicitly,

explicitly addressed, or not addressed at all in quality models.

Although the attributes of changeability/ modifiability, portability, adaptability are

addressed explicitly in most of the quality models but extensibility is explicitly

addressed only in McCall quality model [23] and FURPS model [58] and not in the

other software quality models.

Extensibility coverage in Quality Models

 Quality Model McCall Boehm FURPS ISO 9126 ISO 25010

Extensibility Explicit Implicit Explicit Implicit Implicit

76

AOSD aims at encapsulating crosscutting concerns through a new construct class like

Aspect and localize the change. Hence, it encapsulates the behavior affecting

multiple classes into the reusable module. Moreover, the software maintenance is not

only to correct faults but also to extend the software for implementing new or changed

user requirements, which concerns functional enhancement; hence, a modified

maintainability model is proposed for AOSD.

Figure 3.3: Maintainability with the sub-characteristics

In order to provide complete coverage of the type of change, the inclusion of

extensibility as a sub-characteristic under the maintainability quality characteristic is

recommended. As every proposed model requires evaluation hence, in order to

evaluate the proposed maintainability model [108] Analytical Hierarchy Process,

(AHP) is used as an approach and the details are compiled in Chapter IV.

The details of the second proposed quality attribute, Scalability in the software

reliability model is given in the following section.

3.4 SCALABILITY

Scalability is the capability of the system to either handle an increase in load without

affecting the performance of the system or the capability to be readily enlarged.The

scalability of software is vital for growing business. The key to scalability is that the

software grows along with the increased usage.

77

Once the software is deployed, it needs to fulfill the expected level of performance. It

needs to be reliable, available, and even scalable if required. All these are the run time

attributes of the software product or project that enhances the confidence in the

customer/ end-user which ultimately improves the software quality.

Reliability of software product or project is widely accepted as an essential

characteristic of software quality. For a software system to be reliable, it should be

available irrespective of faults or failures or even application crashes. That means a

reliable system should not lose its availability even in most failure situations or even

under heavy load conditions.

What if the demand is increased for the software functions? Users will face increased

response time and longer completion time. The system cannot queue the excess load

and process it at the reduced load period. How such a system considered as reliable?

For a software product or project to be truly reliable, it should continue to operate

even under heavy load conditions.

As per International Standard Organisation, software reliability is the degree to which

it performs its intended functions under specified conditions for a specific period of

time. And scalable software can provide support to the increased amount of data or

can cater to the increased number of users without degrading the performance

drastically. So, Scalability is an essential characteristic of a system to be reliable.

3.4.1 Software Reliability in Existing Quality Models

Reliability characterized by specific attributes as highlighted by various quality

models [59] is investigated as follows:

Jim Mc Call quality model [23] identified reliability as a product operation quality

attribute that influences the essential operation of the software.

Barry W. Boehm’s hierarchical software quality model [25] identified reliability as a

quality factor associated with the As-is general utility or primary use. According to

this model, code possesses the reliability characteristic to the extent that it can be

expected to perform its intended functions.

78

FURPS quality model [58] considered reliability as the non-functional quality

requirement. According to this model, reliability may include frequency and severity

of the failure, recovery to failure, and time among failures.

ISO/IEC9126 standard [27] for quality considered reliability as the capability of the

software product/project for maintaining a specified level of performance when used

under specified conditions. The sub-characteristics identified are maturity, fault

tolerance, and recoverability.

Ghezzi software quality model [60], considered reliability as a desirable external

quality attribute which can be achieved by the improvement in the internal quality

attributes of the software.

Khosravi proposed a software quality model [61] for accessing the quality of software

implemented using design patterns. It considered scalability as a quality characteristic

defined by the level of performance and application performance. It is considered to

add software elegance.

Khomh [62] proposed DEQUALITE (Design Enhanced Quality Evaluation) to build a

quality model for object-oriented systems. It considered scalability as a quality

attribute under attributes related to runtime.

ISO 25010 software quality model [30] defined reliability as the degree possessed by

the software product/project to perform specified functions under specified conditions

for the specified time period. As an upgradation of the previous ISO/IEC 9126

software quality model, the availability characteristic for the software product was

added as a sub-characteristic for software reliability quality characteristic. The

reliability sub-characteristics are, namely maturity, fault tolerance, availability, and

recoverability.

Although one attributes are included in the reliability characteristic but the missing

point in ISO25010 model concerning reliability is that while estimating the reliability

of software, no weight age is given to how scalable the code is and how much

efficiently it handles the increased load. Software reliability goes hand in hand with

the availability and scalability. An unreliable software system is also un-scalable.

79

Considering all, a new hierarchical software reliability model is proposed.

Figure 3.4: Reliability with the sub-characteristics

The proposed reliability model is an extended model with scalability as an additional

sub-characteristic under reliability along with maturity, availability, fault tolerance,

and recoverability as given in Figure 3.4. To verify the consistency of the proposed

model, an assessment is made by the application of one of the MCDM (multi-criteria

decision making) approach, namely the AHP (analytical hierarchy process). Results

concluded confirm the proposed reliability model to be consistent and may further be

used for computing the overall quality of software product or project and are

compiled in Chapter IV.

The detailed description of the proposed supportability attribute in the usability model

is presented in the next section.

3.5 SUPPORTABILITY

Supportability is the effectiveness of the system to afford information that helps

identify and resolve issues when it fails to work correctly. From an individual point of

view, source code can be written in a way that affects the effort required to

comprehend its behavior. Software is written to accomplish some specified objectives

for specified customers. In order to be readily acceptable, software needs to be easily

80

understandable and usable. Clear, complete, and good quality supporting material

provided along the code enhances the chances of ready acceptability by the end-user.

Many source code programming style guides, which often emphasizes readability and

usually language-specific conventions intend at reducing the cost of source code

maintenance.

Software Usability as defined by IEEE “is the ease with which a user can learn to

operate, prepare inputs for, and interpret outputs of a system or component.”

Although usability is a widely accepted term for the evaluation of software quality,

but there is a lack of consistency in the definitions of usability given by various

standards. Even the given definitions miss out on the vital aspects affecting the

usability of the software product. In absentia of clear guidelines about how usability is

related to its sub-factors and the criteria, ad hoc implementation of usability has been

done by the developers [63]. Usability valuation in the model-driven development

procedure is still an area where further research works are desirable [64].

ISO also updated the previous model ISO9126 and released ISO25010 software

quality model. Definition of Usability factor given by the ISO 9126 model is also

modified in ISO25010 model. Its new description included terms like specified users

and specified goals, along with the specified context of use. It drew attention to three

sub-goals. First, effectiveness that defines the potential to produce the preferred

outcome. Second, efficiency that determines the amount of time, effort, and cost used

during the accomplishment of the task. Moreover, third, the satisfaction that defines

the likability of the software to use. Appropriateness, recognizability, learnability,

operability, user error protection, user interface aesthetics, and accessibility are

acknowledged as the sub-characteristics by ISO25010 model for considering user

interface design with good usability [63].

Although many sub-characteristics are defined for usability in ISO 25010, one crucial

characteristic is missing, and that is Supportability. The features for supportability

may include:-

- Documentation

- Trouble Shooting tools

81

- Help menu

- Event logging/Tracing Code etc. as shown in Figure 3.5.

Figure 3.5: Supportability and its features

Software having proper documentation supported by help menus and troubleshooting

tools along with traceability; makes the software more effective, efficient, and

satisfying than before; hence more usable.

3.5.1 Usability in Existing Quality Models

Usability is one of the desirable as well as a vital software product attribute. Hence,

all the existing software quality models incorporate usability as an integral attribute

[65][66][67].

Mc Call software quality model [23] comprises of eleven quality factors; one of these

factors was usability. These factors were further categorized into quality criteria’s.

Usability was categorized into communicativeness, operability, and training. No

metrics were defined for measuring usability.

Barry Boehm [25] and et al. like Mc Call model [23], also comprises of quality

factors, which have been further categorized into quality criteria’s and metrics.

However, unlike Mc Call, usability quality attribute was not considered as a quality

factor; instead, it was considered as an outcome of portability and maintainability

quality factors.

82

Grady’s FURPS software quality model [58] is a user-centric model and this model

values more on user requirements rather than the developer’s requirement. Usability

being a user-centric requirement is essential for trouble-free acceptance of the

developed software. Hence, it was considered as one of the crucial features for

quality. It comprised of various sub-factors like user documentation, human factor,

online and context-sensitive help, steadiness in the appropriate interface, wizards, and

training materials.

Ghezzi software quality model [60] was based on the structural qualities of the

software. According to this model, improvising the structural quality of the software

implicitly improves the overall quality. It also considered usability as one of the

factors affecting the software quality.

ISO 9126 model [27] defined usability as the ability of the developed software

product to be understandable, learnable, usable, and attractive to the end-user. It was

limited by the usage of the software under specified conditions. It comprised of five

sub-quality components, namely understandability, learnability, operability,

attractiveness, and usability compliance.

Dromey defined a generic and dynamic software quality model [68] which was

supposed to be compatible with a variety of software. It was a two-layer model.

Higher layer composed of product properties that affect the quality and the lower

layer was composed of quality attributes. Usability was considered as a quality

attribute under the descriptive property of the quality model.

Kumar et al. [50] proposed a software quality model specifically for Aspect-Oriented

Software Development, named Aspect-Oriented Software Quality Model

(AOSQUAMO Model). This model was inspired by the ISO 9126 software quality

model standard. Although none of the existing attributes of quality in the ISO 9126

model were changed/moved/deleted, but, four new attributes were added. Usability

remained one of the quality factors in AOSQUAMO model as in the ISO 9126 model.

In International Standards Organization latest quality standard model ISO 25010 [30]

although various attributes were revised, Usability retained its existence as a quality

factor in the quality model.

83

Figure 3.6: Supportability with the sub-characteristics

Supportability characteristics of earlier software product constituted mainly of

maintenance and fixing of errors/issues, but now it encompasses a broad and

extensive range of elements including a telephonic or online support system and

customer consulting. Even though user-error protection and accessibility have been

added as the new sub-characteristics of usability under ISO25010 model, but still one

fundamental characteristic that widely affects the software usage and acceptance is

missing, and that is Supportability. Considering all the relevant factors, an enhanced

hierarchical usability model is proposed with supportability as one of the sub-

characteristics as shown in Figure 3.6. The relevance of the proposed model has been

assessed using Analytical Hierarchical Process (AHP), a technique of multi-criteria

decision-making, with the involvement of a team of participants working in different

platforms in different companies and the details, are given in Chapter IV.

Usability

Appropriatness
Recognisability

Supportability

Learnability

Operability

User Error Protection

User Interface
Aesthatics

Accessability

84

The detailed discussion of the proposed optimized code attribute in the performance

efficiency model is described in the subsequent section.

3.6 OPTIMIZED CODE

A well-written code can significantly reduce the effort required in further phases of

the software development life cycle like testing and maintenance. Use of solid coding

techniques and good programming practices for creating high quality, optimized code

plays a vital role in software quality and performance.

Software quality should not only be able to meet the customer requirements but

should exceed it. Customers not only mean the external customers but the internal

ones too. Code that is written by consistently applying well coding standard and

proper coding techniques is not only optimized in terms of time, effort, cost

(resources) but also is more comfortable to comprehend and maintain.

Performance efficiency is the performance relative to the extent of resources used

under stated conditions. It is an indication of the responsiveness of a system to

execute specified actions in a given time interval and is considered as one of the vital

software quality characteristics. If performance efficiency is improved, then it will

certainly have a positive effect on software quality.

The optimized code has a positive effect on performance in terms of less response

time, increased throughput, reduced memory consumption, and reduced network

bandwidth consumptions.

3.6.1 Performance Efficiency in Existing Quality Models

Various software quality models have been reviewed to understand the perspective for

taking the performance efficiency as a characteristic for defining the quality.

Jim McCall [23] considered efficiency as one of the quality factors under product

operations. It defined one or more quality criteria for each quality factor in order to

assess the overall quality of software product. According to Mc Call quality model,

the quality criteria for efficiency are execution efficiency and storage efficiency.

85

Barry Boehm software quality model [25] identified efficiency as a quality attribute

under As-is utility. According to Boehm quality model, the factors that affect

efficiency are accountability, device efficiency, and accessibility.

ISO 9126 software quality model [27] identified efficiency as one of the quality

characteristics and specifies three quality attributes that affect the efficiency of

software are time behavior, resource behavior, and efficiency compliance.

In Kumar et al. [50] extended ISO/IEC 9126 quality model, AOSQUAMO (Aspect-

Oriented Software Quality) model, added code- reducibility as a sub-characteristic

under efficiency quality characteristic. Hence, the quality attributes that affect the

efficiency according to AOSQUAMO model are time behavior, resource utilization,

and code reducibility.

In ISO/IEC 25010, the problems related to performance efficiency are addressed, and

capacity is added as a sub-characteristic alongside the previously exiting

characteristics of time behavior and resource utilization [30]. And capacity is

expressed as the extent to which the software product maps to the specified

requirements.

Figure 3.7: Performance Efficiency with the sub-characteristics

Performance
Efficiency

Time
Behaviour

Optimized
Code

Resource
Utilization

Capacity

86

Although in ISO 25010, the gaps related to performance efficiency were addressed

but still, one area is left untouched, so, optimized code as a sub-characteristic for

Performance Efficiency is proposed as depicted in Figure 3.7.

The validation of the four newly added attributes is done using Analytical Hierarchy

Process (AHP) technique of Multicriteria Decision Method, and the classified details

are given in the next Chapter IV.

87

CHAPTER IV

VALIDATION OF THE PROPOSED MODEL

4.1 ANALYTICAL HIERARCHICAL PROCESS

The procedure followed by the analytical hierarchical process technique [19][69] is

comprised of the following steps:-

 Step 1: Define the problem and state the goal or objective.

 Step 2: Define the various characteristics affecting that objective and make the

hierarchical structure. Problems are bifurcated into a hierarchy of criteria and

alternatives, as shown in Figure 4.1.

Figure 4.1: Hierarchy of Criteria and Alternatives

88

 Step 3: A survey is conducted using a data collection form consisting of

pairwise comparisons for filling relative weight of criteria’s C1 to Cn in the scale of 1

to 9 according to Thomas L. Saaty [19] as presented in Table 4.1.

Table 4.1: Scale of Relative Importance

Use paired comparisons of each criterion concerning each other after structuring the

characteristics into levels and sub-levels. The information is then synthesized to

determine the relative ranking of alternatives. Both quantitative and qualitative

criteria can be compared using informed judgments to derive weight and priorities.

The relative importance of one criterion over another can be expressed using pairwise

comparisons, as demonstrated in Table 4.2.

Intensity of Relative Importance Definition

1 Equal Importance

2 Very Weak Importance

3 Weak Importance

4 Moderate Importance

5 Strong Importance

6 Strong Plus Importance

7 Very Strong Importance

8
Very Strong Plus

Importance

9 Extreme Importance

Reciprocals(1/2 to 1/9)

For vice-versa

comparisons.

That is if the relative

importance of

Ci to Cj is 5 then

Cj to Ci is 1/5

89

Table 4.2: Sample Matrix for pairwise comparison

 Step 4: Calculated the selected characteristics in relevance to the defined

objective known as Eigenvector.

 Step 5: Evaluate the consistency

o Step 5.1: Evaluate the consistency index using the eigenvector as given

in Equation 4.1.

o Step 5.2: Evaluate the consistency ratio to ensure and verify the

consistency of the comparison matrix as shown in Equation 4.2.

According to Saaty, for 3x3 matrix if CR > 0.05 ; for 4x4 matrix if CR > 0.08 ; and

for all the larger matrixes if CR > 0.1 then the input set for judgment is too

inconsistent.

RI depends on the number of alternatives (in case of alternatives comparison) or

criteria (in case of criteria comparison) being compared; hence, it varies depending

upon the order of the matrix. A scale for RI is a known random CI obtained from a

large number of simulation runs and is predefined.

C1 C2 C3 C4 C5

C1 w1/w1 w1/w2 w1/wn

C2 w2/w1 w2/w2 w2/wn

C3

C4

C5 wn/w1 wn/w2 wn/wn

90

 Step 6: After the consistency verification, various characteristics are evaluated

according to their weight, and finally, we get the rank of characteristics, and the final

choice is made.

The validation of the proposed software maintainability model is done, and the details

are given in the subsequent section.

4.2 SOFTWARE EXTENSIBILITY AS A SUB-CHARACTERISTIC IN

SOFTWARE MAINTAINABILITY

According to IEEE, the Software Maintenance is “the process of modifying a

software system or component after delivery to rectify faults, improve performance or

other attributes, or adapt to the changed environment” [1][2]. The most common

perception about maintenance is that it merely involves fixing defects. However, the

fact is that software maintenance is an extensive activity that not only covers error

correction but includes enhancements of the capabilities, adaptations to the new

environments and optimization. Hence, Software Maintenance forms an integral part

of defining the software quality model. Different researchers have proposed different

software quality models to help to measure the quality of software products. In the

research, various renowned software quality models are reviewed and the modified

software quality model is proposed. However, the empirical validation is yet to be

reported for aspect-oriented software [2][8].

 In this section, the related work and the proposed model has been discussed in

context to the maintainability of aspect-oriented software.

The manner in which software maintainability has been addressed in the software

quality models is given as follows:-

Barry Boehm identified 7 quality attributes (or factors) according to the 3 primary

uses of the software that could affect the quality of the software product. The

underlying focus of Boehm was on maintainability [25].

ISO 9126 product quality model enumerates five quality attributes that affect the

maintainability of software are analyzability, changeability, stability, testability, and

maintainability compliance [27].

91

Kumar et al. proposed the AOP based software quality model, namely AOSQUAMO

(Aspect-Oriented Software Quality) model, which is consequential from the ISO/IEC

9126 quality model. The quality attributes that affect the maintainability according to

AOSQUAMO model are analyzability, changeability, stability, testability, and

modularity [50].

According to ISO25010 model, the quality attributes that affect maintainability are

updated to modularity, reusability, analyzability, modifiability, and testability [30].

Although many problems of ISO 9126 concerning maintainability have been

addressed in ISO 25010 but few areas are left.

In order to analyze the problems in the area of maintenance and enhancement of

application software, a survey was conducted by Lientz, Swanson, and Tompkins. In

1978, they published the results in Communications of ACM, indicating that

perfective maintenance is the most significant area of effort. Moreover, within this

category, user enhancements and extensions account for two-thirds of the total effort.

Although the survey was conducted 35 years ago, but the results of this survey are one

of the most widely cited papers on software maintenance and continues to be quoted

regularly [71]. Since the majority of effort and resources and spent during the

maintenance phase; hence, it dramatically affects the cost of the software product.

The software maintenance is not only to correct faults but also to extend the software

for implementing new or changed user requirements which are related to functional

enhancement hence a new maintainability model is proposed for AOSD with

extensibility as sub characteristic as given in Figure 3.2 of Chapter III.

As every proposed model requires validation; hence, in order to validate the proposed

maintainability model, the Analytical Hierarchy Process (AHP) as an MCDM

approach is used, and the details are as follows.

4.2.1 Validation

Step1: Maintainability is decomposed into a hierarchy of sub-characteristics

extensibility as Criteria C1, reusability as Criteria C2, modifiability as Criteria C3,

analyzability as Criteria C4, testability as Criteria C5, and modularity as Criteria C6, as

92

shown in Figure 4.2. Java Software and AspectJ Software are taken as the two

alternatives to choose from.

Figure 4.2: Proposed Maintainability Model

Step2: An industrial survey has been conducted using a form (as given in Appendix A

Figure A1.1, Figure A1.2 and Figure A1.3) consisting of 15 comparisons for filling

pairwise relative weight of characteristics C1 to C6 in the range of 1 to 9 is provided

to each individual. Mean of collected samples of pairwise relative weights is

calculated and allocated to sub-characteristics for further evaluation, as shown in

Table 4.3.

Table 4.3: Matrix M for weights allocation to sub-characteristics for

maintainability

M=

C1 C2 C3 C4 C5 C6

C1 1.0000 2.0175 1.4213 1.9313 2.2125 2.1300

C2 0.4957 1.0000 2.0450 2.5800 2.0288 1.9613

C3 0.7036 0.4890 1.0000 1.9425 1.8538 2.1063

C4 0.5178 0.3876 0.5148 1.0000 3.3150 2.8888

C5 0.4520 0.4929 0.5394 0.3017 1.0000 2.9900

C6 0.4695 0.5099 0.4748 0.3462 0.3344 1.0000

93

Step 3: To determine the consistency of the allocated weights, eigenvector, and

eigenvalue are calculated.

In order to compute the eigenvector, the pairwise Matrix is raised to the powers that

are successively squared each time. After that row sums are calculated and

normalized.

First Iteration: Resulting matrix after squaring the M Matrix is given in Table 4.4.

Table 4.4: Matrix for M
2

after 1
st
 Iteration

The row sums and the eigenvector calculated on Matrix M are shown in Table 4.5.

The process is iterated until the eigenvector solution does not change from the

previous iteration.

Table 4.5: Matrix for row sum and eigenvector for Matrix M
2

Second Iteration: The M
2
 matrix is squared, and the resulting M

4
 Matrix is shown in

Table 4.6

M
2
=

C1 C2 C3 C4 C5 C6

C1 6 7.65515 10.1673 13.233191 18.26711 23.4046

C2 5.603846 6 8.148207 11.380578 18.15371 22.80448

C3 4.482118 5.1381 6 7.793775 13.4001 17.82434

C4 4.444458 5.178513 5.717939 6 10.48242 18.63674

C5 3.087787 3.80294 4.304153 4.830841 6 9.917066

C6 1.856161 2.498136 3.018136 3.937662 4.769718 6

 Row Sum Eigenvector

 78.7274 0.254

 72.0908 0.2326

 54.6384 0.1763

 50.4601 0.1628

 31.9428 0.1031

 22.0798 0.0712

Row Total 309.9393 Total 1.0000

94

Table 4.6: Matrix for M
4

after 2
nd

 Iteration

Along with the row sums and eigenvector, the difference between the previous

eigenvector and the current eigenvector is calculated and is given in Table 4.7.

Table 4.7: Matrix for row sum, eigenvector, and difference for Matrix M
4

Third Iteration: After squaring the M
4
 Matrix, the resulting M

8
 Matrix is shown in the

following Table 4.8.

Table 4.8: Matrix for M
8

after 3
rd

 Iteration

M
4
=

C1 C2 C3 C4 C5 C6

C1 283.131338 340.5673 409.3126 505.564891 744.7667 1064.432

C2 252.731453 305.7052 366.7913 451.723012 657.4643 942.1743

C3 191.679143 231.8161 279.474 346.232548 502.6668 714.1062

C4 174.941816 211.9656 257.3651 322.33722 466.4986 651.6282

C5 117.534397 141.1787 171.5849 214.706676 317.059 444.7471

C6 82.02939 98.22449 118.49 146.809531 218.2133 310.8954

 Row Sum Eigenvector Difference

 3347.775 0.2564 -0.0024

 2976.59 0.2280 0.0046

 2265.975 0.1736 0.0027

 2084.737 0.1597 0.0031

 1406.811 0.1077 -0.0047

 974.6612 0.0746 -0.0034

Row Total 13056.55 Total 1.0000

M
8
=

C1 C2 C3 C4 C5 C6

C1 507986.9 612284.6 739228.6 917838.2 1344779 1906140

C2 452709.7 545670.2 658791.8 817950.6 1198368 1698649

C3 344655.8 415431.5 501563.2 622753 912368.8 1293201

C4 317015.9 382229.7 461493.8 573029.2 839490.9 1189814

C5 213156.1 256921.1 310203.6 385179 564342.2 799841.6

C6 147594.7 177895.3 214782.1 266682.8 390747.1 553844.1

95

The row sums, eigenvectors calculated on M
8
 Matrix is given in Table 4.9 along with

the difference between the eigenvector of M
4

Matrix and M
8
 Matrix.

Table 4.9: Matrix for row sum, eigenvector, and difference for M
8
 Matrix

Now, as there is not much difference between the eigenvector’s of the previous two

iterations, hence these values are accepted as final values. Now for checking the

consistency of the matrix, the next step is to compound the maximum eigenvalue

(⋋max) which is the mean of ⋋values. For consistent matrix ⋋max >= n. For the

proposed maintainability case study as n=6 hence ⋋max >= 6.

As per Thomas L. Saaty consistency check, as the value of maximum Eigenvalue is

6.51514 > 6 hence the Matrix has been found as consistent.

Step 4: Values of Consistency Index and Consistency Ratio are calculated as given in

Equation 4.3 and Equation 4.4, respectively.

 ⋋

 (4.3)

And

 (4.4)

Hence as per results, the suitability and the usefulness of the proposed maintainability

model has been validated.

Step 5: The final computation confirms the proposed maintainability model is

consistent and gives the relative ranking of the quality attributes concerning

 Row Sum Eigenvector Difference

 6028257.30 0.25614312 -0.0003

 5372139.30 0.22826439 0.0003

 4089973.30 0.17378464 0.0002

 3763163.50 0.15989835 0.0002

 2529643.60 0.10748559 -0.0003

 1751546.10 0.07442391 -0.0002

Row Total 23534723.10 Total 1.0000

96

maintainability in the order of extensibility; reusability; modifiability; analysability;

testability and modularity as displayed in Figure 4.3.

Figure 4.3: Rank Synthesis of Maintainability model

Hence, it establishes that extensibility is a desirable characteristic in the evaluation of

maintainability, and validates its inclusion in the maintainability model as a sub-

characteristic that needs to be considered.

The validation details of the second proposed characteristic in the proposed model for

performance efficiency are specified in the following section.

4.3 OPTIMIZED CODE AS A SUB-CHARACTERISTIC IN

PERFORMANCE EFFICIENCY

Performance efficiency can be defined as the performance relative to the number of

resources used under the stated conditions. Writing an Optimized code has a positive

effect on performance in terms of less response time, increased throughput, reduced

memory consumption, and reduced network bandwidth consumptions. A well-

Extensibility
26%

Reusability
23%

Modifiability
17%

Analyzability
16%

Testability
11%

Modularity
7%

Rank Synthesis of Maintainability Model

97

structured program written in a consistent style, free of kludges, developed so that

each component is organized and straightforward, and designed makes the product is

easy to change and increases the performance of the software.

As well quoted by an early pioneer of software engineering, David Lorge Parnas, who

developed the concept of information hiding in modular programming, which is an

important element of object-oriented programming today, that

“For much of my life, I have been a software voyeur, peeking furtively at other

people’s dirty code. Occasionally, I find a real jewel, a well- structured program

written in a consistent style, free of kludges, developed so that each component is

simple and organized, and designed so that the product is easy to change.”

More books have been written about programming (coding) and the principle and

concepts that guide it than about any other topic in the software process [2].

Sommerville also identified efficiency as one of the four generalized attributes which

are not concerned with, what a program does, but how well the program does it [4].

Coders often due to pressure to meet the deadline of time, try to build the code in a

rush, even at the cost to compromise the quality. That type of dirty code might be

understandable for a computer, but it is difficult for humans to understand. Due to this

messy code, many developers prefer to rewrite the code for any modification or

extension rather than performing the difficult task of reading it, understanding it and

then comprehending. This scenario explains the essence of optimized coding.

An optimized code is a well-written code that is easy to understand as well as change

as it is based on a reader-focused development style. An optimized code has the

ability to extend and refactor without much of the effort. To consider any code to be

an optimized code, classes, and methods should be small and should focus on an only

single functionality. This makes the code to be easily testable with the presence of

unit test cases.

In the following section, the proposed performance efficiency model as proposed in

Figure 3.2 of Chapter III is validated for the optimized code as an additional

98

characteristic to evaluate the performance efficiency, which is a vital part for

improving the software quality. The validation of the updated performance efficiency

model is done using the Analytical Hierarchical Process technique as follows.

4.3.1 Validation

Step 1: Performance Efficiency is decomposed into a hierarchy of sub-characteristics

time-behavior as Criteria C1, optimized code as Criteria C2, resource utilization as

Criteria C3, and capacity as Criteria C4, as shown in Figure 4.4. Software build using

Java and AspectJ are taken as alternatives.

Figure 4.4: Proposed Performance Efficiency model

Step 2: An industrial survey has been conducted using a form (as given in Appendix

A Figure A1.6 and Figure A1.7) consisting of 6 comparisons for filling pairwise

relative weight of characteristics C1 to C4 in the range of 1 to 9 is provided to each

individual. Mean of collected samples of pairwise relative weights is calculated and

allocated to sub-characteristics for further evaluation, as shown in Table 4.10.

Table 4.10: Matrix OC for weights allocation to characteristics

OC=

C1 C2 C3 C4

C1 1 1.595 2.14 1.8858

C2 0.627 1 3.0867 2.6243

C3 0.4673 0.324 1.0 2.3575

C4 0.5303 0.3811 0.4242 1

99

Step 3: In order to determine the consistency of the allocated weights, eigenvector,

and eigenvalue are calculated.

The eigenvector is calculated by squaring the comparison matrix and then calculating

the row sum, which is then normalized.

First Iteration: OC
2
 Matrix is evaluated by squaring the previous Matrix OC, as

demonstrated in Table 4.11.

Table 4.11: Squaring the OC matrix

The row sum and eigenvectors are calculated on the resulting OC
2
 Matrix and shown

in Table 4.12.

Table 4.12: Row sum matrix and eigenvector of the OC
2
 Matrix

The iteration is repeated until the time difference between the current eigenvector, and

the previous eigenvector becomes negligible.

Second Iteration: Squaring the OC
2
 Matrix is done, and OC

4
 Matrix is evaluated as

shown in Table 4.13.

OC
2
=

 C1 C2 C3 C4

C1 4.0000 4.6019 10.0031 13.0024

C2 4.0879 4.0000 8.6282 13.7077

C3 2.3878 2.2916 4.0000 6.4464

C4 1.4977 1.7453 3.1593 4.0000

 Row Sum Eigenvector

 31.6074 0.3610

 30.4238 0.3475

 15.1259 0.1727

 10.4024 0.1188

Row Total 87.5594 Total 1.0000

100

Table 4.13: Squaring the OC
2
 Matrix

The row sum matrix, eigenvectors are calculated on the resulting OC
4
 Matrix. Also,

the difference between the eigenvectors of OC
4
 Matrix and OC

2
 Matrix is evaluated

as shown in Table 4.14.

Table 4.14: Row sum matrix, eigenvector, and difference of the OC
4
 Matrix

Third Iteration : The iteration is repeated until the time, the difference between the

eigenvectors of OC
4
 and OC

2
 Matrix approaches to zero up to three decimal places.

Hence the OC
4
 Matrix is squared, and the resulting OC

8
 Matrix is shown in Table

4.15.

Table 4.15: Squaring the OC
4
 Matrix

The row sum Matrix and eigenvector calculated on the resulting OC
8
 Matrix is shown

in the following Table 4.16. Also, the difference evaluated for the eigenvector of OC
8

OC
4
=

 C1 C2 C3 C4

C1 78.1713 82.4320 160.8103 231.5851

C2 73.8355 78.5090 153.2247 218.4349

C3 38.1252 40.5726 80.0248 114.0316

C4 26.6601 28.0948 55.3153 79.7643

 Row Sum Eigenvector Difference

 552.9987 0.3592 0.0018

 524.0041 0.3404 0.0071

 272.7541 0.1772 -0.0044

 189.835 0.1233 -0.0045

Row Total 1539.5915 Total 1.0000

OC
8
=

 C1 C2 C3 C4

C1 24502.1669 25946.3020 50880.3759 72919.0117

C2 23233.7919 24603.6880 48247.6013 69144.0854

C3 12067.0475 12778.5585 25059.3028 35912.6987

C4 8393.8838 8888.5931 17430.8257 24981.0151

101

Matrix and the OC
4
 Matrix has approached to Zero for three decimal places, as shown

in Table 4.16.

Now, after the third iteration, the difference between the current and the previous

eigenvector is approaching zero. Hence these values can be accepted as final values.

Table 4.16: Row sum matrix, eigenvector, and difference for the OC
8
 Matrix

As per Thomas L. Saaty consistency check, as the value of maximum Eigenvalue is

4.2125 > 4; hence, the matrix has been found consistent.

Step 4: Values of Consistency Index and Consistency Ratio are calculated as given in

Equation 4.5 and Equation 4.6 respectively.

 ⋋

 (4.5)

And

Hence as per results, the consistency index and consistency ratio are within the

approved limits as given by Thomas Saaty, the suitability and the usefulness of the

proposed performance efficiency model has been validated.

Step 5: Results confirm that the chosen quality sub-characteristics are consistent and

the relative ranking of the quality attributes for performance efficiency are in the

order of time behavior; optimized code; resource utilization and then capacity as

presented in Figure 4.5.

 Row Sum Eigenvector Difference

 174247.8565 0.3593 -0.0001

 165229.1666 0.3407 -0.0003

 85817.6075 0.1769 0.0002

 59694.3177 0.1231 0.0002

Row Total 484988.9482 Total 1.0000

102

Hence, it establishes that optimized code is a wanted characteristic among the

software developers and maintainers in the evaluation of performance efficiency, and

validates its enclosure in the performance efficiency model as a sub-characteristic that

needs to be considered.

Figure 4.5: Rank Synthesis of Performance Efficiency model

The next section describes the validation details of the proposed software reliability

model.

4.4 SCALABILITY AS SUB-CHARACTERISTIC IN SOFTWARE

RELIABILITY

Scalability is an essential characteristic of the software quality of a system to be

reliable. Scalability is a runtime quality attribute that exhibits the ability of the

software system to handle an increase in load by either no adverse impact on the

performance of the system or by enlarging the ability. It is not just the ability to

operate but to operate efficiently with the satisfactory quality of service even with the

Time-Behaivour
36%

Optimized Code
34%

Resource
Utilization

18%

Capacity
12%

Rank Synthesis of Performance Efficiency
Model

103

increased load. The scalability of software is quite vital for growing business. It

complements and enhances the confidence in the ability of the software system to

remain functional over time hence reliability. The key to incorporate scalability in

software is the ability of the software to grow along with the increased usage.

Scalable software can cater to increased demand for software functions without

degrading the performance drastically [72][73][74].

Reliability in ISO 25010 standard quality model for software product was modified

from the previous ISO/IEC 9126 standard for the software quality model. The sub-

characteristics defined for reliability quality attribute included a new sub

characteristic viz availability other than the already existing attributes of maturity,

fault tolerance, and recoverability.

Figure 4.6: Proposed Reliability model

Considering Scalability to be a vital attribute contributing to the reliability of the

software to work under adverse conditions, hence a modified reliability model is

proposed based on ISO 25010, with the additional characteristic of Scalability as

shown in Figure 4.6. The validation of the proposed software reliability model is

given in the following sub-section using the Analytical Hierarchical Process technique

of the multi-criteria decision making approach.

104

4.4.1 Validation

Step 1: Software Reliability is decomposed into a hierarchy of sub-characteristics

scalability as Criteria C1, maturity as Criteria C2, availability as Criteria C3, fault

tolerance as Criteria C4, and recoverability as Criteria C5 as modeled in Figure 4.6.

Alternatives are considered as software build using two programming languages,

namely Java and AspectJ.

Step 2: An industrial survey has been conducted using a form (as given in Appendix

A Figure A1.4 and Figure A1.5) consisting of 15 comparisons for filling pairwise

relative weight of characteristics C1 to C5 in the range of 1 to 9 is provided to each

individual. Mean of collected samples of pairwise relative weights is calculated and

allocated to sub-characteristics for further evaluation, as shown in Table 4.17.

Table 4.17: Matrix S for weights allocation to characteristics

Step 3: To determine the consistency of the allocated weights, eigenvector, and

eigenvalue are calculated. The Eigenvector for the Matrix S is calculated by squaring

the comparison matrix and calculating the row sum, which is then normalized.

First Iteration: The resulting S
2
 Matrix after squaring the previous S Matrix is shown

in Table 4.18.

Table 4.18: S
2
 Matrix after 1

st
 Iteration

The row sums and eigenvectors evaluated using S
2
 Matrix is shown in Table 4.19.

S =

 C1 C2 C3 C5 C4

C1 1 2.0946 2.1853 1.4811 0.7687

C2 0.4774 1 2.201 0.9407 2.1408

C3 0.4576 0.4543 1 1.4891 0.8947

C3 0.6752 1.0631 0.6715 1 2.0881

C4 1.3009 0.4671 1.1177 0.4789 1

S
2
 =

 C1 C2 C3 C5 C4

C1 5.0000 7.1158 10.8347 8.5550 11.0696

C2 5.3821 5.0000 8.4698 6.8913 8.5821

C3 3.3014 3.8681 5.0000 4.5119 6.2232

C3 4.8815 4.8208 7.4922 5.0000 7.5718

C4 3.6596 4.6760 6.4280 4.9884 5.0000

105

Since Eigen Vector is normalized, hence the sum of the column of the eigenvector is

one.

Table 4.19: Row sum and eigenvector of the S
2
 Matrix

Second Iteration : S
4
 Matrix after squaring the previous calculated S

2
 Matrix is shown

in Table 4.20.

Table 4.20: S
4
 Matrix after 2

nd
 Iteration

Table 4.21: Row sum, eigenvector, and difference of the S
4
 Matrix

Along with the row sums and eigenvector for S
4
 Matrix; the difference between the

 Row Sum Eigenvector

 42.5750 0.2759

 34.3253 0.2224

 22.9046 0.1484

 29.7663 0.1929

24.7521

0.1604

Row Total 154.3233 Total 1.0000

S
4
 =

 C1 C2 C3 C5 C4

C1 181.3389 206.0714 303.8672 238.6913 303.9670

C2 146.8302 169.4119 249.8083 195.9826 250.2874

C3 98.6320 113.0242 167.3388 131.0627 166.1369

C3 127.2057 147.3306 217.3147 171.5581 217.7522

C4 107.3355 121.7140 180.9104 142.4186 183.4147

 Row Sum Eigenvector Difference

 1233.9359 0.2718 0.0041

 1012.3204 0.2230 -0.0006

 676.1946 0.1490 -0.0005

881.1614

0.1941 -0.0012

 735.7932 0.1621 -0.0017

Row Total 4539.4055 Total 1.0000

106

eigenvectors of S
4
 Matrix and eigenvectors of S

2
 Matrix are also evaluated to identify

the no change state as given in Table 4.21.

The iterations are repeated until the difference between the current eigenvector, and

the previous eigenvector becomes negligible that is up to three decimal places.

Third Iteration : The resulting S
8
 Matrix by squaring the previous S

4
 Matrix is given

in Table 4.22.

Table 4.22: S
8
 Matrix after 3

rd
 Iteration

The row sums, eigenvectors evaluated are given Table 4.23. Also, the calculated

difference between the eigenvector of the S
8
 Matrix and the previous S

4
 Matrix is

approaching to zero for three decimal places, as shown in Table 4.23.

Table 4.23: Row sum, eigenvector, and difference of S
8
 Matrix

Now, after the third iteration, the difference between the second and third iteration

eigenvectors is approaching zero. Therefore, the iterations are stopped here and these

values are taken as final values.

As per Thomas L. Saaty consistency check, the input matrix has been found

consistent as the value of maximum Eigenvalue is 5.4278 > 5.

S
8
 =

 C1 C2 C3 C5 C4

C1 156101.7048 178787.6594 264292.0213 207736.0800 264909.2736

C2 127934.7399 146530.0051 216609.5042 170257.4060 217117.6086

C3 85490.4663 97916.9581 144745.4453 113771.1080 145081.7060

C3 111329.8402 127514.1089 188498.9952 148163.1408 188941.4535

C4 92982.3297 106492.6018 157425.5374 123739.2191 157798.7551

 Row Sum Eigenvector Difference

 1071826.7391 0.2720 -0.0002

 878449.2638 0.2229 0.0001

 587005.6837 0.1490 0.0000

 764447.5386 0.1940 0.0001

638438.4432

0.1620 0.0001

Row Total 3940167.6684 Total 1.0000

107

Step 4: Values of Consistency Index and Consistency Ratio are calculated as given in

Equation 4.7 and Equation 4.8, respectively.

 ⋋

 (4.7)

And

As per evaluated results for consistency index and consistency ratio are in accordance

with the limits given by Thomas Saaty for consistency; therefore, the suitability and

the usefulness of the proposed reliability model has been validated.

Figure 4.7: Rank Synthesis of Reliability Model

Step 5: Results computed indicate that the chosen quality sub-characteristics for

reliability are consistent and the relative ranking of the quality sub-characteristics for

proposed reliability model is in the order of scalability, maturity, fault tolerance,

recoverability and then availability as depicted in Figure 4.7.

Scalability
27%

Maturity
22%

Availability
15%

Fault-Tolerance
20%

Recoverability
16%

Rank Synthesis of Reliability Model

108

Hence, it ascertains that scalability is a looked-for characteristic among the software

industry personnel in the evaluation of software reliability, and so its insertion in the

software reliability model as a sub-characteristic is validated and requires to be

considered.

The validation details of the proposed usability model are presented in the next

section.

4.5 SUPPORTABILITY AS SUB-CHARACTERISTIC IN USABILITY

Users perceive software in a way that it represents its functions. Even minute details

in the user interface affect the impression of the overall software product on the

customers. One of the fundamental reasons for the aversion among users of the

interactive software is it being unfriendly, sophisticated, and low-quality user-

interfaces. Software with poor user interface design not only waste the time of its

users but also disappoints them and adds to their frustration. Incorporating affable

‘ease of use’ in software is a tedious task in itself. Ideally, the source code should be

written in a manner that reduces the effort required to comprehend its behavior. Most

source code programming style guides often strain on enhancing the readability of the

software. They focus on following the language-specific conventions to reduce the

outlay of source code maintenance [51][52][53].

From a human point of view, source code can be written in a way that affects the

effort needed to comprehend its behavior. Many source codes programming style

guides, which often stress readability and usually language-specific conventions, are

aimed at reducing the outlay of source code maintenance. For a system to be usable, it

has to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use. That is, the primary notion of usability consists of three sub-

goals namely:-

a. Effectiveness, i.e., the capability to produce the desired result,

b. Efficiency, i.e., the extent to which time, effort or cost is well used for

the intended task/purpose, and

c. Satisfaction, i.e., more satisfying (pleasant) to use.

109

Supportability is the capability of the system to provide information helpful for

identifying and resolving issues while using the software or when it fails to work

correctly. The features for supportability may include user training, customer

consulting, upgrades, comprehensive documentation, and online support along with

troubleshooting tools, help menus, event logging, and tracing code. Software products

that have clear, complete, accurate and consistent documentation of the software

product along with the support of help menus and troubleshooting tools and that can

be easily traceable; makes the software more effective, efficient and satisfying than

before. Hence software products that have sufficient supporting documents make the

software more usable and easily acceptable by the customer. Supportability not only

increases the chances of the acceptance of the software. Instead, but it is also quite

vital at the time of safety [75][76].

Supportability characteristics of earlier software product constituted mainly of

maintenance and fixing of errors/issues, but now it encompasses a broad and

extensive range of elements including a telephonic or online support system and

customer consulting.

Although many sub-characteristics are defined for usability in ISO 25010, one

important characteristic is missing, and that is Supportability. Considering the need of

the hour, a new usability model is proposed with supportability as a sub-characteristic,

in addition to the other sub-characteristics-given in ISO 25010 model, namely

appropriateness recognizability, learnability, operability, user-error protection, user

interface aesthetics and accessibility as shown in Figure 3.2 of Chapter III. So,

supportability is proposed as a sub-characteristic of usability.

The validation of the proposed Usability model is carried out using the technique of

multi-criteria decision making approach [19][77], Analytical Hierarchical Process,

and is described in the following sub-section.

4.5.1 Validation

Step 1: Software Usability is decomposed into a hierarchy of sub-characteristics

appropriateness recognisability as Criteria C1, supportability as Criteria C2,

learnability as Criteria C3, operability as Criteria C4, user error protection as Criteria

110

C5, user interface aesthetics as Criteria C6, and accessibility as Criteria C7, as given in

Figure 4.8. Java build and AspectJ build software are taken as alternatives.

Figure 4.8: New Proposed Usability Model

Step 2: An industrial survey has been conducted using a form (as given in Appendix

A Figure A1.8, Figure A1.9 and Figure A1.10) consisting of 21 comparisons for

filling pairwise relative weight of characteristics C1 to C7 in the range of 1 to 9 is

provided to each individual. Mean of collected samples of pairwise relative weights is

calculated and allocated to sub-characteristics for further evaluation, as shown in

Table 4.24.

Table 4.24: Matrix SU for weights allocation to characteristics

Step 3: In order to determine the consistency of the allocated weights, eigenvector,

and eigenvalue are calculated.

SU =

 C1 C2 C3 C4 C5 C6 C7

C1 1 2.627 2.0301 3.0578 1.5834 3.0518 2.4375

C2 0.3807 1 1.8051 1.8176 2.0415 3.9207 2.8379

C3 0.4926 0.554 1 2.9534 2.7639 3.8758 3.3768

C4 0.327 0.5502 0.3386 1 2.1923 4.2688 3.1161

C5 0.6315 0.4898 0.3618 0.4561 1 4.2088 4.0954

C6 0.3277 0.2551 0.258 0.2343 0.2376 1 1.9395

C7 0.4103 0.3524 0.2961 0.3209 0.2442 0.5156 1

111

Table 4.25: SU
2
 Matrix after 1

st
 Iteration

While synthesis, in iteration, comparison matrix is squared, row sums and

eigenvectors are evaluated, and the difference between the current and previous

iterations eigenvectors are calculated. The procedure is followed until the time

difference becomes negligible. The resulting SU
2
 Matrix after squaring the SU Matrix

is given in Table 4.25. The row sum and eigenvector evaluated on SU
2
 Matrix is

shown in Table 4.26.

Table 4.26: Row sum and eigenvector on SU
2
 Matrix

Second Matrix: SU
4
 Matrix after squaring SU

2
 Matrix is displayed in Table 4.27.

SU
2
 =

 C1 C2 C3 C4 C5 C6 C7

C1 7.0000 10.4738 11.9197 19.1054 22.1646 45.2454 41.1172

C2 5.9832 7.00000 7.5891 12.8908 15.2841 33.8136 34.3276

C3 6.5829 7.5593 7.0000 11.6723 15.6590 37.4083 37.5661

C4 5.0921 5.4078 5.1517 7.0000 8.7366 23.8388 26.9919

C5 4.8363 5.6068 5.3431 7.1025 7.0000 17.7265 21.9263

C6 1.9019 2.4426 2.3813 3.4269 3.2150 7.0000 7.9758

C7 1.5286 2.3742 2.3913 3.6436 3.5019 7.2101 7.0000

 Row Sum Eigenvector

 157.0261 0.2595

 116.8864 0.1932

 123.4277 0.2040

 82.2188 0.1359

69.5416

0.1149

28.3434

0.0468

27.6497

0.0457

Row Total 605.0958 Total 1.0000

112

Table 4.27 SU
4
 Matrix after 2

nd
 Iteration

SU
4

=

 C1 C2 C3 C4 C5 C6 C7

C1 543.2817 672.4641 689.281 1003.9087 113.4044 2578.3007 2745.5044

C2 389.9157 488.53360 488.2463 732.8692 806.9727 1853.7392 1964.4516

C3 400.8487 506.0480 507.3060 762.5282 834.0199 1902.9496 2012.0229

C4 266.3081 339.2825 341.8531 518.2197 569.6632 1289.1941 1348.1184

C5 239.7195 303.3050 306.2355 487.1135 521.3829 1183.8822 1232.1051

C6 102.0598 127.6108 128.4498 195.4891 219.6550 502.9137 526.1554

C7 100.5027 124.2754 124.3680 188.3130 211.6539 488.7754 515.8227

Row sum and eigenvector is evaluated on the SU
4
 Matrix is shown in Table 4.28.

Also, the difference in the eigenvector of the second iteration and the first iteration is

given in Table 4.28.

Table 4.28: Row sum, eigenvector, and difference using SU
4
 Matrix

Third Iteration: The SU
8
 Matrix calculated by squaring the SU

4
 Matrix is given in

Table 4.29.

The row sum and eigenvector evaluated on the basis of SU
8
 Matrix along with the

difference between the eigenvector of SU
8
 Matrix and the eigenvector of the SU

4

Matrix is given in Table 4.30. Further iterations are not required as the difference is

approaching zero up to three decimal places.

 Row Sum Eigenvector Difference

 9326.1449 0.2630 0.0698

 6724.7283 0.1896 -0.0143

 6925.7232 0.1953 0.0594

 4872.6391 0.1318 0.00168

4253.7236

0.1200 0.0731

1802.3334

0.0508 0.0051

1753.7110

0.0495 -0.9505

Row Total 35459.0038 Total 1.0000

113

Table 4.29: SU
8
 Matrix after 3

rd
 Iteration

As per Thomas L. Saaty consistency check, the input matrix has been found

consistent as the value of maximum Eigenvalue is 7.7206 >7.

Table 4.30: Row sum, eigenvector, and difference of SU
8
 Matrix

Step 4: Values of Consistency Index and Consistency Ratio are calculated as given in

Equation 4.9 and Equation 4.10, respectively.

 ⋋

And

SU
8

=

 C1 C2 C3 C4 C5 C6 C7

C1 1898965.1 2381074 2388254 3609954 4005579 9171873 9657213

C2 1373275 1722044 1727262 2610825 2896771 6632643 6983512

C3 1417869.5 1778056 1783459 2695753 2990850 6847825 7210023

C4 955633.23 1198485 1202178 1817212 2016148 4615862 4859683

C5 865289.13 1085163 1088534 1645518 1825829 4180117 4400698

C6 365616.77 458489.2 459906.1 695233.3 771459.4 1766290 1859528

C7 355523.72 445797.4 447160.3 675847.5 750077.9 1717441 1808188

 Row Sum Eigenvector Difference

 33112913 0.2625 -0.0005

 23946333 0.1899 0.0002

 24723835 0.1960 0.0007

16665201

0.1321 0.0004

15091147

0.1197 -0.0003

6376523

0.0506 -0.0003

 8200135.4 0.0492 -0.0003

Row Total 126116088 Total 1.0000

114

Evaluated results for consistency demonstrate that the matrix is consistent; hence, the

proposed usability model is a valid model.

Figure 4.9: Rank Synthesis of Usability Model

Step 5: After the consistency check, alternative factors are evaluated according to

their weights, and a final ranking of the factors is done, as shown in Figure 4.9.

Evaluated results proved the model to be consistent, and the relative ranking of the

factors is appropriateness recognizability, learnability, supportability, operability, user

error protection, user interface aesthetics, and accessibility.

Hence, it is apparent that supportability is quite an important characteristic, and its

inclusion in the estimation of usability needs to be considered, thereby validating the

proposed usability model.

4.6 CHAPTER SUMMARY

In this Chapter, the analytic hierarchy process (AHP) technique is applied to validate

and evaluate the relevance of the proposed four characteristics under the higher-level

characteristics of the proposed Quality model for Aspect-oriented approach. Four

hierarchical models as a base model are designed for the application of AHP. To

conduct the AHP technique, the surveys on nearly 110 participants from the IT

Appropriateness
Recognisability

26%

Supportability
19%

Learnability
20%

Operability
13%

User Error
Protection

12%

User Interface
Aesthetics

5%

Accessibility
5%

Rank Synthesis of Usability Model

115

industry have been carried out, and the value of pairwise relative weights for the

characteristics is taken. The mean of the collected samples has been considered as

pairwise relative weights.

The case study validates the suitability and the usefulness of all the four proposed

characteristics of the proposed model. The final relative ranking of quality attributes

approves the inclusion of the proposed characteristics as desirable characteristics in

the modified quality model.

In the following Chapter V, the existing object-oriented software metrics suite is used

to determine the maintainability and reusability of software systems developed using

AOP approach. For this purpose, the statistics for software, Spacewar, developed in

Java and AspectJ are collected, and the comparison of the software quality

characteristics reusability, complexity, and maintainability is made.

116

117

CHAPTER V

INVESTIGATION OF REUSABILITY AND

COMPLEXITY OF AOP SYSTEMS

5.1 INTRODUCTION

An important reason to write good software is to provide quality service to the

customers. Kitchenham [78][79] (1989 a, b) refers to software quality as “fitness for

needs” and that it is “hard to define, impossible to measure, easy to recognize.”

However, measuring software quality is the prime difficulty faced by IT

professionals. Measurements play a vital role in understanding, controlling, and

improving the performance of software systems. As computers grow powerful,

software also tends to become more sophisticated and powerful. Measurement of

quality of such systems is a big challenge. Maintainability and reusability are essential

attributes of quality. Metrics have been used to assess the quality of software systems.

Software metrics provide a qualitative measure of the degree to which a system,

component, or process possesses a given attribute [1][2][71].

Nowadays, reuse has been playing a critical role in the design and development of

software systems. An important question faced by the software engineering

community while developing and maintaining software is where the complexity and

reusability are more? Selection of programming language and tool to build software

plays an important role not only in the coding process but also on the reusability of

the resulting software product. Java has been used extensively to develop object-

oriented software, whereas AspectJ has been deployed to write Aspect-oriented

systems. However, the issue which approaches lead to better maintainable and

reusable systems has not been investigated [80][81].

The next section describes the various software metrics used for the comparison

purpose of the software programmed in an object-oriented language and aspect-

oriented language.

118

5.2 SOFTWARE METRICS USED

With the usage of metrics, the quality of the software product can be assessed on a

continuous basis and leads to informed decision making. Out of various available

metrics, selection of the appropriate metrics ensures the development of software with

sustainable quality sustaining customer satisfaction, and improved business in the

market [82]. The metrics for object-oriented software systems conform to the

characteristics of object-oriented software like encapsulation, inheritance,

polymorphism, information hiding, massaging, localization, and object abstraction

techniques.

CK metric suite is for measuring the complexity about its impact on efficiency,

reusability, maintenance, etc. of an Object-Oriented System as they have underline

methods to define class coupling and class cohesion. Various metrics defined are

WMC (Weighted Methods per Class), RFC (Response For a Class), LCOM (Lack of

Cohesion of Methods), CBO (Coupling between object classes), DIT (Depth of

Inheritance Tree), NOC (Number of Children) [35].

R.Martin metric suite is to determine the interdependency between the subsystems of

the object-oriented system design. Highly interdependent system designs are less

reusable and challenging to maintain due to their rigidity. Various metrics defined are

instability, afferent coupling, efferent coupling, abstractness, and normalized distance

[83].

Lorenz and Kidd metrics suite is to identify various characteristics within a class

highlighting aspects of the class abstractions. These metrics further help in

determining where corrective action may be taken. Metrics defined are characterized

into size oriented, inheritance-based, internal to the class, and external to the class.

Various metrics defined are class size, number of operations overridden by the

subclass, number of operations added by the subclass and specialization index [36].

External Quality characteristic of a software system can be ascertained by combining

the metrics of its sub-characteristics. Depending on the programming methodology

used, there are numerous metrics available to measure the quality attributes. As

Aspect-Oriented Programming is developed on the basis of Object-Oriented

119

Programming hence, the metrics applicable on Object-Oriented Software System are

also relevant for Aspect-Oriented Software Systems and therefore can be used for the

external quality measurement in a certain way.

The comparative analysis of the various metrics is based on the exemplary software

coded in both Java and AspectJ. The calculations of the metrics have been carried out

using the Metrics 1.3.6 tool [122] at the Eclipse Platform (as presented in Appendix B

Figure A 2.1, Figure A 2.2, Figure A 2.3 and Figure A 2.4). The statistical comparison

of the metrics collected and visualized is presented in the next section.

5.3 COMPARATIVE ANALYSIS OF VARIOUS METRICS

Multiple object-oriented metrics proposed by authors have been determined to

estimate the impact of aspect orientation on the software development methodology.

Until date, there has been relatively less work done in the area of providing the means

of comparison between Aspect-oriented systems and their Object-Oriented

equivalents. In order to support such comparison, Spacewar software developed using

aspect-oriented software, AspectJ, and Spacewar software developed using object-

oriented software, Java is used for the comparison purpose. The UML diagrams for

Spacewar Java and AspectJ are given in Figures 5.1 and 5.2, respectively.

120

Figure 5.1: UML for Spacewar Java

121

Figure 5.2: UML for Spacewar AspectJ

122

The mean of the metrics for both the software version, Spacewar software

implemented in Java and AspectJ language are collected and are shown in Table 5.1.

Table 5.1: Mean of the Statistics collected for Spacewar (Java) and

Spacewar (AspectJ)

Graphical representation of the comparison of both the software (aspect and java) for

mean values are shown in Figure 5.3.

Metrics Spacewar Java Spacewar AspectJ

Number of Parameters 1.043 0.851

Number of Static Attributes 1.353 1.483

 Efferent Coupling 1 1

Specialization Index 0.145 0.191

Number of Attributes 5.824 2.103

Abstractness 0.227 0.222

Normalized Distance 0.227 0.278

Number of Static Methods 0.647 0.207

Depth of Inheritance Tree 1.941 1.828

 Instability 1 0.5

 McCabe Cyclomatic

Complexity

1.851 1.934

Nested Block Depth 1.394 1.331

 Lack of Cohesion of Methods 0.352 0.296

 Method Lines of Code 6.798 4.961

 Number of Overridden

Methods

0.235 0.31

 Afferent Coupling 0 1

 Number of Children 0.294 0.31

123

Figure 5.3: Displays the mean values of the collected metrics for Spacewar

(AspectJ and Java)

The metrics gathered on the whole package level are listed in Table 5.2.

Table 5.2: Package-level Statistics collected for Spacewar (Java) and

Spacewar (AspectJ)

The graphical representation of the package level metrics collected is displayed in

Figure 5.4.

Metrics Spacewar Java Spacewar AspectJ

Number of Classes 17 29

Number of Interfaces 5 3

 Number of Packages 1 2

 Number of Children 5 9

124

Figure 5.4: Displays the package level metrics collected for Spacewar (AspectJ

and Java)

The list of total values of the metrics collected for Spacewar implemented in Java and

AspectJ concerning methods is given in Table 5.3. Also, the graphical representation

of the same is given in the following Figure 5.5.

Table 5.3: List metrics with respect to methods

0

5

10

15

20

25

Number of
Classes

Number of
Interfaces

 Number of
Packages

 Number of
Children

Comparison of the total values of the metrics

Spacewar Java

Spacewar AspectJ

Metrics Spacewar Java Spacewar AspectJ

Total Lines of Code 1991 1427

 Method Lines of Code 1278 898

Weighted methods per Class 348 350

Number of Methods 177 178

Number of Static Methods 11 6

 Number of Overridden Methods 4 9

125

Figure 5.5: Displays the metrics collected with respect to methods

The metrics collected for the exemplary software for both Java version and AspectJ

version, concerning attributes used in the respective software versions are collected

and given in the following Table 5.4.

Table 5.4: Metrics collected with respect to attributes

The graphical representation of the metrics collected concerning attributes used in

Spacewar Java version and AspectJ version is given in Figure 5.6.

Metrics Spacewar Java Spacewar AspectJ

Number of Static
Attributes 23 43

Number of Attributes 99 61

126

Figure 5.6: Displays the metrics collected with respect to attributes

The discussion and analysis of the collected metrics and inferences concluded out of

those measurements with reference to the given reference range as listed in Table 5.5

and is presented in the following section.

5.4 METRIC ANALYSIS

The preferable ranges of the metrics collected are highlighted in the following Table

5.5.

127

Table 5.5: Preference range of the metrics

Out of the various metrics collected, the results obtained for both AspectJ software

and Java software shows the positive inclination towards AspectJ software in Table

5.6.

Metrics Preferable

Number of Parameters Low

Number of Static Attributes Low

Efferent Coupling Low

Specialization Index 0<=SIX<=12

Number of Classes Relative

Number of Attributes Low

Abstractness 0<A<0.5

Normalized Distance Low

Number of Static Methods Low

Number of Interfaces Limited

Total Lines of Code Relative

Weighted Methods per Class Low

Number of Methods High

Depth of Inheritance Tree <6

Number of Packages Relative

Instability 0<I<1

McCabe Cyclomatic Complexity Low

Nested Block Depth <=5

Lack of Cohesion of Methods Low

Method Lines of Code Relative

Number of Overridden Methods Low

Afferent Coupling Low

Number of Children Relative

128

Table 5.6: Comparative Metric Analysis

5.4.1 Stability

Instability metric indicates the package resilience to change in the software. The range

of the metric is 0 to 1, where 1 is for the completely unstable package. Instability

metrics for Spacewar Java program is double the value for Spacewar AspectJ. Hence,

Spacewar AspectJ software is more stable.

5.4.2 Reusability

Reusability can be analyzed by studying the number of classes, interfaces, and

parameters used in the software along with the number of children and the depth of

inheritance tree metric for the software.

The total number of classes and interfaces used in a package indicates the

extensibility of the software. The value for the total number of classes and interfaces

used in the AspectJ Spacewar software is significantly higher than that of Spacewar

Java software.

Also, numbers of parameters used in AspectJ Spacewar software are in controlled

number as compared to the Java software.

Number of Children (NOC) and Depth of Inheritance Tree (DIT) are used in depicting

the use of inheritance in the software. Under controlled values, Inheritance promotes

reusability. NOC depicts the width of the inheritance, while DIT depicts the depth of

the inheritance. NOC value for Spacewar AspectJ software comes out to be .310

ATTRIBUTE SPACEWAR ASPECTJ SPACEWAR JAVA

Stability √
 Complexity

√

Reusability √
 Maintainability √
 Cohesion √
 Coupling

√

129

(mean) while for Spacewar Java software it is .294 (mean). Also, DIT is 5 (max) for

the AspectJ version as compared to 6 (max) for the Java version. The upper limit for

DIT is <6 generally.

Hence these values show that the Spacewar AspectJ software is more reusable and

extensible as compared to the Java one.

5.4.3 Maintainability

Maintainability of the software can be analyzed by evaluating the Cyclomatic

Complexity, DIT, Class coupling, LOC, and cohesion metrics for the software.

Cyclomatic complexity should be low in the range of 0 to 10. It is more for AspectJ

software than Java software.

DIT should be low in the range of <6. It is acceptable for the Spacewar AspectJ as the

value is 5(max).

Low-Class Coupling is better, and an attempt should be made to minimize it. The

class coupling can be measured in two ways: one Efferent coupling and another

Afferent coupling. Efferent coupling is the number of classes in the package that is

dependent on the classes outside the package. This value is the same (1 max) for both

the versions. Afferent Coupling is the number of classes outside the package that is

dependent on the classes inside the package. Here the value of coupling for AspectJ

Spacewar software is more as the AspectJ language involves the weaving of aspects

into classes. It can, therefore, be concluded that aspectization improves the cohesion

of software but introduces coupling between base and aspectual units of

encapsulation.

Lines of code (LOC) metric for AspectJ software is significantly lesser than the Java

software as a repetition of code is avoided due to the usage of aspects.

Value for Cohesion metric for the modules should be more to localize the effect of

change in the software and to increase the modularity of the software. Hence the value

for Lack of cohesion of Methods (LCOM) metric should be low. LCOM value for

AspectJ software is lesser than that for Java software, which indicates the better

130

cohesion and modularity of the software, reducing the ripple effect of change in the

software.

Considering all these factors, it is assured that the Spacewar software created using

AspectJ software better modular, stable, easily maintainable, and modifiable;

however, at the cost of complexity caused due to higher coupling.

Three novel metrics in order to fill the research gap of the metrics for the proposed

characteristics of the novel quality model are presented in the following Chapter VI

concerning, Aspect-oriented System Coupling, Supportability, and Extensibility.

131

CHAPTER VI

NOVEL METRICS FOR AOP

6.1 INTRODUCTION

All the software quality attributes require their corresponding software metrics to

analyze and evaluate the extent of the presence of that particular quality attribute in

the software product. Further, these quantitative measures may help the programmers

and coders to identify as well as rectify the weakness of the software product. With

an aim to fill in the research gap, three metrics are proposed in the following sections

concerning, Aspect-oriented System Coupling, Supportability, and Extensibility.

In the subsequent section, the coupling metric for a complete aspect-oriented software

system is presented in detail.

6.2 AO COUPLING METRIC

Any software system is composed of entities and the relationships between those

entities. The relationship can be inbound (in-between attributes of an entity) or

outbound (in-between two entities). The degree of relationship in-between a single

entity is called cohesion. A strong inbound relationship depicts how much an entity

stands alone. However, as different entities of a software system communicate with

each other; coupling comes into the picture. It describes the relationship between two

entities in a software system. Coupling is an essential feature of any system, and it

cannot be eradicated from the software system without affecting the performance,

readability, or maintenance of the software. However, the high coupling should be

avoided, as it results in heavy dependency of an entity on another entity. Loose

coupling between entities is preferred, as it displays more independence among

entities and reduces the chance and scope of a ripple effect caused by any change in

an entity.

In procedural programming systems, the degree of coupling is calculated based on the

extent to which a module/subroutine has access to another module/subroutine. In

132

object-oriented programming, the concept of encapsulation was introduced to control

coupling. Encapsulation proved to be an essential technique for achieving loose

coupling. Classes hide the internal details from other classes, and strict interfaces

were used for communication with other classes. The Coupling Between Objects

(CBO) metric is used to depict a number of classes referred to or used by a particular

class. A high CBO value for class A shows that class A is highly dependent on other

classes and that any change in that class is likely to affect various dependent classes,

either directly or indirectly. Hence, it makes it difficult to maintain and expand the

system [35].

The basis of encapsulation in object-oriented programming is to encapsulate the

identified entities into classes. In this framework, the implementation of crosscutting

concerns tends to increase the system interdependencies, which consecutively

increase the coupling. In Aspect-oriented programming, the encapsulation is not only

composed of classes, but cross-cutting concerns are also identified and encapsulated

as aspects. This approach allows for the apparent isolation and reuse of code that

implements cross-cutting concerns with the usage of aspects [97][98].

A brief revisit of the work done by other researchers for defining metrics for Aspect-

oriented software systems, especially coupling, is given in the following sub-section.

6.2.1 Existing Aspect-Oriented Coupling Metric

Significant contributions for analyzing and proposing coupling metrics for Aspect-

oriented systems are summarized in Table 6.1.

 Zhao [37][38] used the aspect dependency graph framework to identify

interdependencies between aspect and classes and to define measurements for

aspect coupling. However, the defined coupling metric did not consider the

dependency between aspects or classes.

 Ceccato and Tonella [39] extended the object-oriented CK metrics suite for aspect-

oriented systems. Classes and aspects were used as a module, whereas methods,

advice, and introductions were used as operations. Various coupling metrics for

AOP were inspired from the CK metric suite, such as CMC (Coupling on Method

Calls) and CFA (Coupling on Field Access). A separate metrics for measuring the

133

coupling of aspect as well as introduction were also defined, namely, CAE

(Coupling on Advice Execution) and CIM (Coupling on Intercepted Module).

 Bartsch and Harrison [40] evaluated the five Aspect-oriented coupling metrics

proposed by Ceccato and Tonella [39] and claimed that only CDA is completely

valid from the perspective of measurement theory.

 Kumar et al. [47] proposed the coupling metrics for generic AOS based on the

connections between the elements. The proposed metrics were CoAT (Coupling on

Attribute Type), CoPT (Coupling on Parameter Type), CoAR (Coupling on

Attribute Reference), CoOI (Coupling on Operation Invocation), CoI (Coupling on

Inheritance) and CoHA (Coupling on High-Level Association).

Table 6.1: Summary of AOP metrics and features

A summary of software measures proposed by various authors with respect to features

is given in Table 6.1. The primary focus of the current coupling metrics defined is

based on fields, methods, classes, or aspect as a standalone entity. Only a few metrics

exist for the measurement of software quality attributes at a higher level of abstraction

in AOSs. Hence, one metric for complete Aspect-oriented Software System Coupling

is proposed below.

6.2.2 Proposed Aspect-Oriented System Coupling Metric

Software measurement assessment plays an integral part in first understanding and

then controlling the software development process and product in order to improve

them. Software metrics are considered to be the critical indicator of the

absence/presence of software attributes in the end software product, as well as the

extent of their presence. One of the reasons for non-acceptance of the software

Author Zhao and Xu

[37][38]

Ceccato and

Tonella [39]

Sant' Anna et

al. [43][44]

Kumar et al.

[47][48][49]

Coupling

Metric
YES YES YES YES

134

measure by the academic or industry is a lack of clear definitions of the concepts that

are used in defining software measures [92][93][99][100].

A theoretical framework for defining the Aspect-oriented Coupling Metric is provided

in the following subsection. It gives the proposed definitions for the elements and

relationships associated with Aspect-oriented software that will support in building

the coupling assessment framework.

6.2.2.1 Theoretical Framework

The first crucial activity in proposing software metric is to give clear, unambiguous,

and precise definitions of relevant concepts, which acts as a vital foundation for

laying down an assessment framework.

Figure 6.1: Elements of AOS

 Defining a meaningful, rational, and sound software measure is essential. Some basic

definitions related to the aspect-oriented software system that is used for defining the

aspect-oriented system coupling metric and for validating against Briand [101]

properties are proposed below:

135

 System

Definition 1: An Aspect-Oriented System S consists of a set of elements E and

relations R between the elements as given in Equation 6.1.

 (6.1)

 Element

Definition 2: The elements E of an Aspect-Oriented System consist of classes, aspects,

and interfaces, as shown in Figure 6.1.

 Relation

Definition 3: Relation R(i , j) is equal to one if element i and element j are related to

one another. The different types of relations can be:

Class – Class Aspect – Class

Class – Aspect Aspect – Aspect

Class – Interface Aspect – Interface

 Module

Definition 4: For each element e ϵ E, let M(e) be the set of modules in e that may

consist of –

Methods in Class e or Methods in Interface e or Advice in Aspect e as presented in

Equation 6.2.

 (6.2)

 Attribute

Definition 5: For each element e E, let A(e) be the set of attributes of element e as

given in Equation 6.3

136

 (6.3)

That may consist of –

Attributes in class e or

Attributes in interface e or

Intertype declarations in aspect e

Now, after laying the foundation of the basic definitions to be used for metric

proposal, Aspect-oriented metric for measuring the coupling of the system is hereby

proposed.

6.2.2.2 New Proposed AO Coupling Metric

The proposed Aspect-oriented System Coupling COAO metric is defined as shown in

Equation 6.4.

COAO= (CO(A) + CO(M)) / n (n-1)) (6.4)

Where CO(A) represents Attribute coupling, CO(M) represents Module Coupling, and

n represents the total number of elements.

The various steps to measure and analyze the proposed aspect-oriented system

coupling metric COAO are illustrated in Figure 6.2.

137

Figure 6.2: Methodology to measure and analyze the proposed aspect-oriented

system coupling metric COAO

Module Coupling CO(M) is composed of elements that have been declared in the

modules, which may possibly be triggered by a given element and then counting

them. This includes the aspects that enclose advices that may be initiated along with

the classes and interfaces that encompass methods that may be called.

Mathematically, it may be stated, as shown in Equation 6.5.

For elements i and j in a set of elements E

 there exists a module M(j), such that module M(i) M(j) (6.5)

The value of COAO will range from zero to one, as described in Table 6.2. COAO= 1

indicates strong coupling, whereas COAO=0 indicates loose coupling.

138

Table 6.2: Qualitative categorization of Aspect-oriented Coupling

The proposed Aspect-oriented system coupling metric, COAO, is analyzed by

considering the three cases that are presented below:

 Best case

When all elements in an Aspect-oriented system are independent or when the system

is empty, that is when there are no entities; then, there will not be any relation, and

hence, COAO=0. That means, no coupling at all.

 Average case

When approximately half of the elements in an Aspect-oriented System are related to

one another, then the COAO will range from .3 to .7, indicating that 30 to 70 percent of

the elements are connected via relationships to each other, and any change will cause

a localized ripple effect.

 Worst case

When all elements of the system are related to each other, then the number of

relationships would be n (n-1); giving COAO = 1.

6.2.2.3 Illustration

For illustrating the proposed metric, an example aspect-oriented software with two

packages, P1 and P2, as shown in Figure 6.3 is considered.

COAO Range Coupling Category

0 No Coupling

0 <COAO≤0.3 Loosely Coupled

0.3<COAO≤0.7 Average Coupled

0.7<COAO<1 Tightly Coupled

1 Highly Coupled

139

Figure 6.3: AOS Example

Using the example, as shown in Figure 6.3, the value of COAO is calculated by

following the steps given for the evaluation of the Aspect-oriented system coupling

metric, as illustrated in Figure 6.2. There is an AOS composed of a set of Elements in

packages (P1 and P2) and a set of Relations. In Figure 6.3, there are five elements in

total, including aspects (A1 and A2), classes (C1 and C2), and interfaces (I1). There

are four relations, namely, r(A1,C1), r(C1,A2), r(C2,A2) and r(C2,I1).

Table 6.3: Identification of a Relation, as a contributor, to Attribute or Module

Coupling

As per the identification and categorization in Table 6.3, we get

Attribute Coupling CO(A) =2 Module Coupling CO(M) =2 n=5

Relation Type of Coupling

r(A1,C1)=1 Attribute Coupling

r(C1,A2)=1 Attribute Coupling

r(C2, A2)=1 Module Coupling

r(C2, I1)=1 Module Coupling

140

Using Equation 6.4, we get

 COAO

 = 0.02 (6.6)

Where COAO=0.02. Hence, the given Aspect-oriented System possesses loose

coupling, as it falls in the range of 0 <COAO≤0.3

Validation for the proposed AO System Coupling Metric is given in the next section.

6.2.3 AO Coupling Metric Validation

So as to ensure, that the proposed Aspect-oriented Coupling metric truly measures the

Aspect-oriented software coupling characteristic, the theoretical soundness of the

measure is checked based on the measures of the properties (internal characteristics)

of the software. It is a prerequisite for metric acceptance and usage. There are various

means for validating software engineering measurement [102]. The proposed Aspect-

Oriented Coupling metric is theoretically validated using Property-Based software

engineering measurements given by Briand et al. [101] for coupling, as presented in

Table 6.4.

Table 6.4: List of Coupling Property Measures given by Briand

6.2.3.1 Property 1- Nonnegativity

It states that the coupling of a system <E, R> is nonnegative.

PROPERTY COUPLING

Property 1 Non-negativity

Property 2 Null Value

Property 3 Monotonicity

Property 4 Merging of Modules

Property 5 Disjoint Module Additivity

141

The value of coupling of an Aspect-oriented System, as defined, will always be

greater than or equal to zero. Hence, COAO satisfies Property 1.

6.2.3.2 Property 2- Null value

It states that the coupling of a system <E, R> is null if there are no relationships

among entities of a system.

If a System S is empty, that is, if the Number of Elements E is zero (E Φ) or

Number of Relations R is zero (R Φ), or both are null, the value of COAO will be

zero. Hence, COAO satisfies Property 2.

6.2.3.3 Property 3- Monotonicity

It states that if a relation r(i , j) is added between element i and element j, then the

value of coupling should not decrease.

The value of COAO will either be the same as the previous value or will increase with

the addition of r(i , j). Hence, COAO satisfies Property 3.

6.2.3.4 Property 4- Merging of elements

It states that if two elements i and j are merged, then the value of coupling will

decrease due to the inter-module relationship between the merged elements.

If Ǝ r(i , j) R, then the value of COAO will decrease because CO(A) or CO(M) or

both will decrease. That is, upon merging of two elements, if there is any relation

between the attributes or modules of the merging elements, then the value of CO(A)

or CO(M) or both will decrease due to merging, thus, further reducing the value of

COAO. Hence, COAO satisfies Property 4.

6.2.3.5 Property 5- Disjoint element additivity

It states that if two elements i and j are merged, then the value of coupling will remain

unchanged due to the null relationship between the merging elements.

142

If r(i , j) ∉ R, then the value of COAO will remain unchanged as both CO(A) and

CO(M) remain unaffected. That is, on merging two elements, if there is not any

relationship between the attributes or modules of the merging elements, then the value

of CO(A) or CO(M) will not be affected by merging and will remain the same, and

the value of COAO will also remain unchanged. Hence, COAO satisfies Property 5.

As all Coupling properties 1 –5 hold by the COAO measure, it is a valid coupling

measure for an Aspect-oriented System.

The detailed description of the proposed metric for the evaluation of supportability is

given in the following section.

6.3 SUPPORTABILITY METRIC

Supportability metric measures the extent to which the software provides support and

service for identifying and resolving issues while using the software or when it fails to

work correctly. The metric for measuring supportability has been designed using the

obtrusive data collection approach.

Figure 6.4: Relationship between Supportability and Quality

A sample questionnaire has been developed and proposed, which is to be filled by the

end-user in an attempt to evaluate and assess the supportability provided by the

software product. Also, it can be used to identify the weaknesses in the software

product regarding supportability and identify the working areas which need

improvement so as to ascertain as well as enhance the usability of the software

143

[103][104][105]. Relationship between quality and supportability is depicted in Figure

6.4.

The questionnaire contained statements about the comprehensive documentation,

online support, usage of troubleshooting tools; help menus and event logging or

tracing code, as shown in the (Appendix C Table A3.1). The central purpose of this

sample questionnaire is to assess the supportability of software products. Evaluation

of this will help in identifying any shortcomings with the aim to enhance

supportability [106]. A similar questionnaire may be developed for the specific

software product and its requirements — following which the methodology for

evaluating the Supportability metric may be applied.

End Users are asked to identify the extent up to which they agree or disagree with

each of the statements (Appendix C Table A3.1) in the range of 1 to 5, where 1

represents pre-dominantly disagree, 3 represents the average, and 5 represents pre-

dominantly agree. ‘SupportValue’ is determined as the sum of the SValue evaluated

using Equation 6.7 on the basis of the response of the user to the questions asked in

the proposed questionnaire.

 (6.7)

Where ’n’ represents the number of questions in the questionnaire and ‘SValue(i)’ is

the value corresponding to the response entered by the user in Question ‘i’.

Thereafter, Supportability Metric is computed as per Equation 6.8.

 (6.8)

Based on the inferences evaluated by Zuse [53], Supportability metric evaluated using

equations (6.7) and (6.8), can further be analyzed using interval scale (in accordance

to the standard statistics rules) as highlighted in Table 6.5.

144

Table 6.5: Supportability Reference Table

Supportability is considered to be unsatisfactory if its value<=4 as that implies that

most of the responses given by the users lie in the range of disagree. Supportability is

considered to be satisfactory if its value lies in the range of 5 to 7. However, if the

Supportability value is more than or equal to 8, then it is considered a highly

supportable software.

6.3.1 Case Study

In an attempt to evaluate the proposed supportability metric, two industrial projects of

academic level are selected that are interactive based application software. Project 1 is

a text editor made under training program at CMC and Project 2 is quiz competition

application software made under the training program at IQQUEST. Further details

are available with the author on request. A set of evaluators were given the projects

for usage and were asked to fill the supportability questionnaire as given in (Appendix

C Table A3.1).

Table 6.6: Project 1 Supportability metric

Project 1 was assigned to five evaluators (Appendix C Table A3.2). Calculated values

of the SupportValue and Supportability metric are given in Table 6.6.

1-4 5-7 8-10

Needs Improvement Satisfactory Highly Supportable

 E1 E2 E3 E4 E5

Support Value 34 29 21 30 27

Supportability 4.5 3.9 2.8 4.0 3.6

145

Table 6.7: Project 2 Supportability metric

Project 2 was also assigned to five evaluators (Appendix C Table A3.3).

SupportValue and Supportability metric values are shown in Table 6.7. Comparison

of the supportability metric for the two projects is presented in Figure 6.5.

Figure 6.5: Supportability for Project1 and Project2

Average Supportability for Project1 and Project2 is found to be 3.8 and 6.2. Figure

6.5 evidently highlights that Project 2 is more Supportable than Project1 hence better

adaptable and acceptable by the end-users than Project1.

The next section describes the proposed extensibility metric in detail.

 E1 E2 E3 E4 E5

Support Value 50 47 45 44 47

Supportability 6.7 6.3 6.0 5.9 6.3

Project10.0

2.0

4.0

6.0

8.0

E1 E2 E3 E4 E5

S
u

p
p

o
rt

a
b

il
it

y

End Users

Project1

Project2

146

6.4 EXTENSIBILITY METRIC

Taking into account that modern-day software applications involve management and

processing of massive amount of data, originating from a multiplicity of sources such

as the Internet of Things. Such data may be dynamic, homogenous, or heterogeneous.

The users, according to their own specific needs, through programming code, process

such data. The coding tool should be such that it is extensible and appropriate to

manage such data. The aspect-oriented approach of programming can be a superior

option to handle such data for extracting useful and timely information. The aspect-

oriented approach can contribute positively to extending the software design and code

dynamically. However, there is a need for a formal framework for evaluating the

extensibility of the software.

To design and propose a framework for assessing extensibility, the required

maintainability model, which was proposed and validated in previous Chapter 4, has

been used. Overview of the proposed Extensibility framework is shown in Figure 6.6.

Figure 6.6: Overview of Extensibility Framework

147

6.4.1 Internal Factors and Metrics for Extensibility

Extensibility is the capability of software to append functionality with no diverse

effect on the system. Functionality changes may occur due to altering or enhancing

requirement specifications. Extensibility may be considered a specific type of reuse of

an element. It is a standardized measure of the ability to broaden a software design to

incorporate the implementation while considering future growth. The extensible

design avoids software development issues such as low cohesion and high coupling.

Figure 6.7 depicts the relationship between extensibility quality characteristics with

internal factors and metrics.

Figure 6.7: Relationship of extensibility quality characteristics with internal

factors and metrics

 Design size

Software design considers modularity as one of the fundamental principles in

software engineering. It works on the principle of dividing a complex system into

simpler pieces called modules. The division is based on the separation of concerns.

Modularization reduces the complexity of the software and improves maintainability,

extensibility, and productivity. It is computed by counting the number of classes,

interfaces, and aspects in the AO software.

148

 Complexity

Code complexity is a measurement relative to coding errors. To obtain, high-quality

software, with minimal testing and maintenance cost, code complexity must be

checked regularly. It is related to the number of decision points present in the code.

This identification assists in locating the hidden knots of logic in the code.

Furthermore, the identified highly complex code sections might be bifurcated into

smaller, manageable, and logical sub-sections. It is computed by using the Mc Cabe

Cyclomatic complexity metric.

 Coupling

Coupling is the measure of the strength of the interconnection between modules and

assesses the type and number of interconnections among modules. Although coupling

cannot be zeroed, it can be brought to controllable levels with the use of modularity

and appropriate encapsulation. It is computed by assessing afferent and efferent

coupling in the AO software.

 Cohesion

Cohesion is a positive aspect of the module. It is the association among the different

components of a module and assesses why the components are grouped together in a

module. It is computed by determining the lack of cohesion of methods metric.

Table 6.8: Metrics for Design Characteristics

Design Characteristic Design Metric

Design Size(DS)
Number of classes, interface, and

aspects

Complexity(CO)
McCabe cyclomatic complexity

metric

Cohesion(Coh) Lack of cohesion of methods

Coupling(Cou) Total (efferent and afferent) coupling

149

The metrics used to collect information regarding the various design characteristics

related to the extensibility of AOS are given in Table 6.8. Using these metrics, an

assessment of extensibility is made for a set of AOS software.

6.4.2 Proposed Extensibility Metric

In an attempt to measure the qualities of aspect-oriented software precisely, the

related attributes for each quality need to be selected [107]. In this work, the focus is

on a specific type of reuse of a component called extensibility, i.e., the extension of

software without accessing existing code to edit or copy it [107]. The proposed metric

is formulated based on the weighting method to measure extensibility.

Extensibility is a systemic measure of the ability to extend a software design principle

[107], which is derived by using the following condition shown in Equation 6.9.

Where,

DS refers to the design size,

CO refers to the complexity, and

CC refers to the cohesion/coupling.

6.4.3 Case Study

The proposed framework for extensibility is tested for a set of aspect-based software.

Set of software; built-in AspectJ; are selected, and extensibility is computed using the

attributes identified in the previous section. Summary of the metrics collected for the

list of AspectJ projects is given in Table 6.9.

150

Table 6.9: List of AspectJ Projects

Table 6.10 gives the value of extensibility for all AspectJ software listed in Table 6.9

calculated by applying the metrics defined in Table 6.8 and Equation 6.9. [As given in

Appendix B Figure A2.3, Figure A2.4 and Appendix D Figure A4.1 – Figure A4.7]

Table 6.10: Extensibility of AspectJ Projects

AspectJ Project Number of packages Lines of code

Spacewar AspectJ 2 1415

Bean AspectJ 1 123

Introduction AspectJ 1 71

Observer AspectJ 1 128

Telecom AspectJ 1 181

TJP AspectJ 1 49

Tracing AspectJ 1 84

AJHotDraw 24 21564

Design

Size
Complexity Cohesion Coupling Extensibility

Spacewar AspectJ 29 1.934 0.704 2 7.91

Bean AspectJ 3 1.182 0.25 1 1.17

Introduction AspectJ 4 1.167 0.63 1 1.61

Observer AspectJ 8 1 0 1 2.25

Telecom AspectJ 13 1.194 0.286 1 3.69

TJP AspectJ 2 1 0 1 0.75

Tracing AspectJ 6 1 0.062 1 1.78

AJHotDraw 381 1.592 .737 10.333 95.684

151

 In order to make a comparable analysis, first seven projects are used to ascertain the

relationship between the four selected attributes (design size, complexity, cohesion,

coupling) and extensibility as shown in Figures 6.7, 6.8, 6.9, and 6.10, respectively.

Figure 6.8: Relation between Design Size and Extensibility

Figure 6.9: Relation between Complexity and Extensibility

design size, 29

design size, 3

design size, 4

design size, 8

design size, 13

design size, 2

design size, 6

extensibility,
7.9095

extensibility,
1.1705 extensibility,

1.60675

extensibility,
2.25

extensibility,
3.6915

extensibility,
0.75

extensibility,
1.781

0

1

2

3

4

5

6

7

8

9 0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

M
o

d
u

la
ri

ty
 V

s.
 E

xt
e

n
si

b
ili

ty

AspectJ Software Projects

complexity,
1.934

complexity,
1.182

complexity,
1.167

complexity, 1

complexity,
1.194

complexity, 1

complexity, 1

extensibility,
7.9095

extensibility,
1.1705

extensibility,
1.60675

extensibility,
2.25

extensibility,
3.6915

extensibility,
0.75

extensibility,
1.781

0

1

2

3

4

5

6

7

8

9 0

1

2

3

0 1 2 3 4 5 6 7 8

C
o

m
p

le
xi

ty
 V

s.
 E

xt
e

n
si

b
ili

ty

AspectJ Software Projects

152

Figure 6.10: Relation between Cohesion and Extensibility

Figure 6.11: Relation between Coupling and Extensibility

cohesion, 0.704

cohesion, 0.25

cohesion, 0.63

cohesion, 0

cohesion, 0.286

cohesion, 0

cohesion, 0.062
extensibility,

7.9095

extensibility,
1.1705

extensibility,
1.60675

extensibility,
2.25

extensibility,
3.6915

extensibility,
0.75

extensibility,
1.781

0

1

2

3

4

5

6

7

8

9 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8
C

o
h

e
si

o
n

 V
s.

 E
xt

e
n

si
b

ili
ty

AspectJ Software Projects

coupling, 2
coupling, 1

coupling, 1

coupling, 1

coupling, 1

coupling, 1 coupling, 1

extensibility,
7.9095

extensibility,
1.1705 extensibility,

1.60675

extensibility,
2.25

extensibility,
3.6915

extensibility,
0.75

extensibility,
1.781

0

1

2

3

4

5

6

7

8

9 0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

C
o

u
p

lin
g

V
s.

 E
xt

e
n

si
b

ili
ty

AspectJ Software Projects

153

Figure 6.8 to 6.11 show the relationship between the attributes and extensibility. As

depicted in Figure 6.8, even a small change in design size is reflected strongly in

extensibility. Extensibility varies with even a small change in design size; which gives

the feeling of strong interrelation between design size and extensibility. Extensibility

increases with an increase in design size and extensibility decreases with a decrease in

design size. Variation in complexity also affects the extensibility measure, as reflected

in Figure 6.9. The results confirm the strong correlation between the complications of

the software with its extensibility. Figure 6.10 depicts the effect of cohesion between

the software systems on its extensibility. Increase or decrease in cohesion is reflected

direct proportional in extensibility. Extensibility variance with the change in coupling

is depicted in Figure 6.11. To further add confidence in the given extensibility metric,

a correlation analysis is done in the following subsection.

6.4.4 Extensibility Metric Validation

To ensure that the proposed extensibility metric measures the extensibility

characteristic of the aspect-oriented software using the modularity, complexity,

cohesion, and coupling metrics, a correlation between the sub-attributes and

extensibility must be established. The Karl Pearson Product Moment correlation

technique is used to find the correlation value. The computed values are shown in

Table 6.11.

Table 6.11: Correlation values for DS, CO, CC and Extensibility

The findings in Table 6.11 reveal a strong positive relationship between the selected

attributes and extensibility. Thus, it can be concluded that the level of sub-attributes

can contribute effectively to determine the level of extensibility, with design size

being the top contributor, followed by complexity, coupling, and cohesion.

Attributes Design Size Complexity Cohesion Coupling

Extensibility 0.99 0.90 0.68 0.81

154

6.4.5 Extensibility Framework Comparison for OO and AO Software

In order to ensure the novelty of the extensibility framework, the extensibility for the

existing object-oriented software development approach is compared with the latest

aspect-oriented software development approach.

The Spacewar Project is selected to compare extensibility for object-oriented and

aspect-oriented software. For object-oriented, the Spacewar code is built in Java, and

for aspect-oriented, the Spacewar code is built in AspectJ. The lines of code in Java

and AspectJ are 1991 and 1415, respectively. The Spacewar Java code is composed of

22 classes and interfaces, while the Spacewar AspectJ code is composed of 29 classes,

interfaces, and aspects.

The comparison graph in Figure 6.12 illustrates the extensibility measure of the

Spacewar software implemented in Java and AspectJ.

Figure 6.12: Extensibility analysis

design size complexity cohesion coupling extensibility

Spacewar Java 22 1.851 0.648 1 6.28675

Spacewar AspectJ 29 1.934 0.704 2 7.9095

0

5

10

15

20

25

30

35

Comparison of Java and AspectJ

155

The results show that the extensibility of the Spacewar software build in Java is

calculated as 6.3 (approx.), while that of the software build in AspectJ is 7.9

(approx.). Therefore, it is easier to extend the functionality of the same project built in

AspectJ than in Java.

The next chapter concludes the outcome of the work proposed in this thesis. The

future research directions are also enumerated in this regard.

156

157

CHAPTER VII

CONCLUSION AND FUTURE SCOPE

7.1 CONCLUSION

With time and evolution, quality has become a mandatory attribute of any category of

software. On a daily basis, a significant number of software products are developed

and released by the IT industry. Software quality models are used as a vital tool for

quality assessment and assurance. Many software quality standards and measure have

been used by the software industry personnel so as to ensure and improve the quality

of the software. But still there exist many untouched areas of prime interest that can

significantly improve the quality of the software, its measurement, and analysis.

Towards this goal, an extensive survey on Quality aspects has been done keeping the

focus on three main software programming paradigms, namely; module oriented

programming, object-oriented programming, and aspect-oriented programming.

Survey details identified various quality models and software metrics for measuring

the quality of the software. Critical analysis of all the reviewed aspects of quality-

related to programming methodology being used is done, and significant challenges

towards measuring, analyzing software quality were identified that further become the

basis for objectives of work carried out in this dissertation.

The foremost objective of the work is to build a software quality model that can

incorporate modern programming features and attribute to improve overall software

quality assessment. To achieve this objective, a valid software quality model has been

developed on the lines of ISO 25010. The contribution made by the present work are

listed below:

 An Improved Model To Estimate Quality Of The Software Product

The existing software quality models have been critically studied, and a relative

comparison among them is made. After investigating them in detail and examining

their limitations, a modified software quality model based on the guidelines of latest

158

ISO/IEC 25010, is being proposed, with a view of taking into consideration the

present-day complexities and requirements of software products.

 Quantitative Evaluation of Proposed Maintainability Model using AHP

Method

This work aims to validate and evaluate the proposed Aspect-oriented software

maintainability Quality model as a single unit using the analytic hierarchy process

(AHP). This model has considered six attributes, namely extensibility; reusability;

modifiability; analysability; testability and modularity concerning maintainability

characteristic of quality. To conduct the AHP technique, the surveys on participants

from the IT industry have been carried out, and the value of pairwise relative weights

for the characteristics is taken. The mean of the collected samples has been considered

as pairwise relative weights. The case study validates the suitability and the

usefulness of the proposed model. The final computed Eigenvector gives the relative

ranking of quality attributes in relation to maintainability in the order of extensibility;

reusability; modifiability; analysability; testability and modularity.

 Analysis of Reliability Model with the Application of MCDM

To analyze and evaluate the reliability characteristic of the software product or

project, initially, various predefined models for the software quality concerning

reliability attribute in them as particular are reviewed. Through analysis, it was

diagnosed that although all the attributes relative to reliability are included in the ISO

25010 model other than scalability. Hence, a new model for software reliability with

the availability, maturity, fault tolerance, recoverability along with scalability is

proposed. With the objective to confirm the consistency of the proposed model, the

survey among the software industry people is conducted. Participants from various

reputed software industry participated in the survey. AHP method is applied for

ensuring the consistency of the proposed reliability model. Evaluated results

authenticate that the chosen sub characteristics for the software reliability are

consistent. The relative ranking of the sub characteristics is scalability, maturity, fault

tolerance, recoverability, and then availability.

159

 Performance Efficiency Assessment for Software Systems

To assess the performance efficiency characteristic of the software systems, firstly the

criterion/ factors that could affect the performance efficiency are identified and

structured into levels, and the performance efficiency model is proposed. AHP

method for ensuring the consistency of the proposed performance efficiency model is

applied. In order to assess and validate the proposed model, a survey is conducted in

which participants from software industry background participated. After AHP

evaluation, results demonstrate that the chosen quality sub characteristics are

consistent and the relative ranking of the quality attributes for performance efficiency

are in the order of time behavior; optimized code; resource utilization and then

capacity.

 Incorporating Supportability in Software Usability and its Assessment

As software product supportability is an essential feature for improving quality; hence

in this work suggests Supportability characteristic needs to be included as an

additional attribute to the Usability quality feature. Calculated results, after the

application AHP technique, proved the new proposed usability model to be consistent.

The relative ranking of the factors is evaluated in the order of appropriateness

recognizability, learnability, supportability, operability, user error protection, user

interface aesthetics, and accessibility. Also, a metric for measuring supportability has

been designed using the obtrusive data collection approach.

 Critical Assessment of Aspect Orientation Metrics and Quality

In order to investigate, which software metrics are helpful for assessing the quality of

aspect-oriented software, a systematic investigation is conducted and hence analyzed

the relationship of the AOP metrics with quality. Nearly sixty-five AOP metrics based

on aspects, joinpoints, pointcuts, introductions, etc. for aspect-oriented programming

approach have been analyzed along with their connectivity with the overall software

quality. Also, during the critical examination of the metrics, various metrics are

identified to affect precisely complexity, extensibility, reusability, encapsulation, and

understandability of the Aspect-oriented Software.

160

 Investigation of Reusability and Complexity of AOP systems

The Quality of Aspect-Oriented Software system is expected to improve the quality of

the developed software products by separating the non-functional concern from the

core concern. To analyze the impact, the OO metrics for the Spacewar software made

in Aspect-oriented language AspectJ and Object-oriented language Java, both, are

collected and compared. From the 23 metrics collected, the results obtained for

AspectJ software are significantly better than its Java counterpart in terms of

modularity, stability, maintainability, and extensibility, however at the cost of

complexity. This work uses a set of metrics defined initially for Object-oriented

systems. The metrics may be biased for OOP as they were created in context for OOP

before the advent of AOP. This comparison will work as a stepping stone for

assessing the quality of the software in terms of reusability, maintainability, and

complexity.

 Aspect-oriented system coupling metric and its validation

Coupling Metric for the complete aspect-oriented system is proposed in this work. For

this, first, a literature review is performed to review the current status of the metrics in

aspect-oriented programming. Particular emphasis is given on assessing the coupling

in aspect-oriented software systems. It was identified that although metrics exist for

evaluating the coupling of aspect-oriented systems, they are at the basic levels of

fields, methods, classes, or are aspects as standalone entities. Only a few metrics exist

for the measurement of software quality attributes at a higher level of abstraction in

AO systems. Hence, there is a need for one metric for complete Aspect-oriented

Software System Coupling. To accomplish this, formal definitions of the terminology

used concerning aspect-oriented programming are proposed. On the basis of the

clearly defined definitions, a formal mathematical metric is proposed for measuring

the coupling of an aspect-oriented system, namely, the Aspect-Oriented System

Coupling Metric COAO.

Further, an illustration of an example aspect-oriented system is made to demonstrate

the calculation of the proposed metric. To ensure the accuracy and enhance the

confidence in this metric, the proposed metric is validated against the five property

measures of coupling for software engineering that was projected by Briand [101]. As

161

all Coupling Properties 1 –5 hold by COAO measure, hence, the proposed aspect-

oriented coupling metric COAO is acceptable as a valid coupling measure for an

Aspect-oriented System.

 A Framework For Evaluating Extensibility In An Aspect-Oriented Software

System And Its Validation

The framework for evaluating the extensibility of aspect-oriented systems is presented

in this work. To accomplish this, a maintainability model for aspect-oriented software

systems that are proposed earlier has been used, and a novel framework for evaluating

the extensibility characteristic is formulated.

Further, testing of the proposed extensibility metric has been performed by

demonstrating the calculation of the proposed metric using a set of software projects

developed in AspectJ. Also, Karl Pearson Product Moment Correlation method is

used for validating the proposed extensibility metric. The results show that the metric

for measuring extensibility is appropriate.

Finally, a comparison has been performed for the software project built in OOP and

AOP in relation to extensibility. The analysis done indicates that the software project

built using AOP approach is more extensible than the one built using OO approach.

7.2 FUTURE SCOPE

In this work, various issues related to aspect-oriented quality model and measurement

have been addressed. But there is still a scope of improvement in a few areas that are

worth exploring for providing useful, specific, and timely information in the form of

metrics and measurements to software products. The list of some of these issues

ranging from existing software quality model, improvement to dealing with associated

metrics that are largely ignored by the current quality models is given below:

 The software metrics identified to be strongly affecting the trustworthiness of the

software can be used to measure the trustworthiness of the various software

products.

162

 The proposed maintainability, reliability, performance efficiency, and usability

model can be applied and cross-validated for other than Aspect-oriented

approaches and can be used for the relative comparison of the attributes.

 Further, the proposed model may be used to diagnose the specific software

weakness in terms of usage easiness and the acceptance of the customer.

 In the future, other external attributes such as extensibility, performance efficiency,

maintainability, and testability can be assessed and analyzed using the proposed

aspect-oriented coupling metric for Aspect-oriented systems.

 Autonomic features of a software product may also be incorporated.

 Henceforward, the proposed quality framework can be used to analyze total

software quality for aspect-oriented systems. The application of agile modeling

approach can also be investigated.

163

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology, In: IEEE

Std 610.12-1990, 1990, pp.1-84. DOI: 10.1109/IEEESTD.1990.101064.

[2] Roger S. Pressman, Software Engineering: A Practitioner's Approach (5th

edition), New York: McGraw-Hill Higher Education, ISBN: 0072496681,

2001.

[3] A. Kaur, P.S. Grover, A. Dixit, ”Performance Efficiency Assessment for

Software Systems”, In Software Engineering, Advances in Intelligent

Systems and Computing, vol.: 731, Singapore: Springer, pp. 83-92, 2019.

[4] Ian Sommerville; Software Engineering; 9th edition, Addison-Wesley,

USA, ISBN-13: 978013703515-1, 2010.

[5] G. Kiczales et al., “Aspect-Oriented Programming”, In: Proceedings of the

European Conference on Object-Oriented Programming (ECOOP’97),

Springer, pp. 220-242, 1997.

[6] G. Kiczales et al., “An Overview of AspectJ”, In: Proceedings of the 15
th

European Conference on Object-Oriented Programming (ECOOP’01),

Springer, pp. 327-353, 2001.

[7] A. Kaur, P. S. Grover and A. Dixit, “Analysis of Quality Attribute and

Metrics of various software development methodologies”, In: Proceedings

of International Conference on Advancements in Computer Applications

and Software Engineering, pp. 05 - 10, 2012.

[8] A. Kaur, P. S. Grover and A. Dixit, “An Improved model to estimate

Quality of the Software Product”, YMCAUST International Journal of

Research, vol.: 1, issue: 2, pp. 01 - 06, 2013.

[9] M. S. Ali et al., “A systematic review of comparative evidence of aspect-

oriented programming”, Information and Software Technology, vol.: 52,

issue: 9, pp. 871-887, 2010.

[10] K. Sirbi and P. J. Kulkarni, “On Using Metrics in Evaluation of Aspect

Oriented Programming Maintainability -A Research Article”, International

164

Journal Empirical Software Engineering, 2013

[11] A. Kumar, R. Kumar and P.S Grover, “An evaluation of maintainability of

aspect oriented systems: A practical approach”, International Journal of

Computer Science and Security, vol.:1, issue: 2, pp. 1-9, 2007.

[12] T. Li et al. “A storage solution for massive IoT data based on NoSQL” In

IEEE Proceedings of International Conference of Green Computing and

Communications (GreenCom), pp. 50-57, 2012.

[13] T. Spieldenner et al., “FiVES: An Aspect-Oriented Virtual Environment

Server”, In IEEE Proceedings of International Conference on Cyberworlds

(CW), pp. 103-110, 2017.

[14] S. Becker et al., “Trustworthy software systems: a discussion of basic

concepts and terminology”, ACM SIGSOFT Software Engineering Notes,

vol.:31, issue: 6, pp. 1-18, 2006.

[15] M. Pinto, J. M. Horcas, “How to develop secure applications with Aspect

Oriented Programming”, In IEEE Proceedings of International Conference

on Risks and Security of Internet and Systems (CRiSIS), pp. 1-3, 2013.

[16] V. O. Safonov, “Using aspect-oriented programming for trustworthy

software development”, Wiley-Interscience Publication, vol.: 5, 2008.

[17] A. Kaur, P. S. Grover and A. Dixit, “Critical Assessment of Aspect

Orientation Metrics and Quality”, Recent Trends in Programming

Languages (RPTL), vol.: 5, issue: 2, pp. 15-23, ISSN- 2455-1821, 2018.

[18] A. Kaur, P. S. Grover and A. Dixit, “Investigation of Reusability &

Complexity of AOP systems”, International Journal of Innovations &

Advancement in Computer Science (IJIACS), vol.: 7, issue: 3, pp.1-5, ISSN-

2347-8616, 2018.

[19] T.L. Saaty, Analytic Hierarchy Process, Encyclopaedia of Biostatistics,

vol.:1, 2005.

[20] A. Kaur, P. S. Grover and A. Dixit, “Incorporating Supportability in

Software Usability and its Assessment”, Communicated in Indian Journal

165

of Pure and Applied Mathematics, ISSN: 0019-5588, April 2019.

[21] A. Kaur, P. S. Grover and A. Dixit, “A framework for evaluating

extensibility in an Aspect-oriented software system and its validation”,

Recent Patents on Engineering, vol.: 13, ISSN: 2212-4047, 2019.

DOI: 10.2174/1872212113666190625115111

[22] A. Kaur, P. S. Grover and A. Dixit, “Aspect-oriented system coupling

metric and its validation”, Recent Patents on Computer Science, vol.: 12,

ISSN: 1874-4796, 2019. DOI: 10.2174/2213275912666190410143540

[23] J. A. McCall, P. K. Richards and G. F. Walters, “Factors in Software

Quality”, Volumes I, II, and III. US Rome Air Development Center

Reports, US Department of Commerce, USA, 1977.

[24] Marc-Alexis Côté, Witold Suryn and Elli Georgiadou, “Software Quality

Model Requirements for Software Quality Engineering”, In Proceedings of

14th International Software Quality Management & INSPIRE Conference

(SQM), Southampton Hampshire, UK, 2006.

[25] B. W. Boehm, J. R. Brown, M. Lipow, “Quantitative evaluation of software

quality”, In IEEE Proceedings of the 2nd International Conference on

Software Engineering, Los Alamitos (CA), USA, pp.592-605, 1976.

[26] B. W. Boehm et al., “Characteristics of Software Quality”, North-Holland

Publishing, 2
nd

 edition, Amsterdam, The Netherlands, 1978.

[27] ISO 2001; ISO/IEC 9126-1; Software Engineering –product quality- Part 1,

Quality model, International Organization for Standardization, Geneva;

Switzerland, 2001

[28] R. E. Al-Qutaish; "An Investigation of the Weaknesses of the ISO 9126

International Standard"; In Proceedings of Second International Conference

on Computer and Electrical Engineering, Dubai, vol.: 1, pp. 275-279, 2009.

DOI:10.1109/ICCEE.2009.83

[29] C. Wohlin, M. Ahlgren, “Soft factors and their impact on time to market”,

Software Quality Journal, vol.: 4, issue: 3, pp. 189-205, 1995.

166

[30] ISO/IEC 2011; ISO/IEC 25010:2011, Systems and software engineering-

Systems and software Quality Requirements and Evaluation (SQuaRE)—

System and software quality models.

[31] S. Commander, “The software industry in emerging markets”, Edward

Elgar Publishing, eISBN: 9781781958513, 2005.

[32] N. Fenton, J. Bieman, “Software metrics: a rigorous and practical

approach”, Third Edition, CRC press, USA, 2014.

[33] B. Mehndiratta, P. S. Grover, “Software metrics—an experimental

analysis”, In Newsletter ACM SIGPLAN Notices, vol.: 25, issue: 2, pp. 35 -

41, 1990.

DOI=10.1145/96429.96435

[34] A. Shaik et al., “Metrics for Object Oriented Design Software Systems: A

Survey”, Journal of Emerging Trends in Engineering and Applied Sciences

(JETEAS)”, vol.: 1, issue: 2, pp. 190-198, 2010.

[35] S.R. Chidamber, C.F. Kemerer, “A metrics suite for object oriented design”,

IEEE Transactions on Software Engineering, vol.: 20, issue: 6, pp. 476-493,

1994.

[36] M. Lorenz and J. Kidd, “Object-Oriented Software Metrics”, Prentice-Hall,

USA, 1994.

[37] J.Zhao and B. Xu, “Measuring aspect cohesion”, In Proceedings of

International Conference on Fundamental Approaches to Software

Engineering (FASE), Springer, Berlin, Heidelberg, pp. 54-68, 2004.

[38] J.Zhao, “Measuring coupling in aspect-oriented systems”, In Proceedings of

the 10
th

 International Software Metrics Symposium (METRICS’04), pp. 1-9,

2004.

[39] M. Ceccato and P. Tonella; “Measuring the effects of software

Aspectization”, In Proceedings of the 1
st
 workshop in Aspect Reverse

Engineering, vol.: 12, 2004.

[40] M. Bartsch and R. Harrison, “An exploratory study of the effect of Aspect

Oriented Programming on maintainability”, Software Quality Journal, vol.:

16, pp. 23-44, 2008.

167

[41] L. Herrejon, E. Roberto and S. Apel: “Measuring and Characterising cross

cutting in Aspect base programs; basic metrics and case studies”, In

Proceedings of International Conference on Fundamental Approaches to

Software Engineering (FASE), Springer, Berlin, Heidelberg, pp. 423-437,

2007.

[42] R. Burrows, A. Garcia, F. Taïani, “Coupling metrics for Aspect Oriented

Programming: A systematic review of maintainability studies”, In

Proceedings of Evaluation of Novel Approaches to Software Engineering

(ENASE), Springer, Berlin, Heidelberg, pp. 277-290, 2009.

[43] C. Sant’Anna et al., “On the reuse and maintenance of aspect-oriented

software: An assessment frame-work”, In Proceedings of XVII Brazilian

Symposium on Software Engineering, pp. 19-34, 2003.

[44] C. Sant’Anna et al., “On the Modularity Assessment of Software

Architectures: Do my architectural concerns count?” In proceedings of

International Workshop on Aspects in Architecture Descriptions (AARCH.

07), AOSD’2007, Vancouver, British Columbia, vol.: 7, 2007.

[45] A. Kumar; “Analysis and design of metrics for Aspect Oriented Systems”,

Doctoral dissertation, Thapar University, 2010

[46] P. S. Grover, R. Kumar and A. Kumar, “Measuring Changeability for

Generic Aspect–Oriented Systems”, ACM SIGSOFT Software Engineering

Notes, vol.: 33, issue: 6, pp. 1-5, 2008.

[47] A. Kumar, R. K. Bhatia and P. S. Grover, “Generalized coupling measure

for aspect-oriented systems” ACM SIGSOFT Software Engineering Notes ,

vol.: 34, issue: 3, pp. 1-6, 2009.

[48] A. Kumar, R. Kumar and P. S. Grover, ”Unified Cohesion Measures for

Aspect-Oriented Systems”, International Journal of Software Engineering

and Knowledge Engineering (IJSEKE), vol. 21, issue: 1, pp. 143-163, 2011

[49] R. Kumar, P. S. Grover and A. Kumar, “A Fuzzy Logic Approach to

Measure Complexity of Generic Aspect-Oriented Systems”, Journal of

Object Technology (JOT), vol.: 9, issue: 3, pp. 59-77, 2010.

168

[50] A. Kumar, P. S. Grover and R. Kumar, “A quantitative evaluation of aspect-

oriented software quality model (AOSQUAMO)”, ACM SIGSOFT Software

Engineering Notes, vol.: 34, issue: 5, pp. 1-9, 2009.

[51] M. Speicher, “What is usability? A characterization based on ISO 9241-11

and ISO/IEC 25010”, arXiv preprint arXiv: 1502.06792, 2015.

[52] A. Seffah et al., “Usability measurement and metrics: A consolidated

model”, Software Quality Journal, vol.: 14, issue: 2, pp. 159-178, 2006.

DOI=10.1007/s11219-006-7600-8

[53] H. Zuse, “Properties of software measures”, Software Quality Journal, vol.:

1, issue: 4, pp. 225-260, 1992. DOI=10.1007/BF01885772

[54] J. Nielsen, “Usability engineering”, Elsevier, 1994.

[55] H. J. Lee et al., “A User eXperience Evaluation Framework for Mobile

Usability”, International Journal of Software Engineering and Knowledge

Engineering (IJSEKE)”, vol.: 27, issue: 2, pp. 235-79, 2017.

[56] D. Fontdevila, M. Genero and A. Oliveros, “Towards a usability model for

software development process and practice”, In Proceedings of

International Conference on Product-Focused Software Process

Improvement, Springer, Cham, pp. 137-145, 2017.

[57] A. H. M. Katy, “Measuring usability for application software using the

quality in use integration measurement model”, Doctoral dissertation,

Universiti Tun Hussein Onn, Malaysia, 2016.

[58] R. B. Grady and D. Caswell, “Software Metrics: Establishing a Company-

wide Program”, Prentice Hall, USA, 1987

[59] S. K. Dubey, S. Ghosh and A. Rana, “Comparison of software quality

Models: An Analytical Approach”, International Journal of Emerging

Technology and Advanced Engineering (IJETAE), vol.: 2, issue: 2, pp. 111-

119, 2012.

[60] C. Ghezzi, M. Jazayeri, and D. Mandrioli, “Fundamental of software

Engineering”, Prentice Hall, NJ, USA, 2002.

169

[61] K. Khosravi, Y. G. Gueheneuc, “On Issues with Software Quality Models”,

In Proceedings of the 11th Working Conference on Reverse Engineering,

pp. 172-181, 2004.

[62] F. Khomh, “SQUAD: Software Quality Understanding through the Analysis

of Design”, In Proceedings of the 16th Working Conference on Reverse

Engineering (WCRE’09), IEEE, pp. 303-306, 2009.

[63] O. Gordieiev et al., “Evolution of software quality models in context of the

standard ISO 25010”, In Proceedings of the Ninth International Conference

on Dependability and Complex Systems DepCoS-RELCOMEX , Poland,

Springer, Cham, pp. 223-232, 2014.

[64] L. B. Ammar, A. Trabelsi and A. Mahfoudhi, “A model-driven approach for

usability engineering of interactive systems “, Software Quality Journal,

vol.: 24, issue: 2, pp. 301-335, 2016.

[65] S. Winter, S. Wagner and F. Deissenboeck, “A comprehensive model of

usability”, In Proceedings of International Conference on Engineering for

Human-Computer Interaction (IFIP), Springer, Berlin, Heidelberg, pp. 106-

122, 2007.

[66] E. Shawgi, N. A. Noureldien, “Usability measurement model (umm): a new

model for measuring websites usability”, International Journal of

Information Science, vol.: 5, issue: 1, pp. 5-13, 2015.

[67] A. Seffah, E. Metzker, “The obstacles and myths of usability and software

engineering”, Communications of the ACM, vol.: 47, issue: 12, pp. 71-76,

2004.

[68] R. G. Dromey, “A model for software product quality”, IEEE Transactions

on software engineering, vol.: 21, issue: 2, pp. 146-162, 1995.

[69] P. N. Rao, G. V. Ramararaju, “Strategic Information Planning: Alignment

of IT Planning with Business Planning with the Application of Analytic

Network and Analytic Hierarchy Process Maturity model”, International

Journal of Emerging Technology and Advanced Engineering (IJETAE),

vol.: 7, issue: 6, 2017

170

[70] T.L. Saaty, “Fundamentals of the Analytic Network Process”, In

Proceedings of the 5th international symposium on the analytic hierarchy

process (ISAHP), Kobe, Japan, pp. 12-14, 1999.

[71] B. P. Lientz,, E. B. Swanson and G. E. Tompkins, “Characteristics of

Application Software Maintenance”, Communications of the ACM , vol.:

21, issue: 6, pp. 466-471, 1978.

[72] L. Duboc , D. Rosenblum and T. Wicks, “A framework for characterization

and analysis of software system scalability”, In Proceedings of the 6th joint

meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pp. 375-

384, 2007.

[73] T.H. Sheakh, S.M.K.Quadri and V. Singh, "A Critical Review of Software

Reliability”, International Journal of Emerging Technology and Advanced

Engineering (IJETAE), vol.: 2, issue: 4, pp. 496-499, 2012.

[74] R. Lal and N. Kumar, “Design and Analysis of Reliability for Component-

Based Software System by using Soft Computing Approaches”,

International Journal of Emerging Technology and Advanced Engineering

(IJETAE), vol.: 4, issue: 6, pp. 929-932, 2014.

[75] K. Goffin, “Design for supportability: essential component of new product

development”, Research-Technology Management, vol.: 43, issue: 2, pp.

40-47, 2000.

[76] K. Goffin, “Customer support: a cross-industry study of distribution

channels and strategies”, International Journal of Physical Distribution &

Logistics Management, vol.: 29, issue: 6, pp. 374-398, 1999.

[77] A. Yıldızbaşı and B. D. Rouyendegh, “Multi-criteria decision making

approach for evaluation of the performance of computer programming

languages in higher education”, Computer Applications in Engineering

Education, vol.:26, issue: 6, pp. 1992-2001, 2018.

[78] B. Chatters, “Software Reliability Improvement-The Fault Free Factory(A

Case Study)”, Software Engineering for Large Software Systems, Springer,

Dordrecht, pp. 220-235, 1990.

171

[79] B. Malcolm, “A Large Embedded System Project Case Study”, Software

Engineering for Large Software Systems, Springer, Dordrecht, pp. 96-121,

1990.

[80] A. Gupta and P. Dashore, “An Approach to Analyse Software Reusability

of Object Oriented Code”, International Journal of Research in Science &

Engineering, vol.: 3, issue: 1, 2017.

[81] B. M. Goel and P. K. Bhatia, “Analysis of Reusability of Object-Oriented

System using CK Metrics”, International Journal of Computer

Applications, vol.: 60, issue: 10, pp. 32-36, 2012.

[82] K. Dominguez et al., “Software quality model based on software

development approaches”, Software Engineering and applications, pp. 1-6,

2007.

[83] R. Martin, “OO design quality metrics”, An Analysis of Dependencies,

1994.

[84] H. Yang, “Measuring software product quality with ISO standards base on

fuzzy logic technique”, Affective Computing and Intelligent Interaction,

Advances in Inteeelllllligent and Soft Computing, Springer, Berlin, vol.:

137, pp. 59-67, 2012.

[85] K. K. Yuen and H. C. Lau, “A fuzzy group analytical hierarchy process

approach for software quality assurance management: Fuzzy logarithmic

least squares method”, Expert Systems with Applications, vol.: 38, issue: 8,

pp 10292-10302, 2011.

[86] A. K. Pandey and C. P. Agrawal, “Fuzzy ANP model to measure the

maintainability of desktop software based on software development

factors”, Indian Journal of Science and Technology, vol.: 9, issue: 33, pp. 1-

9, 2016. DOI: 10.17485/ijst/2016/v9i33/100218

[87] U. Erdemir and F. Buzluca, “A learning-based module extraction method

for object-oriented systems”, Journal of Systems and Software, vol.: 97,

issue: 3, pp. 156-177, 2014. DOI: 10.1016/j.jss.2014.07.038

[88] A. Przybyłek, “Systems evolution and software reuse in object-oriented

programming and aspect-oriented programming”, Objects, Models,

172

Components, Patterns. TOOLS 2011. Lecture Notes in Computer Science,

Springer, Berlin, vol.: 6705, pp. 163-178, 2011.

[89] A. Sheshasaayee and R. Jose, "A Theoretical Framework for the

Maintainability Model of Aspect Oriented Systems", Procedia Computer

Science, vol. 62, pp. 505-512, 2015. DOI: 10.1016/j.procs.2015.08.523

[90] A. Sheshasaayee, R. Jose,” A Fuzzy Approach for the Maintainability

Assessment of Aspect Oriented Systems”, Information Systems Design and

Intelligent Applications. Advances in Intelligent Systems and Computing,

Springer, vol.: 435, pp. 509-517, 2016. DOI: 10.1007/978-81-322-2757-

1_50

[91] P. K. Singh, O. Sangwan, A. Singh and A. Pratap, "A Framework for

Assessing the Software Reusability using Fuzzy Logic Approach for Aspect

Oriented Software", International Journal of Information Technology and

Computer Science, vol.: 7, issue: 2, pp. 12-20, 2015.

DOI: 10.5815/ijitcs.2015.02.02

[92] P.J. Kaur et al., “A framework for assessing reusability using package

cohesion measure in aspect oriented systems”, International Journal of

Parallel Program, vol.: 46, issue: 3, pp. 543-564, 2018.

DOI: 10.1007/s10766-017-0501-6

[93] P. J. Kaur and S. Kaushal, “Package level metrics for reusability in AOS”,

In proceedings of International conference on futuristic trends on

computational analysis and knowledge management (ABLAZE), IEEE, pp.

364-368, 2015.

[94] G. Blaschek et al., "Method and device for automatically evaluating the

quality of a software source code", U.S. Patent Application 11/991,429,

filed February 26, 2009.

[95] Y. Nir-Buchbinder et al., "Cross-concern code coverage assessment", U.S.

Patent 8,607,198, issued December 10, 2013.

[96] S. Sarkar et al., "Measuring quality of software modularization", U.S. Patent

8,146,058, issued March 27, 2012.

173

[97] M. I. Ghareb, G.Allen, “State of the art metrics for aspect oriented

programming”, In Proceedings of AIP conference, Melville, vol.: 1952,

issue: 1, 2018. DOI: 10.1063/1.5032069

[98] E. Kirubakaran and K. R. Martin KR,”A review on coupling metrics in

aspect oriented system”, International Journal of Control Theory and

Applications, vol.: 9, pp. 93-97, 2016.

[99] K. Mik, “Aop@ work: aop tools comparison”, IBM Developer Works,

India, 2005

[100] M. Sandip, K. Rajnish and S. Kumar, “Package level cohesion metric for

object-oriented design”, International Journal of Engineering Technology

(IJET), vol.: 5, pp. 2523-2528, 2013.

[101] L. C. Briand, S. Morasca and V. R. Basili, “Property-based software

engineering measurement”, In IEEE Transactions on Software Engineering,

vol.: 22, issue: 1, pp. 68-86, 1996. DOI: 10.1109/32.481535

[102] K.P. Srinivasan and T. Devi, “Software metrics validation methodologies in

software engineering”, International Journal of Software Engineering &

Applications (IJSEA), vol.: 5, issue: 6, pp. 87-102, 2014.

[103] J. I. Panach et al., “Early usability measurement in model-driven

development: Definition and empirical evaluation”, International Journal of

Software Engineering and Knowledge Engineering (IJSEKE), vol.: 21,

issue: 3, pp. 339-365, 2011. DOI: 10.1142/S0218194011005311

[104] A. Sharma, R. Kumar and P. S. Grover, “Empirical evaluation and

validation of interface complexity metrics for software components”,

International Journal of Software Engineering and Knowledge Engineering

(IJSEKE), vol.: 18, issue: 7, pp. 919-931, 2008.

DOI: 10.1142/S0218194008003957

[105] M. Bertoa and A. Vallecillo, “Usability metrics for software components”,

In Proceedings of 8th international workshop on quantitative approaches in

object-oriented software engineering (QAOOSE’2004), Oslo, Norway 2004.

174

[106] K. Moumane, A. Idri and A. Abran, “Usability evaluation of mobile

applications using ISO 9241 and ISO 25062 standards”, SpringerPlus, vol.:

5, issue: 548, 2016. DOI: 10.1186/s40064-016-2171-z

[107] K. Z. Winn, “Quantifying and Validation of Changeability and Extensibility

for Aspect-Oriented Software”, In Proceedings of International Conference

of Advances in Engineering and Technology, pp. 162-166, 2014.

[108] A. Kaur, P.S. Grover and A. Dixit, “Quantitative evaluation of proposed

maintainability model using AHP method”, In IEEE Proceedings of 2nd

International Conference on Computing for Sustainable Global

Development (INDIACom), IEEE (Proceedings in SCOPUS), pp. 1367-

1371, 2015.

[109] A. Kaur, P.S. Grover and A. Dixit, “Analysis of Reliability Model with the

application of MCDM”, International Journal of Emerging Technology and

Advanced Engineering (IJETAE), ISO 9001:2008 Certified Journal, vol.: 8,

issue: 3, pp. 250-255, ISSN 2250-2459, 2018.

[110] Rafa E. Al-Qutaish, “Quality Models in Software Engineering Literature:

An Analytical and Comparative Study”, Journal of American Science, vol.:

6, issue: 3, pp. 166-175, 2010.

[111] AspectJ project, http://eclipse.org/aspectj/

[112] H. P. Breivold and I. Crnkovic, “Analysis of Software Evolvability in

Quality Models," In Proceedings of 35th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA 2009), pp. 279-

282, 2009. DOI: 10.1109/SEAA.2009.10

[113] “ISO/IEC/IEEE International Standard - Systems and software engineering

-- Vocabulary", ISO/IEC/IEEE 24765:2010(E), pp 1-418, 2011.

DOI: 10.1109/IEEESTD.2010.5733835

[114] “ISO/IEC/IEEE International Standard - Systems and software engineering-

-Vocabulary," ISO/IEC/IEEE 24765:2017(E), pp.1-541, 2017.

DOI: 10.1109/IEEESTD.2017.8016712

175

[115] F. B. Abreu, R. Esteves and M. Goulao, "The design of eiffel programs:

Quantitative evaluation using the mood metrics", In Proceedings of

TOOLS’96, 1996.

[116] K. Wiegers and J. Beatty, “Software requirements”, Pearson Education,

2013.

[117] P. J. Kaur, and S. Kaushal, “Cohesion and coupling measures for aspect

oriented systems”, Elsevier, AETS/7/590, vol.: 7, pp. 784-788, 2013.

[118] P.C. Fishburn, “Letter to the editor—additive utilities with incomplete

product sets: application to priorities and assignments”, Operations

Research, vol.: 15, issue: 3, pp. 537-542, 1967.

[119] E. Triantaphyllou, “Multi-Criteria Decision Making: A Comparative

Study”, Kluwer Academic Publishers (now Springer), Dordrecht, The

Netherlands, pp. 320. ISBN 0-7923-6607-7.

[120] R. Attri, N. Dev and V. Sharma, “Interpretive structural modelling (ISM)

approach: an overview”, Research Journal of Management Sciences, vol.: 2,

issue: 2, pp. 3-8, 2013.

[121] A. Assari, T. Mahesh and E. Assari,”Role of public participation in

sustainability of historical city: usage of TOPSIS method”, Indian Journal

of Science and Technology, vol.: 5, issue: 3, pp. 2289-2294, 2012.

[122] Metrics 1.3.6 Tool http://metrics.sourceforge.net/update

176

177

APPENDIX –A

In order to evaluate the consistency to the proposed characteristics in the respective

models through Analytical Hierarchical Process, an input form is designed to collects the

input from the personnel of the software industry. Four forms are created for the

collection of input for four proposed characteristics namely

I. Extensibility Characteristic in Software Maintainability Model

II. Optimized code Characteristic in Performance Efficiency Model

III. Scalability Characteristic in Software Reliability Model

IV. Supportability Characteristic in Software Usability Model

The screenshot of the form prepared for Extensibility Characteristic in Software

Maintainability Model is as follows:

 Figure A1.1: Input Form for Maintainability Model

NAME:

DOMAIN:

Scale: 1 - Equal Importance, 3 - Moderate importance, 5 - Strong importance, 7 - Very

strong importance, 9 - Extreme importance (2,4,6,8 values in-between).

There are 15 pairwise comparisons. Please specify the following:-

Which criterion is more important, and how much more on a scale 1 to 9?

A - Importance - or B? Equal How much more?

1
extensibility

or reusability 1 2 3 4 5 6 7 8 9

2
extensibility

or

modifiability
1 2 3 4 5 6 7 8 9

3
extensibility

or analysability 1 2 3 4 5 6 7 8 9

4
extensibility

or testability 1 2 3 4 5 6 7 8 9

5
extensibility

or modularity 1 2 3 4 5 6 7 8 9

178

Figure A1.2: Input Form for Maintainability Model (Cont...)

6 reusability
or

modifiability

1

2 3 4 5 6 7 8 9

7 reusability
or

analysability

1

2 3 4 5 6 7 8 9

8 reusability or testability
1

2 3 4 5 6 7 8 9

9 reusability or modularity
1

2 3 4 5 6 7 8 9

10
modifiability

or

analysability

1

2 3 4 5 6 7 8 9

11
modifiability

or testability
1

2 3 4 5 6 7 8 9

12
modifiability

or modularity
1

2 3 4 5 6 7 8 9

13
analysability

or testability
1

2 3 4 5 6 7 8 9

14
analysability

or modularity
1

2 3 4 5 6 7 8 9

15 testability or modularity
1

2 3 4 5 6 7 8 9

179

The terms and definitions are also provided with the input form specifying the meanings

of the terms and definations used in the data collection for for maintainability model.

Figure A1.3: Terms and Definitions for Maintainability Model

1. Maintainability:

a. Extensibility : the degree to extend or enhance the current system and the

level of effort required to implement the extension, while minimizing

impact to existing system functions.

b. Reusability : degree to which an asset can be used in more than one

system, or in building other assets.

c. Modifiability: degree to which a product or system can be effectively and

efficiently modified without introducing defects or degrading existing

product quality.

d. Analyzability : degree of effectiveness and efficiency with which it is

possible to assess the impact on a product or system of an intended change

to one or more of its parts, or to diagnose a product for deficiencies or

causes of failures, or to identify parts to be modified.

e. Testability : degree of effectiveness and efficiency with which test criteria

can be established for a system, product or component and tests can be

performed to determine whether those criteria have been met.

f. Modularity :degree to which a system or computer program is composed

of discrete components such that a change to one component has minimal

impact on other components

180

The screenshot of the form prepared for Scalability Characteristic in Reliability Model is

as follows:

Figure A1.4: Input Form for Reliability Model

181

The terms and definitions are also provided with the input form specifying the meanings

of the terms and definitions used in the data collection for Reliability model.

Figure A1.5: Terms and Definitions for Reliability Model

Terms and definitions

2) Reliability - degree to which a system, product or component performs specified

functions under specified conditions for a specified period of time.

a. Maturity - degree to which a system, product or component meets needs

for reliability under normal operation.

b. Availability - degree to which a system, product or component is

operational and accessible when required for use.

c. Fault Tolerance - degree to which a system, product or component

operates as intended despite the presence of hardware or software faults

d. Recoverability - degree to which, in the event of an interruption or a

failure, a product or system can recover the data directly affected and re-

establish the desired state of the system.

e. Scalability - ability of the system to either handle increase in load

without impact on the performance of the system or the ability to be

readily enlarged.

182

The screenshot of the form prepared for Optimized Code Characteristic in Performance

Efficiency Model is as follows:

Figure A1.6: Input Form for Performance Efficiency Model

Name:

Domain:

Scale: 1 - Equal Importance, 3 - Moderate importance, 5 - Strong importance, 7 - Very

strong importance, 9 - Extreme importance (2,4,6,8 values in-between).

There are 6 pairwise comparisons performance efficiency of the software. Please specify the

following:-

Which criterion is more important, and how much more on a scale 1 to 9?

A - Importance - or B? Equal How much more?

1 Time-Behaviour or Optimized Code
1

2 3 4 5 6 7 8 9

2 Time-Behaviour or Resource-Utilization
1

2 3 4 5 6 7 8 9

3 Time-Behaviour or Capacity
1

2 3 4 5 6 7 8 9

4 Optimized Code or Resource-Utilization
1

2 3 4 5 6 7 8 9

5 Optimized Code or Capacity
1

2 3 4 5 6 7 8 9

6 Resource-Utilization or Capacity
1

2 3 4 5 6 7 8 9

183

The screenshot of the terms and definitions are also provided with the input form

specifying the meanings of the terms and definitions used in the data collection for

performance efficiency model.

Figure A1.7: Terms and Definitions for Performance Efficiency Model

Terms and definitions

3) Performance Efficiency - Performance relative to the amount of resources used

under stated conditions. Resources can include other software products, the

software and hardware configuration of the system, and materials (e.g. print

paper, storage media).

a. Time Behavior - degree to which the response and processing times and

throughput rates of a product or system, when performing its functions,

meet requirements

b. Resource Utilization - degree to which the amounts and types of

resources used by a product or system, when performing its functions,

meet requirements

c. Capacity - degree to which the maximum limits of a product or system

parameter meet requirements . Parameters can include the number of

items that can be stored, the number of concurrent users, the

communication bandwidth, throughput of transactions, and size of

database.

d. Optimized Code - Code written by consistently applying well coding

standard and proper coding techniques .

184

The screenshot of the form prepared for Supportability Characteristic in Usability Model

is as follows:

Figure A1.8: Input Form for Usability Model

Name: Domain -Storage

Scale: 1 - Equal Importance, 3 - Moderate importance, 5 - Strong importance, 7 - Very

strong importance, 9 - Extreme importance (2,4,6,8 values in-between).

There are 15 pairwise comparisons in relation to software usability. Please specify the following:-

Which criterion is more important, and how much more on a scale 1 to 9?

A - Importance - or B? Equal How much more?

1 Appropriateness

Recognisability

or

Supportability

1

2 3 4 5 6 7 8 9

2 Appropriateness

Recognisability

or

Learnability

1

2 3 4 5 6 7 8 9

3 Appropriateness

Recognisability

or

Operability

1

2 3 4 5 6 7 8 9

4 Appropriateness

Recognisability

or User

error protection

1

2 3 4 5 6 7 8 9

5 Appropriateness

Recognisability

or User

interface

aesthetics

1

2 3 4 5 6 7 8 9

6

Appropriateness

Recognisability

or

Accessibility

1

2 3 4 5 6 7 8 9

185

Figure A1.9: Input Form for Usability Model (Cont...)

7 Supportability
or

Learnability

1

2 3 4 5 6 7 8 9

8 Supportability
or

Operability

1

2 3 4 5 6 7 8 9

9 Supportability
or User

error protection

1

2 3 4 5 6 7 8 9

10 Supportability

or User

interface

aesthetics

1

2 3 4 5 6 7 8 9

11 Supportability
or

Accessibility

1

2 3 4 5 6 7 8 9

12 Learnability
or

Operability

1

2 3 4 5 6 7 8 9

13 Learnability
or User

error protection

1

2 3 4 5 6 7 8 9

14 Learnability

or User

interface

aesthetics

1

2 3 4 5 6 7 8 9

15 Learnability
or

Accessibility

1

2 3 4 5 6 7 8 9

16 Operability
or User

error protection

1

2 3 4 5 6 7 8 9

17 Operability

or User

interface

aesthetics

1

2 3 4 5 6 7 8 9

18 Operability
or

Accessibility

1

2 3 4 5 6 7 8 9

19 User error

protection

or User

interface

aesthetics

1

2 3 4 5 6 7 8 9

186

The terms and definitions are also provided with the input form specifying the meanings

of the terms and definitions used in the data collection for usability model.

Figure A1.10: Terms and Definitions for Usability Model

Terms and definitions

4) Usability - degree to which a product or system can be used by specified users

to achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use

a. Appropriateness Recognizability - degree to which users can recognize

whether a product or system is appropriate for their

needs. Appropriateness recognizability will depend on the ability to

recognize the appropriateness of the product or system’s functions from

initial impressions of the product or system and/or any associated

documentation.

b. Learnability- degree to which a product or system can be used by

specified users to achieve specified goals of learning to use the product

or system with effectiveness, efficiency, freedom from risk and

satisfaction in a specified context of use.

c. Operability- degree to which a product or system has attributes that

make it easy to operate and control.

d. User Error Protection- degree to which a system protects users against

making errors.

e. User Interface Aesthetics - degree to which a user interface enables

pleasing and satisfying interaction for the user.

f. Accessibility- degree to which a product or system can be used by

people with the widest range of characteristics and capabilities to achieve

a specified goal in a specified context of use.

g. Supportability - ability of the system to provide information helpful for

identifying and resolving issues when it fails to work correctly.

187

APPENDIX –B

Statistics collected for Spacewar game developed in Java programming language using

Plug-In Metrics 1.3.6 tool on the Eclipse Platform. The screen shot of the collected

statistics is shown as follows.

Figure A2.1: Statistics collected for Spacewar Java.

Figure A2.2: Statistics collected for Spacewar Java (Cont...)

188

Statistics collected for Spacewar game developed in AspectJ programming language

using the same Plug In on the Eclipse Platform as Java version to maintain the

consistency. The screen shot of the collected statistics is shown as follows.

Figure A2.3: Statistics collected for Spacewar AspectJ.

Figure A2.4: Statistics collected for Spacewar AspectJ (Cont...)

189

APPENDIX –C

Screenshot of the Sample Questionnaire is presented as follows.

Table A3.1: Supportability Questionnaire

Predominantly

Disagree
Disagree Satisfactory Agree

Predominantly

Agree

1 2 3 4 5

1 The user manual provided is easy to understand.

2 The help menu is easy to locate at the time of work.

3
The help files readily contains the context of actual usage at the

time of work.

4 The commands that I require at the time of work are easy to locate.

5
Troubleshooting popup appears automatically when ever and where

ever the system struck.

6
The user manual contains all the relevant information regarding

the usage of the software.

7 Event logging option is available at time of problem occurrence.

8 Report an Error' option popup at the time of logging error.

9 Terms used in the documentation is unambiguous and clear.

10
Software never breaks down abruptly without giving proper

descriptive error message.

11
Diagrams are used in the documentation to explain the usage of the

software.

12 Code tracing option is available and works correctly

13 Colour scheme applied in code tracing is helpful

14
Demo videos are available to show the usage of the software and on

how to use help options

15
Software documentation is useful and is understandable by

physical handicaps.

Supportability QuestionnaireS.No.

190

The response of the supportability questionnaire as collected from the 5 evaluators for the

two Projects is given as under:

Table A3.2: Supportability Questionnaire response from 5 Evaluators for Project 1

Table A3.3: Supportability Questionnaire response from 5 Evaluators for Project 2

Predominantly

Disagree
Disagree Satisfactory Agree

Predominantly

Agree

1 2 3 4 5

u1 u2 u3 u4 u5

1 The user manual provided is easy to understand. 3 3 2 2 3

2 The help menu is easy to locate at the time of work. 2 2 1 2 1

3
The help files readily contains the context of actual usage at the

time of work. 2 2 1 2 1

4 The commands that I require at the time of work are easy to locate.
4 3 2 2 2

5
Troubleshooting popup appears automatically when ever and where

ever the system struck. 1 1 1 2 3

6
The user manual contains all the relevant information regarding

the usage of the software. 3 2 2 2 3

7 Event logging option is available at time of problem occurrence. 1 1 1 2 1

8 Report an Error' option popup at the time of logging error. 1 1 1 2 1

9 Terms used in the documentation is unambiguous and clear. 3 2 2 2 1

10
Software never breaks down abruptly without giving proper

descriptive error message. 2 2 1 2 3

11
Diagrams are used in the documentation to explain the usage of the

software. 4 3 2 2 2

12 Code tracing option is available and works correctly 2 2 1 2 1

13 Colour scheme applied in code tracing is helpful 4 3 2 2 3

14
Demo videos are available to show the usage of the software and on

how to use help options 1 1 1 2 1

15
Software documentation is useful and is understandable by

physical handicaps. 1 1 1 2 1

S.No. Supportability Questionnaire

Project 1

Predominantly

Disagree
Disagree Satisfactory Agree

Predominantly

Agree

1 2 3 4 5

u1 u2 u3 u4 u5

1 The user manual provided is easy to understand. 4 3 2 2 3

2 The help menu is easy to locate at the time of work. 4 4 4 4 4

3
The help files readily contains the context of actual usage at the

time of work. 4 4 3 3 2

4 The commands that I require at the time of work are easy to locate.
4 4 3 4 4

5
Troubleshooting popup appears automatically when ever and where

ever the system struck. 3 3 3 2 3

6
The user manual contains all the relevant information regarding

the usage of the software. 5 4 4 3 4

7 Event logging option is available at time of problem occurrence. 2 2 2 2 2

8 Report an Error' option popup at the time of logging error. 2 1 1 2 2

9 Terms used in the documentation is unambiguous and clear. 4 4 4 4 4

10
Software never breaks down abruptly without giving proper

descriptive error message. 3 3 3 3 3

11
Diagrams are used in the documentation to explain the usage of the

software. 5 5 4 4 5

12 Code tracing option is available and works correctly 2 2 2 2 2

13 Colour scheme applied in code tracing is helpful 3 3 4 4 3

14
Demo videos are available to show the usage of the software and on

how to use help options 3 3 4 3 4

15
Software documentation is useful and is understandable by

physical handicaps. 2 2 2 2 2

Project 2

S.No. Supportability Questionnaire

191

APPENDIX –D

Statistics collected for the selected list of AspectJ projects.

1. Spacewar AspectJ – Given in Appendix B

2. Bean AspectJ

Figure A4.1: Statistics Collected for Bean AspectJ Project

192

3. Introduction AspectJ

Figure A4.2: Statistics Collected for Introduction AspectJ Project

193

4. Observer AspectJ

Figure A4.3: Statistics Collected for Observer AspectJ Project

194

5. Telecom AspectJ

Figure A4.4: Statistics Collected for Telecom AspectJ Project

195

6. TJP AspectJ

Figure A4.5: Statistics Collected for TJP AspectJ Project

196

7. Tracing

Figure A4.6: Statistics Collected for Tracing AspectJ Project

197

8. AJHotDraw

Figure A4.7: Statistics Collected for AJHotDraw AspectJ Project

198

199

BRIEF PROFILE OF RESEARCH SCHOLAR

Ms. Amandeep Kaur has received her M.Tech in Information Technology from Guru

Gobind Singh Inderprastha University in the year 2008 and M.Sc. in Computer

Science from Maharishi Dayanand University in the year 2004. She has more than 15

years of teaching experience. Presently she is working as Assistant Professor at Guru

Tegh Bahadur Institute of Technology, Guru Gobind Singh Inderprastha University.

Her research interests include Software Quality, Software Metrics, Programming

Languages, Software Testing and Database Management System. She has authored

research papers in various international journals and conferences.

200

LIST OF PUBLICATIONS

List of Published Papers : International Journals

Sr.

No.

Title of the Paper along with Volume

Issue No, Year of Publication

Publisher Impact

Factor

Whether

Referred

or Non

Referred

Whether

you paid

any money

for

publication

Remarks

1 “Aspect-oriented system coupling metric

and its validation”, Recent Patents on

Computer Science, vol.: 12, 2019,

 ISSN: 1874-4796

DOI: 10.2174/221327591266619041014

3540

Bentham

Science

SJR=

.17

Referred No SCOPUS

2 “A framework for evaluating

extensibility in an Aspect-oriented

software system and its validation”,

Recent Patents on Engineering, vol.: 13,

2019,ISSN: 1872-2121

DOI: 10.2174/187221211366619062511

5111

Bentham

Science

SJR=

0.136

Referred No SCOPUS

3 “Critical Assessment of Aspect

Orientation Metrics and Quality”,

Recent Trends in Programming

Languages, Volume 5, Issue 2, 2018,

ISSN : 2455-1821

CELNET Referred No UGC

Approved

4 “Investigation of Reusability &

Complexity of AOP systems”,

International Journal of Innovations &

Advancement in Computer Science

(IJIACS), Volume 7, Issue 3, March

2018, ISSN : 2347-8616

Academic

Science

2.65 Referred Yes UGC

Approved

5 “Analysis of Reliability Model with the

application of MCDM”, International

Journal of Emerging Technology and

Advanced Engineering (IJETAE),

Volume 8, Issue 3, March 2018,

ISSN : 2250-2459

IJETAE

Publishing

House

 6.351 Referred Yes UGC

Approved

,

ISO9001:

2008

Certified

Journal

6 “An Improved Model To Estimate

Quality of The Software Product “,

International Journal of Research,

YMCAUST, Vol.1(II), July 2013,

ISSN : 2319-9377

YMCAUS

T

 Referred No

201

List of Published Papers : International Conferences

List of Communicated Paper : International Journal

S. No Title of the paper Name of the

Journal

Present Status Year

10 “Incorporating Supportability

in Software Usability and its

Assessment”

Indian Journal of

Pure and Applied

Mathematics

(Springer)

(SCI-Expanded,

SCOPUS,UGC

Approved)

Communicated

(Under Review)

April, 2019

Sr.

No

Title of the Paper along with

Volume Issue No, Year of

Publication

Publisher

Impact

Factor

Whether

Referred

or Non

Referred

Whether

you paid

any

money for

publicatio

n

Remarks

7 “Performance Efficiency Assessment

for Software Systems”, 50
th
 Golden

jubilee international annual convention

of Computer Society of India (CSI-

2015) theme Digital Life, organised by

BVICAM New Delhi, 2
nd

 to 5
th

December 2015 Print ISBN 978-981-

10-8847-6 Online ISBN 978-981-10-

8848-3

Springer Yes CSI

Sponsored

Proceedings

in Software

Engineering.

Advances in

Intelligent

Systems and

Computing,

vol 731.

Springer,

Singapore

SCOPUS

Indexed

8 “Quantitative Evaluation of Proposed

Maintainability Model using AHP

Method”, 9th International Conference

on Computing for Sustainable Global

Development (INDIACom), 2015,

Organised by BVICAM New Delhi.

Mar, 11-13 2015 ISSN 0973-7529;

ISBN 978-93-80544-15-1

IEEE Yes SCOPUS

Indexed

9 “Analysis of Quality Attributes and

Metrics for Various Software

Development Methodologies”,

International Conference on

Advancements in Computer

Applications and Software

Engineering

(CASE 2012), 21-22 December 2012,

ISBN: 978-93-81583-77-7

Mewar

Universi

ty

 Yes

