

DESIGN OF SEARCH SYSTEM FOR ONLINE

DIGITAL LIBRARIES

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

J.C. BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY YMCA

by

SUMITA GUPTA

Registration No: YMCAUST/PH59/2011

Under the Supervision of

Department of Computer Engineering

Faculty of Engineering and Technology

J.C. Bose University of Science &Technology, YMCA

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

December 2018

Dr. NEELAM DUHAN Dr. POONAM BANSAL

DEDICATION

This Thesis is dedicated to my parents

For their endless love, support and encouragement

i

DECLARATION

I hereby declare that this thesis entitled “DESIGN OF A SEARCH SYSTEM FOR

ONLINE DIGITAL LIBRARIES” by SUMITA GUPTA, being submitted in

fulfilment of requirement for the award of Degree of Doctor of Philosophy in the

Department of Computer Engineering under Faculty of Engineering and Technology

of J.C. Bose University of Science & Technology, YMCA, Faridabad, during the

academic year March 2012 to December 2018, is a bonafide record of my original

work carried out under the guidance and supervision of Dr. NEELAM DUHAN and

co-supervision Dr. POONAM BANSAL has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other

university.

(SUMITA GUPTA)

 Registration No. YMCAUST/PH59/2011

Scanned with CamScanner

iii

ACKNOWLEDGEMENT

It gives me immense pleasure to acknowledge the people whose priceless

contributions helped me reach here. Without their support, this piece of academic

work, in the form of my doctoral thesis, would have just been reduced to mere ink on

paper. First and foremost, my deepest and heartfelt thanks to my supervisor Dr.

Neelam Duhan, not only for her valuable guidance throughout my Ph.D tenure, but

also for the care showed me during the hard times. In each and every meeting, we

had, with her immense research experience, she brought me encouragement and

taught me how to the find solution for the various research issues in different ways,

which induced me to instigate new ideas into my research. Without her help in terms

of technicalities, resources and opportunity, I would not have reached this stage.

I express my deep sense of gratitude to my co-supervisor Dr. Poonam Bansal, for her

valuable guidance and help without which it was not possible for me to complete my

work. Mam, you believed in my abilities and gave unconditional support to help me

achieve excellence throughout my research work culminating in this doctoral thesis.

I wish to express my gratitude to Dr. Komal Kumar Bhatia, Dr. Atul Mishra, Dr.

Sapna Gambhir and Dr. Parul Tomar for always motivating me and showing me

the right way to pursue my Ph.D. I thank them for all their help and suggestions they

showered me with a humble soul. I am indebted them for their constant

encouragement and being readily available if I am in a need.

I am whole heartedly thankful to all my Family Members, Friends and my Husband

Mr. Geet Gupta for their support provided in the last few years of my tenure when I

was going through a rough phase, both in my professional as well as in my personal

life. I wish to thank my Son Panav for his unconditional love, affection and the

tolerance he has showed all these years.

I owe God for everything!

(SUMITA GUPTA)

 Registration No. YMCAUST/PH59/2011

vi

TABLE OF CONTENTS

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Table of Contents vi

List of Tables xi

List of Figures xiii

List of Abbreviations xvi

Chapter I: INTRODUCTION 1-9

 1.1 GENERAL 1

 1.2 SEARCH ENGINE 2

 1.3 DIGITAL LIBRARAIES 2

 1.4 MOTIVATION 4

 1.5 PROBLEM DEFINITION 5

 1.6 OBJECTIVES OF RESEARCH WORK 5

 1.7 ORGANIZATION OF THESIS 7

Chapter II: INFORMATION RETRIEVAL & DIGITAL LIBRARY

 SYSTEMS: A REVIEW

11-48

 2.1 INFORMATION RETRIEVAL 11

 2.2 SEARCH ENGINES 12

 2.2.1 GENERAL ARCHITECTURE OF A SEARCH ENGINE 13

 2.2.2 TYPE OF ISSUES WITH THE CURRENT WEB 14

 2.3 DIGITAL LIBRARIES: AN INTRODUCTION 16

 2.3.1 Benefits of Digital Libraries 16

 2.3.2 Principles for Digital Library Design 18

 2.4 GENERAL ARCHITECTURE OF DIGITAL LIBRARY

 SEARCH SYSTEM

18

vii

 2.5 CRAWLER 19

 2.5.1 Types of Web Crawler 20

 2.5.2 Study of Existing Web Crawlers for Digital Libraries 22

 2.5.3 Comparison Study of Various Web Crawlers 25

 2.6 INDEXER 28

 2.6.1 Architecture of Indexing Process 28

 2.6.2 Types of Indexing Techniques 29

 2.6.3 Study of Recent Indexing Techniques 43

 2.6.4 Comparison of Different Indexing Techniques 44

 2.7 QUERY PROCESSING 46

 2.8 DESIGN ISSUES IN DIGITAL LIBRARY SEARCH ENGINES 47

CHAPTER III: STATE-OF-THE-ART TECHNIQUES IN DIGITAL

 LIBRARIES

49-85

 3.1 INTRODUCTION 49

 3.2 PAGE RANKING 49

 3.2.1 Citation Count Algorithm 49

 3.2.2 Time Dependent Citation Count Algorithm 51

 3.2.3 PageRank Algorithm 53

 3.2.4 Popularity Weighted Ranking Algorithm 55

 3.2.5 HITS Algorithm 56

 3.2.6 PaperRank Algorithm 59

 3.2.7 Popularity and Similarity based PageRank Algorithm (PSPR) 61

 3.2.8 SIMRANK: PageRank Approach Based on Similarity Measure 65

 3.2.9 Page Ranking using Social Annotation based on Language Model 67

 3.2.10 Comparison Study 69

 3.3 WEB DOCUMENT CLUSTERING 69

 3.3.1 Major Categories of Clustering 72

 3.3.2 Similarity Measures 74

 3.4 DOCUMENT CATEGORIZATION 77

 3.4.1 Keyword Extraction 78

viii

 3.4.2 Different Categorization Techniques 79

 3.4.3 Study of Recent Document Categorization Techniques 80

 3.4.4 Comparison Study 82

 3.5 POSSIBLE APPLICATION AREAS 83

 3.6 REVIEW SUMMARY 84

CHAPTER IV: FOCUSED CRAWLER TO HARVEST DIGITAL

 ACADEMIC DOCUMENTS

87-109

 4.1 GENERAL 87

 4.2 PROPOSED CRAWLING PROCESS OF DIGITAL LIBRARIES 87

 4.3 PAGE DOWNLOADER 89

 4.4 CATEGORIZATION PROCESS 90

 4.4.1 Text Extractor 93

 4.4.2 Bookmark Creator 93

 4.4.3 Keywords Extractor 93

 4.4.4 Document Categorizer 94

 4.4.5 Topic Taxonomy 94

 4.4.6 Incremental Keyword Filter 95

 4.4.7 Advantages of Proposed Categorization Process 96

 4.5 LINK FORECASTING MODULE 96

 4.5.1 Link Extractor 97

 4.5.2 Link Filter 97

 4.5.3 Link Priority Analyzer 97

 4.6 MISSING DOCUMENT FINDER MODULE 98

 4.6.1 Query Formation Module 99

 4.6.2 Author Homepages Filter 100

 4.6.3 Paper Filter 101

 4.6.4 Example Illustration 102

 4.7 AGING PROCESS 103

 4.8 IILLUSTRATION OF PROPOSED CRAWLING SYSTEM 104

 4.9 SUMMARY 109

ix

CHAPTER V: MULTI-LEVEL INDEXING TO INDEX DIGITAL

 DOCUMENTS

111-126

 5.1 GENERAL 111

 5.2 PROPOSED ARCHITECTURE OF INDEXING 111

 5.3 WEB CRAWLER 112

 5.4 PRE-PROCESSING MODULE 113

 5.4.1 Similarity Analyzer 113

 5.4.2 Cluster Generator 114

 5.4.3 Illustrative Example 114

 5.5 INDEX GENERATOR 117

 5.5.1 Index Structure 117

 5.5.2 Illustrative Example 118

 5.5.3 Data Structures 119

 5.6 QUERY PROCESSING ENGINE 121

 5.6.1 Query Keyword Extractor 122

 5.6.2 Query Analyzer 122

 5.6.3 Dynamic Ranking 122

 5.6.4 Illustrative Example 123

 5.7 SUMMARY 125

CHAPTER VI: SEARCH RESULT ORGANISATION USING CLUSTERING

AND RANKING

127-140-

 6.1 GENERAL 127

 6.2 PROPOSED APPROACH FOR RANKING DOCUMENTS 127

 6.3 SIMILARITY MATRIX AND CLUSTERS GENERATION 129

 6.4 STATIC RANK CALCULATION 129

 6.4.1 Download Score 129

 6.4.2 PageRank 130

 6.4.3 Bookmark Based Citation Count Rank 132

• Illustration of Proposed Algorithm 132

x

• Comparison Study 135

• Retrieval of Relevant Papers by BCC 136

 6.5 DYNAMIC RANK CALCULATION 136

 6.6 ILLUSTRATION OF PROPOSED CLUSTERING AND RANKING

 MECHANISM

137

 6.7 COMPARISON STUDY 139

 6.8 SUMMARY 140

CHAPTER VII: IMPLEMENTATION RESULTS AND ANALYSIS 141-164

 7.1 GENERAL 141

 7.2 PERFORMANCE METRICS 141

 7.3 EXPERIMENTAL EVALUATION OF PROPOSED CRAWLER 142

 7.4 DIGITAL LIBRARY SYSTEM FOR RETRIEVING RELEVANT

 RESULTS

150

 7.5 DOCUMENT CATEGORIZATION 157

 7.6 BOOKMARK BASED CITATION COUNT 162

CHAPTER VIII: CONCLUSION AND FUTURE SCOPE 165-166

 8.1 CONCLUSION 165

 8.2 FUTURE SCOPE 166

REFERENCES 167

APPENDIX A 182

APPENDIX B 187

xi

LIST OF TABLES

Table

Table Caption

 Page No.

Table 2.1 List of some Popular Search Engines 13

Table 2.2 List of some existing Digital Libraries 17

Table 2.3 Comparison of various Web Crawler for Digital Libraries 26

Table 2.4 Comparison of various Web Crawler for Digital Libraries 27

Table 2.5 Term Frequencies in respective Documents 30

Table 2.6 Signature Generation and Comparison 32

Table 2.7 Summary of Indexing Techniques 41

Table 2.8 Different Indexing Methods used by Digital Library

Search Engines

42

Table 2.9 Comparison of Indexing Techniques

45

Table 3.1 Data of Citation Graph

51

Table 3.2 Iteration Method for PageRank

54

Table 3.3 Rank Results of Example Graph 55

Table 3.4 Iteration Method for HITS 59

Table 3.5 Web Session for a Website 63

Table 3.6 Ist Order Transition Probability Matrix

63

Table 3.7 2nd Order Transition Probability Matrix 64

Table 3.8 Example of Similarity Calculation 64

Table 3.9 Comparison of various Page Ranking Algorithms 70

Table 3.10 Comparison of various Page Ranking Algorithms 71

Table 3.11 Comparison between various Existing Document

Categorization Techniques

82

Table 4.1 Description of Topic Taxonomy 95

Table 4.2 Sample Ignore List 97

Table 4.3 Example of Priority Scheduling 103

Table 4.4 Parsed Documents 104

Table 4.5 Keywords 105

Table 4.6 Frequency of Keyword 106

Table 4.7 Extracted Link with their Similarity Score 107

Table 4.8 Summary of Proposed System 109

Table 5.1 Term Frequencies and their Weights 116

Table 5.2 Similarity Matrix

117

Table 5.3 Description of Paper Repository

120

Table 5.4 Description of Clustering _Database

120

Table 5.5 Description of Index 121

Table 5.6 Keywords in Main Categories

123

Table 5.7 Cosine Similarity Values

123

Table 5.8 Keywords of Sub-Category

124

xii

Table 5.9 Cosine Similarity Values

124

Table 5.10 Similarity Value between Clusters and Query Terms

125

Table 5.11 Comparison of Indexing Techniques

126

Table 6.1 Iteration Method for PageRank

132

Table 6.2 Bookmarks of the Research Paper B

133

Table 6.3 Frequency of Keywords

134

Table 6.4 Cosine Similarity Values of Paper with Citation

134

Table 6.5 Comparison Study of CC, PR and BCC

135

Table 6.6 Final Rank Values

137

Table 6.7 Keywords Attached to each Cluster

138

Table 6.8 Final Result Set against the User’s Query

139

Table 6.9 Comparison between CC, PR, C3 and Proposed Approach

139

Table 6.10 Summary of Proposed Ranking Technique

140

Table 7.1 P, R and F values of Proposed Crawler 149

Table 7.2 Query Set fired by Different Users

156

Table 7.3 Resultant Papers for both the Approaches

161

xiii

LIST OF FIGURES

Figure Page No.

Figure 1.1 Major System Components of Digital library 3

Figure 1.2 Chapter-wise Organization of the Dissertation 8

Figure 2.1 Basic Process of Information Retrieval 11

Figure 2.2 Architecture of Web Search Engine 14

Figure 2.3 The Architecture of a Digital Library 19

Figure 2.4 Structure of Crawler 20

Figure 2.5 Structure of Focused Web Crawler 21

Figure 2.6 Architecture of Indexing Process 28

Figure 2.7 An Example of Citation Indexing 34

Figure 2.8 An Example of Keyphrase indexing 36

Figure 3.1 Example of Citation Graph 50

Figure 3.2 Example of a Graph 54

Figure 3.3 Hubs and Authorities 56

Figure 3.4 Algorithm to Determine Base Set 57

Figure 3.5 The K-means Algorithm 72

Figure 3.6 The Hierarchical Agglomerative Clustering (HAC)

Algorithm

73

Figure 4.1 Architecture of Proposed Crawler System 88

Figure 4.2 Example to Download pdf of Document 89

Figure 4.3 Example of when Button or Link is given on the Web

Page to Download pdf

90

Figure 4.4 Architectural Flow of Categorization System 91

Figure 4.5 Algorithm for Categorization Process 92

Figure 4.6 Schema for Topic taxonomy 95

Figure 4.7 Algorithm for Incremental Keyword Filter Module 96

Figure 4.8 Missing Document Finder Module 98

Figure 4.9 Example of URL Feature 100

Figure 4.10 Example of Name-Match Feature 101

Figure 4.11 Search Result list against Query on Google Search

Engine

102

Figure 4.12 Example of Priority Scheduling 103

xiv

Figure 4.13 Topic Taxonomy 105

Figure 4.14 (a) When pdf downloader is not able to download pdf 108

Figure 4.14 (b) list of search result while hitting the Q2 type query i.e.

Quoted Title of Document

108

Figure 4.14 (c) When pdf downloader downloads the document by

getting the link through missing Document Finder

Module

108

Figure 5.1 Architecture of Proposed Indexing System 112

Figure 5.2 Algorithm for Clustering the Documents 115

Figure 5.3 Multi-Level Index Structure 118

Figure 5.4 Data Structures for Crawling and Indexing Process 119

Figure 6.1 Workflow of the System 128

Figure 6.2 Format of Search Log 130

Figure 6.3 Citation Graph 131

Figure 6.4 Citation Graph of Papers 133

Figure 7.1 Home Page of Crawling System 142

Figure 7.2 List of Seed Document Title 143

Figure 7.3 Paper Repository with Category Information 143

Figure 7.4 Similarity Values Computed by Link Priority Analyzer 144

Figure 7.5 Extracting Meta-data Information (i.e. Title) of

References for finding Missing Document

145

Figure 7.6 Extracting Author’s Information of References for

finding Missing Document

145

Figure 7.7 Results after Browsing Paper Title Query (i.e. without

quotes) from Different Search Engines

146

Figure 7.8 Result Screen of Proposed Crawler for query “Survey of

Recent Web Prefetching Techniques”

147

Figure 7.9 Result Screen of CiteSeerx for query “Survey of Recent

Web Prefetching Techniques”

147

Figure 7.10 Result Screen of Google Scholar for query “Survey of

Recent Web Prefetching Techniques”

148

Figure 7.11 P, R and F Values for each Runs of Proposed Crawler 149

Figure 7.12 Home Screen of Proposed DL Search System 150

xv

Figure 7.13 Search Interface of Proposed DL Search System 150

Figure 7.14 Cosine Similarity Values calculated by Similarity

Analyzer

151

Figure 7.15 Fragment of Number of Downloads saved in Log 152

Figure 7.16 Computation of Query Category by Query Analyzer 152

Figure 7.17 Result Screen of proposed System for Query “Survey of

Web Page Ranking Algorithm”

153

Figure 7.18 Google Scholar’s Results for Query “Survey of Web

Page Ranking Algorithm”

153

Figure 7.19 CiteSeerX’s Results for Query “Survey of Web Page

Ranking Algorithm”

154

Figure 7.20 Comparison of Precision Values between CiteSeerx,

Google Scholar and Proposed DL System

155

Figure 7.21 Comparison of Precision Values between the Existing

Approach and Proposed Approach as per User’s

Perceptive

155

Figure 7.22 A Graph showing P, R and F values for Query Set 1 and

Query Set 2

156

Figure 7.23 Home Screen of the Proposed Document Categorization

System

157

Figure 7.24 Keywords of the Networking Category 158

Figure 7.25 Paper Information in the Categorized Document

Database

158

Figure 7.26 Successful Uploading of the Paper 159

Figure 7.27 Interface for Searching the Database 159

Figure 7.28 Resultant List of Papers 160

Figure 7.29 Comparison between Single level and Multi level

Approach

162

Figure 7.30 Variation of CC, PR, TDCC and BCC Values 163

Figure 7.31 Comparison of CC, TDCC, PR and BCC Values 164

xvi

LIST OF ABBREVIATIONS

Abbreviation Details or Expanded Form

WWW World Wide Web

URL Universal Resource Locators

IR Information Retrieval

DL Digital Library

ACI Autonomous Citation Indexing

SSCI Social Science Citation Index

SCI Science Citation Index

AHCI Art & Humanities Citation Index

ISI Institute for Scientific Information

SVD Singular Value Decomposition

LSI Latent Semantic Indexing

VSM Vector Space Model

SVM Support Vector Machines

K-NN K-Nearest Neighbor

P Precision

R Recall

F F-Measure

HAC Hierarchical Agglomerative Clustering

RAP Repository Access Protocol

MCQs Multiple Choice Questions

HTML Hypertext Markup Language

XML Extensible Markup Language,

PR PageRank

BCC Bookmark based Ciattion Count

CC Citation Count

TDCC Time Dependant Citation Count

C3 Content based Citation Count

xvii

PSPR Popularity and Similarity based PageRank

HITS Hyperlink Induced Topic Search

PSPR Popularity and Similarity Based Page Rank

TPM Transition Probability Matrix

WSNs Web Social Networks

TF Term Frequency

IDF Inverse Document Frequency

1

Chapter I

INTRODUCTION

1.1 GENERAL

The information age is characterized by a rapid growth and explosion in the amount and

heterogeneity of the information available [1]. This had led to an information explosion

problem and hence better methods to filter, retrieve and manage this potentially unlimited

inflow of information, has become a necessity [2]. Thus, the information age leads to the

need to understand and manage an increasing amount of information from distributed

information repositories. From the user’s viewpoint, there is a demand to effectively and

efficiently retrieve this information. This has given birth to the area of Information

Retrieval (IR).

Information retrieval (IR) [3, 4] is a field of study dealing with the representation,

storage, organization of, and access to documents. The documents may be books, reports,

pictures, videos, web pages or multimedia files. The whole purpose of an IR system is to

provide a user easy access to documents (usually in unstructured form) containing the

desired information. A number of sophisticated tools have been developed to aid the

retrieval of information from the internet. The best known example of a web IR system is

Google search engine [5].

In spite of recent advances in search engine technologies, these are not completely

capturing the vast amount of information available in the digital form i.e. digital

documents [6]. For retrieving the more relevant results for users and researchers, digital

libraries have been introduced. A Digital Library [7, 8] is an integrated collection of

various services including catching, indexing, saving, finding, guarding and extracting

digital content or information. It enables the user to easily access huge quantity of

available digital information on web. Today, digital libraries are being utilized for various

communities and in variety of different fields like academic, science, culture, health, and

many more [9]. Thus, the introduction of digital libraries has made the creation, storing,

sharing and retrieving of information attractive and easy for the web users.

2

The amount of digital content in digital libraries is rapidly growing which somewhere

degrading the performance of digital library search systems. Therefore, in order to the

provide the fast and efficient retrieval of digital library search results as per user’s query,

a lot of approaches have been proposed in this thesis for crawling, indexing, ranking and

retrieving relevant results.

1.2 SEARCH ENGINE

A Search Engine [10, 11] is an automated information retrieval system designed to help

minimize the time required to search for desired information on the World Wide Web

(WWW) [12]. A generic Web search engine [13, 14] comprises of three major

components: Crawler, Indexer and Query Processor.

Crawler: It works in the background. The main function of Web crawler is to download

the Web documents from WWW to be indexed by indexer.

Indexer: It extracts all words from the downloaded documents and retains them along

with the associated document in a local repository called Index.

Query Processor: This component works at the front end. When a user hits a query, then

query processor retrieves the relevant information from the index as per user interest. An

additional Ranking component may work in association with the Query Processor to

order the documents before returning them to the user.

1.3 DIGITAL LIBRARAY

A Digital Library (DL) [7, 8] is an integrated set of services that allows capturing,

cataloging, storing, searching, protecting, and retrieving the information. It provides

coherent organization and convenient access to typically large amounts of digital

information. Nowadays, Digital libraries are experiencing rapid growth with respect to

both the amount and richness of becoming available. Modern search engine technologies

15] are now being introduced in digital libraries to retrieve the relevant content. Digital

Libraries are being created day by day for diverse communities and in different fields e.g.

education, science, culture, development, health, governance and so on. Digital libraries

differ significantly from the traditional libraries because they allow users to gain an on-

3

line access to and work with the electronic versions of full text documents, research

papers and their associated images. Many digital libraries also provide an access to other

multi-media content like audio and video.

Components of Digital Library: Digital library framework permits many different

computer systems to coexist. The key components are shown in the Fig. 1.1. They run on

a variety of computer systems connected by a computer network, such as the Internet.

Various components [16, 17] are described as given below:

User Interface: The goal of a good user interface is to establish a connection between

user/patron and the machine which provide valuable information. A digital library must

provide a single point of access like portal to a huge quantity of digitized information that

is available to a diversity of kind patrons with a different psychological, academic, social

backgrounds and information needs over Internet. Digital libraries have two types of user

interfaces: one for the end-users of the digital library, the other for digital librarians and

system administrators who manage the collections.

Fig. 1.1 Major System Components of Digital library

 User Interface

Repository

Handle System

Enter the Query

Search System

4

Repository: Repository refers to a storage location and often for preservation. In digital

library, repository stores digital contents, its metadata and other information. The

interface to this repository is called the Repository Access Protocol (RAP) [18].

Handle System: Handles are general-purpose identifiers that can be used to identify

Internet resources, such as digital objects [19], over long periods of time and to manage

materials stored in any repository or database.

Search System: It is a software system that is designed to search for information on the

WWW. The search system results are generally presented in the line of results, which

may be a mix of contents. The design of the digital library system assumes that there will

be many indexes and catalogs that can be searched to discover information before

retrieving it from a repository. These indexes may be independently managed and support

a wide range of protocols.

1.4 MOTIVATION

The following issues in the existing literature directed the research towards designing a

framework for a separate Digital Library Search System:-

• Huge size of Web: The first challenge is related to the vast amount of available

digital documents on WWW. But, no single digital library search engine has

crawled and indexed the entire Web. The factor that decreases digital library

search engine efficiency is the missing information or paid access of some

documents. If the crawler can crawl or harvest the Web by using metadata

information of such documents, then user can get all the relevant and desired

documents through digital library search engines.

• Lack of efficient data structures and Indexing Process: The existing data

structures employed in the indexing process of digital library search engines lack

valuable information related to relevant document retrieval. The existing index

structures maintained by majority of digital library systems are keyword based.

Therefore, a large number of irrelevant documents are returned posing the

problem of Information Overkill. This problem can be resolved by indexing the

5

documents using multi-level index structure which provides better efficiency and

effectiveness of digital library search engines.

• Irrelevant Search results: Digital library search engines generally return a list of

results in response to user queries. Typically, those documents are returned whose

contents match to some extent with the submitted query. But in this scheme, it

becomes hard for them to find the documents they are looking for. If the

documents are retrieved based on the category and content of the query, then this

problem can be solved.

• Inefficient Ranking of Documents: The relevancy of a document can be

determined based on ranking algorithms and majority of these algorithms are

based on content or link analysis. Nevertheless, in many situations, traditional

methods are not the perfect solution to determine the relevancy of a document.

Therefore, the problem of ranking digital library search results becomes

inherently complex. Ranking the documents based on their content and link

structure can result in retrieving more relevant results at the top of result list.

1.5 PROBLEM DEFINITION

A critical look at the mentioned issues indicates the need to design a unified framework

for online digital library search system which resolves the above mentioned problems.

There is a need of focused crawler which gathers all the documents present on WWW

and harvests the documents from author’s homepages as well. In order to organize these

documents, an index structure is needed which provides the fast retrieval of document

based on their domain/ topic or category instead of keyword based search. Further, to

represent these returned result lists, a novel method to rank the results in form of cluster

needs to be proposed which provides the relevant results at the top of the result list.

1.6 OBJECTIVES OF RESEARCH WORK

Today, the main challenge in front of digital library search engines is the retrieval of

relevant and quality documents in correspondence to user information needs, but a

number of limitations as identified in the previous sections render the relevant

6

information retrieval a complicated task. To resolve these issues toward building cost

effective and efficient digital library search systems, the following objectives were set:

• Design of a Unified Approach: Several researches are available in the literature

that resolve only one or few related issues, but not any unified technique has been

reported that simultaneously can resolve most of these issues.

Proposal: In this thesis, a unified framework of digital library search system has

been proposed, which can optimize multiple processes such as crawling, indexing,

ranking and query processing of digital library search engines.

• Efficient Crawling of Missing Information: The existing data structures

employed in the crawling process of search engines lack valuable information

related to relevant document retrieval. Moreover, the current digital library

crawlers crawl up to a specific depth on the web owing to which many important

publications (e.g. paid publications) may remain unvisited.

Proposal: Novel data structures have been designed that provide better efficiency

and effectiveness of digital library search engines. An efficient technique to utilize

the meta-data in the crawling for finding the missing or paid publications has

been proposed.

• Categorization of Documents for better Organisation: When a researcher or

user submits a query, then the existing systems compare the query terms with the

documents. If some match occurs, then the search results are displayed to user.

But if user has not defined the topic or domain of the search, then the list of

search results are irrelevant to the user. No work has been performed to retrieve

and display the publications based on category of the query.

Proposal: In this work, in order to retrieve more relevant results as per user

query, Document categorization is considered. A categorized multi-level database

structure is taken in the form of hierarchy. The category of publication is

extracted by matching the keywords of publications with the keywords of

category. When a user hits the query, first the system checks the category of the

query and then displays the results under that category.

• Efficient Retrieval of Relevant Results: Most of the search results returned by

the search systems are ranked generally based on content –oriented or link

7

oriented approaches. Thus, sometimes the ranking based on these concepts does

not reflect relevancy and displays the irrelevant search results to the user.

Proposal: In this work, content and link structure of a publication is taken into

account for ranking the search results. Instead of considering the total number of

citations (i.e. incoming links), the proposed method computes the relevancy

between the publications and their citations by matching their bookmarks and

ranking the results accordingly.

• Efficient Result Representation Schemes: In response to user queries, a digital

library search engine generally returns a large number of results presented to the

user in the form of a ranked list. To search for the desired information, user keeps

on navigating between the papers and thus making extra efforts. Some more

efficient representation scheme is needed to reduce the search space.

Proposal: A more efficient way of organizing the publications can be a

combination of clustering and ranking, where clustering can group the

publications and ranking can be applied for ordering the publications within each

cluster. Based on this approach, a mechanism based on link structure of

publications and query similarity has been proposed. It provides ordered results

in the form of clusters in accordance with user's query.

1.7 ORGANIZATION OF THESIS

The chapter wise organization of the dissertation is shown in Fig. 1.2 and a brief outline

of the remainder of this dissertation is given as:

Chapter II: Information Retrieval and Digital Library System: A Review: This

chapter reviews the technology behind general digital library search engines and presents

in detail the prevalent crawling and indexing techniques in use by current digital library

search engines. At the end, the chapter enumerates various issues which must be

considered in the design of effective and scalable digital library search engines.

Chapter III: State-of-The-Art Techniques in Digital Libraries: This chapter presents

in detail the prevalent document ranking algorithms in use by current digital library

search engines. This chapter also describes current state-of-the-art techniques such as

8

Cluster Analysis, Document Categorization and Keyword Extraction in detail. Several

issues regarding information retrieval through digital library search engines have also

been identified.

Chapter IV: Focused Crawler to Harvest Digital Academic Documents: This chapter

proposes a novel approach to crawl digital library search system. A set of data structures

for crawling have also been proposed. This chapter also describes a Document

Categorization technique in detail for efficiently retrieving the relevant results.

Chapter V: Multi-Level Indexing to Index Documents: This chapter proposes an

indexing scheme for efficient digital library system. Its two main modules: pre-

processing module and query processing module are discussed in detail along with

Fig. 1.2 Chapter-wise Organization of the Dissertation

 Chapter I
Introduction

Chapter II
Information Retrieval and Digital Library

System: A Review:

Chapter III
State-of-The-Art Techniques in

Digital Libraries

Chapter IV
Focused Crawler to Harvest Digital Academic

Documents

Chapter V
Multi-Level Indexing To Index Digital Documents

Chapter VI
Search Results Representation using Clustering and

Ranking

Chapter VII
Implementation Results and Analysis

Chapter VIII
Conclusion and Future Scope

9

algorithm used. A set of data structures for indexers have also been proposed in this

chapter.

Chapter VI: Search Results Representation using Clustering and Ranking: This

chapter describes the proposed clustering and ranking mechanism for efficiently

retrieving the documents from the digital library search system as per the user interest.

Chapter VII: Implementation and Result Analysis: This chapter discusses the

implementation aspects of proposed techniques. This chapter also includes the snapshots

and results of experiments. Performance of various techniques has been measured in

terms of precision, recall and F-measure. The results so obtained have been compared

with the outputs of existing systems.

Chapter VIII: Conclusion and Future Scope: This chapter concludes the work and

provides a description of potential future work in the area under consideration.

The digital library search engine's technology and a comprehensive review of some

prevalent state-of-the-art techniques employed by existing digital library search engines

is presented in next two chapters.

10

11

Chapter II

INFORMATION RETRIEVAL & DIGITAL LIBRARY

SYSTEMS: A REVIEW

2.1 INFORMATION RETRIEVAL

Information retrieval [3, 4] is fast becoming the dominant form of information access. It

can be defined as:

Information Retrieval (IR) is the task of finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers).

In an abstract sense, IR deals with the representation, storage, organization of, and access

to information items. The representation and organization of the information items should

provide the user an easy access to the information in which he is interested. The general

IR process is depicted in Fig. 2.1, wherein Index provides an efficient representation of

the information items stored in the database. The Query Engine is responsible for taking

user queries, retrieving the matched results/records from the index and representing them

to the user in an understandable manner.

Fig. 2.1 Basic Process of Information Retrieval

Result
Representation

Function

Results

Queries

Query Engine (Processor)

Matching Function

Storage
Representation

Function

Database
(Database Records)

Indexes
(Record Representation)

Users

12

Earlier, IR used to be an activity that only a few people like reference librarians and

similar professional searchers were engaged in. But, in current scenario, hundreds of

millions of people are engaged in this process in their daily routines, for example when

they use a web search engine to access the Web documents on WWW or search their

emails [22].

WWW [12] is an interlinked collection of documents. These documents contain

hyperlinks to other documents. The links can point to a document on the same machine or

to one on the other side of the world. It is becoming a challenging task to find the specific

information in the WWW or Web, because of the rapid growth of the Web and the

diversity of the information offered through the Web. Therefore, the field of information

retrieval covers a broad spectrum of techniques and applications that aim to satisfy the

user’s information needs. An ideal information retrieval system [23] must be able to

• Determine the information needs of a user,

• Search the information available,

• Return the relevant information that is generally compiled from multiple sources,

in a language and format that can be easily understood by the users.

In IR, the information need of the user is expressed as a bag of keywords [24]. The

results are returned in the form of a list of documents that contain one or more of those

keywords. The user accesses the information from the web through the search engine,

which is discussed in the next section.

2.2 SEARCH ENGINES

The plenteous content available on the WWW is useful to millions of people World

Wide. Some simply browse the Web through entry points such as Yahoo, MSN etc, but

many information seekers use a Web search engine to begin their Web activities. A

Search Engine [14, 25] is an automated information retrieval system designed to help

minimize the time required to search for desired information on the WWW. The search

results are generally presented in an ordered list or in groups, and are often called hits.

The results may consist of web pages, images, information, blogs and other types of files.

A list of some prevalent search engines is given in Table 2.1.

13

Following subsections describe the general architecture of search engines and basic

terminologies used by them.

2.2.1 GENERAL ARCHITECTURE OE A SEARCH ENGINE

The architecture of a typical search engine [13, 14] is shown in Fig.2.2. The most

important component of the search engine is a crawler [34] also called a robot or spider

that traverses the hypertext structure in the web, downloads the web pages, and stores

them in page repository. The downloaded pages are then routed to an indexing module

[35] that parses them and builds the index based upon the keywords present within the

pages. Index is generally maintained alphabetically considering the keywords. When a

user fires a query in the form of keywords on the interface of a search engine, the query

processor after matching the query keywords with the index returns the URLs of the

Table 2.1: List of some Popular Search Engines

Year Engine Current Status

1983 AOL[26] Active, Web portal and online services

1994 Web Crawler[27] Active, Aggregator

1995 AltaVista [28] Defunct, Domain has redirected to Yahoo!'s own search site

1998 Google [5] Active

2004 Yahoo! Search
[28]

Active, Launched own web search (see Yahoo! Directory, 1995)

2005 GoodSearch [29] Active

2008 DuckDuckGo[30] Active, Protecting searchers' privacy and avoiding the filter
bubble of personalized search resultP

2009 Bing [31] Active, Launched as rebranded Live Search

2011 YaCy [32] Active, P2P web search engine

2015 Cliqz [33] Active, Browser integrated search engine

http://en.wikipedia.org/wiki/Google_Search
http://en.wikipedia.org/wiki/Yahoo%21_Search
http://en.wikipedia.org/wiki/GoodSearch
http://en.wikipedia.org/wiki/Bing

14

pages to the user. A search engine generally returns a large number of web pages in

response to user queries and users have to spend much time in finding their desired

information from this long list resulting in information overload problem.

Before representing the results to the user, some ranking mechanism [36] either in back

end or in front end is used by most of the search engines to make the user search

navigation easier within the search results. Important pages are displayed on the top of

results leaving the less important pages downwards.

2.2.2 TYPE OF ISSUES WITH THE CURRENT WEB

Data on the Web is not in the form as desired by the users. It contains a lot of issues that

should be looked upon by the search engines. These are described as under.

• Large volume: WWW contains huge collection of data. Also, the growth of data

over the WWW is exponential. Increase in the amount, poses scaling issues that

are difficult to cope with.

• Distributed data: Data is distributed widely over the WWW. It is located at

Fig 2.2 Architecture of Web Search Engine

Results

Query

Crawl Module

WWW

Page
Repository

Indexing Module

Index

Query Processor

Ranking Module

Query Interface

Matched
Pages

Pages with
 Ranks

Query Terms
Matched

Pages

Reads Store

URLs

User

15

different sites and platforms. The communication links between computers vary

widely.

• Unstructured and redundant data: The data on the Web is highly unstructured

[37]. It is impossible to organize and add consistency to the data and the

hyperlinks. Also, there exists semantic redundancy that can increase traffic.

• High percentage of volatile data: The data on the Web is highly volatile.

Documents can be added, removed or updated easily on the WWW. These

changes to the documents are usually unnoticed by users.

• Quality of data: The data available on the Web is not of high quality. A lot of

Web pages do not involve any editorial process. That means data can be false,

inaccurate, outdated, or poorly written.

• Heterogeneous data: Data on the Web is heterogeneous. Documents are written

in different formats, media types, and natural languages.

• Dynamic data: The content of Web documents change dynamically [12] with

some web pages being highly dynamic and some less. The web pages that

changes dynamically need to be noticed, so that the user gets an updated page on

visit.

Web is massive, much less coherent; it changes more rapidly, and is spread over

geographically distributed computers. This requires new information retrieval techniques,

or extensions to the old ones, to deal with the gathering of the information, to make index

structures scalable and efficiently updateable, and to improve the discriminating ability of

search engines.

In spite of recent advances in search engine technologies, there still occur situations

where the user is presented with non-relevant search results. For example, when a user

inputs a query for some scientific literature, book or periodical on general purpose search

engine such as Google [5], it returns a long list of search results consisting of tutorials,

news, articles, blogs etc. This is because these search engines are not completely

capturing the vast amount of information available in the digitization projects on books

and periodicals that are occurring locally, nationally and internationally.

16

Now days, researchers are making their work available online in the form of postscript or

PDF documents, therefore, amount of scientific information and the number of electronic

journals on the Web is increasing at a fast rate. But the access to the growing body of

scientific literature on the publicly indexable Web is limited by the lack of organization

of such information [11]. To overcome this problem, digital libraries [7, 8] have been

introduced to make retrieval mechanism more effective and relevant for researchers or

users. As general purpose search engines do not take into consideration the vital

information available in digital repositories/ libraries, there is a need to design a separate

retrieval system over the online digital libraries that satisfies user’s information needs and

returns only relevant results.

2.3 DIGITAL LIBRARIES: AN INTRODUCTION

Libraries have always strived to collect, process and disseminate information. But

information today exists in many forms than just a printed matter and this has lead to the

evolution of Digital Libraries. A Digital Library [7, 8, 15] is an integrated set of services

for capturing, cataloging, storing, searching, protecting, and retrieving information,

which provides coherent organization and convenient access to typically large amounts of

digital information. Digital libraries break the barrier of physical boundaries and strive to

give access to information across varied domains and communities. Digital libraries are

experiencing rapid growth with respect to both the amount and richness of available

digital content. As a consequence of the huge amount of digital content becoming

available, modern search engine technologies are now being introduced in digital libraries

to retrieve the relevant content [38]. The list of some existing digital libraries is given in

Table 2.2.

2.3.1 Benefits of Digital Libraries

Digital libraries bring significant benefits [47, 48] to the users through the following

features:

• No Physical Boundaries: The users can access the digital libraries virtually at any

time and from anywhere without having to wait and going to physically

17

anywhere.

• Wider access: The same resources or documents can be used simultaneously by a

number of users at a same time. It can also meet the requirements of a larger

population of users easily.

• Improved information sharing: Through the appropriate metadata and

information exchange protocols, the digital libraries can easily share information

with other similar digital libraries and provide enhanced access to users.

• Improved preservation: Since the electronic documents are not prone to physical

wear and tear, their exact copies can easily be made, thus the digital libraries

facilitate preservation of special/ rare documents and artifacts by providing access

to digital versions of these entities.

• Information Retrieval: Digital Libraries can provide very user friendly interface

to users for searching required documents by clicking search terms.

• Structured Approach: Digital libraries provide access to much richer content in a

more structured manner, i.e. we can easily move from the catalog to the particular

Table 2.2 List of some Existing Digital Libraries

Name Discipline Access Cost

CiteSeer [39] Computer Science Free

Google Scholar [40] Multidisciplinary Free

IEEEXplore [41] Computer Science
Engineering, Electronics

Subscription

ScienceDirect [42] Multidisciplinary Subscription

Open Access Journals Search
Engine(OAJSE) [43]

Multidisciplinary Free

Academic Publications
eJournal [44]

Multidisciplinary science Free

Academic Search [45] Multidisciplinary Subscription

SpringerLink [46] Multidisciplinary Free abstract & preview;
Subscription full-text

http://en.wikipedia.org/wiki/Academic_Search

18

book, then to a particular chapter and so on.

2.3.2 Principles for Digital Library Design

The main objective of a digital library is to provide coherent organisation and convenient

access to typically large amounts of digital information. The following principles [8, 49]

guide the development of the architecture of digital library system:

• Service Driven: The architecture for the DLs must be driven by the services it

provides and tools required for delivering the service.

• Open Architecture: The architecture must be open, extensible and support

interoperability among heterogeneous, distributed systems.

• Scalability: The architecture must be robust, scalable and reliable in a high

transaction rate production setting thousands of patrons with a wide variety of

backgrounds and information needs.

• Preservation: The architecture must ensure persistent access to the collection of

DL, addressing issues such as naming, digital archiving and digital preservation.

• Privacy: The architecture must be sensitive to privacy issues and support both

anonymous and customized access to resources.

• Practicality: The architecture should represent a flexible and practical approach to

standards, recognizing the need to balance the level of information collection with

economic constraints.

The general architecture of a digital library system is described in the next section.

2.4 GENERAL ARCHITECTURE OF DIGITAL LIBRARY SEARCH SYSTEM

Fig 2.3 depicts the general architecture of a digital library search engine [15]. The main

functions carried out by the system are described as:

Document Acquisition: When the user wishes to explore a new topic, a new instance of

the agent is created for that particular topic. The user invokes this sub-agent by giving it

broad keywords. The sub-agent uses search engines and heuristics for searching the Web

19

pages which are likely to contain links to research papers of interest. The agent locates

and downloads postscript files identified by “.ps”, “.ps.Z”, or “.ps.gz” extensions.

Document-Parsing: This module extracts the semantic features and citations from the

downloaded documents and places them in a database. Each citation is parsed using

heuristics to extract the fields like document text, document words and further citations

etc.

Database Browsing: This component consists of a query processing sub-agent which

takes a user query of proper syntax and returns an HTML formatted response. Typically,

the query program is not used directly, but through a Web browser interface.

The detailed description of each component of digital library search engine is described

in following sections.

2.5 CRAWLER

Web Crawlers [50, 51] are one of the main components of digital library search engines.

Web crawling is the process by which system gather a corpus of digital documents from

Fig. 2.3 The Architecture of a Digital Library

Postscript Files

Text files

Crawls

Parsed
Documents

Reads

Query Results

User

Crawl Module

WWW

Document
Database
(Parsed

Documents)

Database Search &
Browsing Sub-Agent

Text Extractor

Document Parsing
Sub-Agent

Converter

Web Browser Interface

Indexing Module

Index

Query

Matched Documents

Results

20

the Web resources, in order to index them and support a digital library search engine that

serves the user queries. The primary objective of crawling is to gather as many useful

documents as possible quickly, effectively and efficiently, together with the link structure

that interconnects them.

A general structure of crawler [50, 51] is shown in Fig. 2.4. Crawling starts with a set of

seed URLs stored in a queue structure, called “URL queue”. Then multiple threads of

crawler execute simultaneously and each thread gets the URL from the queue which

further fetches the corresponding web pages from the server. Later, this page is parsed to

extract links/ URLs and these links are appended to the URL queue to be fetched later. A

real life crawler is much more complex than this structure to consider issues like

politeness policy also i.e. do not request many web pages from the same server at the

same time.

2.5.1 Types of Web Crawler

Different strategies are being employed in web crawling. These are as follows.

a) Simple Crawler: It is a single –process information crawler, which was

initially made for his desktop. Later, it was extended on to the internet. It had a

simple structure, and hence had limitations of being slow and having limited

efficiency.

b) Focused Crawler: A Focused Crawler [52, 53] finds, acquires, indexes, and

organizes the documents based on specific topics. The focused crawlers are

designed to efficiently extract documents based on different parameters which

Fig 2.4 Structure of Crawler

Fetch URL &
Extract Links

URL Queue Seed
URLs

Threads

21

identify or check the relevancy of extracted documents as per the user interest;

priority criteria for deciding in which order to pursue based on previously

downloaded information and save all information and extracted documents into

the local database. There are various applications of the focused crawler including

generating web based recommendations and retrieving domain/topic relevant

scientific paper/publication etc. They are also useful to update topic relevant

indexes where specific information is required to fulfill the community’s

information need, in comparatively much lesser time [54].

Fig. 2.5 represents the structure of the focused web crawler. The only difference

compared to the general crawler is the Topic Classifier which makes it more

precise [55]. Each fetched page is classified to predefined target topic(s). If the

page is predicted to be on-topic, then its links are extracted and are appended into

the URL Queue. This type of focused web crawler is called “full-page” focused

web crawler since it classifies the full page content. In other words, the context of

all the links on the page is the full page contents itself.

c) Distributed Crawler: Distributed web crawling [56] is a distributed

computing technique whereby Internet search engines employ many computers to

index the Internet via web craw. It reduces the overload on server by spreading

the load of tasks on different computers. The main focus is on distributing the

Fig 2.5 Structure of Focused Web Crawler

URL Queue Seed
URLs

Threads

Fetch URL

Extract
Links

Topic Classifier

Web Page

Classified as
On-Topic

22

computational resources and the bandwidth to the different computers and the

networks.

d) Parallel Crawler: Initially given by Junghoo Cho in 2002 [57], this approach

relied on parallelizing the crawling process, which was done by multi-threading.

A parallel crawler [58, 59] consists of multiple crawling processes. Each process

performs the basic tasks that a single-process crawler conducts. It downloads web

pages from WWW, stores the pages locally, extracts URLs from the downloaded

pages and follows links. Some of the extracted links may be sent to other

processes depending on how the processes split the download task. The processes

may be distributed either on the same local network or at geographically distant

locations. This type of crawler has faster downloading, less time consuming but

requires more bandwidth and computational power for parallel processing.

e) Incremental Crawler: A traditional crawler, in order to refresh its collection,

periodically replaces the old documents with the newly downloaded documents.

On the contrary, an incremental crawler [60, 61] incrementally refreshes the

existing collection of pages by visiting them frequently based upon the estimate as

to how often pages change. It also exchanges less important pages by new and

more important pages. It resolves the problem of the freshness of the pages. The

benefit of incremental crawler [62] is that only the valuable data is provided to the

user, thus network bandwidth is saved and data enrichment is achieved.

2.5.2 Study of Existing Web Crawlers for Digital Libraries

A literature analysis of various web crawlers for digital library search engines has been

done in this section. A few existing crawling techniques used for digital library search

engines are discussed below:

a) Locating Online Copy of Scientific Documents: This system [63] makes use

of citation information to locate and crawl copies of articles available throughout

the Web. The heuristic-based crawling and distance-based title matching

algorithms are used to find online copies of scientific papers more effectively.

This system solves the problems of involving human browsing in order to get the

23

final online copy, and incomplete coverage. But, the main disadvantage of this

system is that it can find target documents more efficiently than Google, but it

does so at the cost of time i.e. the elapsed time per citation.

b) Finding Scientific Papers with HomePageSearch and MOPS: An approach

[64] to seek scientific papers relevant to a pre-defined research area was proposed

in this system. It searches for web pages which are created by scientists and are

active in the research area under consideration. A list of names of scientists is

obtained from electronic computer science bibliographies. The HomePageSearch

system finds the Home Pages according to the names, and Mops uses the

homepages as starting URLs and finds research papers close to the Home Pages.

It creates an index of these papers and makes it accessible on the web. The quality

of the MOPS index depends on the list of starting points for the search. If the

starting URLs are too far away from the documents, the system either will not

found them, or the search takes too much time.

c) Missing Content Analysis: In this [65], popular information needs are

identified by proposing a tool which dynamically analyze the query log of the

system, identify missing content queries, and then direct the system to enrich its

data. Thus, this tool is able to satisfy the user’s needs. First, system finds topics or

information needs that have low coverage within the system and then reduces the

knowledge gaps by using an alternative sources. This system uses the query logs

to represent knowledge requirements set by users in the past; thus, the process

may improve the quality of recurrent queries that were once identified as Multiple

Choice Questions (MCQs) but unable to predict future knowledge demands.

d) A Meta-Search Enhanced Focused Crawling: In this [66], a set of seed

URLs is taken as an input by the crawler for fetching relevant pages based on the

content and link-based analysis results. If the fetched page is relevant, then all the

outgoing links in the fetched page are extracted and forwarded to the URL queue

for further crawling. At the mean time, a meta-searching component keeps

drawing queries from a domain-specific lexicon, retrieving diverse and relevant

URLs by querying multiple search engines, and combining their top results. The

24

main advantage of this system is that it requires only domain specific seed URLs.

But, with the rapid growth of Web, the effect of increasing the number of starting

URLs could be very limited.

e) An Academic Document Search Engine: Whitelists and Blacklists: This

system replaces blacklist with a whitelist [67]. A blacklist means the crawl is

forbidden from a certain list of URLs whereas a whitelist means only certain

domains are considered and others are not crawled. The whitelist is generated

based on domain ranking scores URLs harvested by the CiteSeerX crawler. In this

system, whitelist policy includes two essential factors: a ranked seed list, and a

domain constrained crawling rule. The main advantage of this system is to use of

whitelist which significantly reduces the number of useless URL requests and

unnecessary downloads. The system results in increasing the fraction of useful

documents. But, while this policy reduces crawling irrelevant URLs, it could miss

opportunities to discover new resources as well.

f) Focused Crawling for Educational Materials: The system [68] proposed

domain ontology concepts based query method for searching educational

documents from Web and categorizing them by topic. It has also proposed

concept and term based ranking system for obtaining the ranked seed documents

which is then used by a concept-focused crawling system. This system first ranks

the seed documents before start crawling for effective results. It also relays on

background knowledge of concepts and associated topic learning terms, which are

compared with the contents of the crawled documents. The disadvantage of this

system is that it does not evaluate the retrieved documents from the point of view

of structure of learning content.

g) Automatically Acquiring Scientific Documents: In this system, publicly-

available research paper titles and author names are used as queries [69, 70, 71].

Research papers and sources of research papers are identified from the search

results using accurate classification modules. This proposed framework crucially

depends on accurate paper classification (into categories such as book, paper,

thesis etc.) and researcher homepage identification modules. This system uses

25

“Web Search” to obtain seed URLs for initiating crawls in an open-access digital

library. The disadvantage of this system is that trained naïve Bayes classifiers are

used for training data which are not easy to use for naïve users.

h) Focused Crawling for Missing Documents: The proposed system [72] uses

the publication metadata to guide the crawler towards authors’ homepages to

harvest what is missing from a digital library collection. The system first

identifies the missing papers that are not indexed by CiteSeer and then proposed a

fully automatic heuristic-based system that has the capability of locating authors’

homepages. These author homepages are used further for focused crawling to

download the desired papers.

A brief comparison of the various crawlers used in digital libraries described above is

given in the next section.

2.5.3. Comparison Study of Various Web Crawlers

By going through the literature survey, a comparison study of various existing web

crawlers in digital libraries was done and is shown in Table 2.3 and Table 2.4. The

comparison is done based on different parameters such as techniques used, input

parameters, types of crawling used, importance and limitations.

A critical look at the available literature indicates the following issues which need to be

addressed while designing an efficient crawler for digital library search engines:

• There is a need of a new approach to seek scientific papers relevant to a pre-

defined research area. As traditional digital libraries, search for documents based

on content similarity only with the query keywords irrespective of their topic/

domain/context which results in the irrelevant list of search results.

• Most of the focused crawlers use local search algorithms to gather or build the

domain-specific collections that are not comprehensive and diverse enough to

scientists and researchers.

• The vast amount of digital documents is available on WWW, but, no single search

engine has crawled and indexed the entire Web. The factor that decreases digital

26

library search engine efficiency is the missing information or paid access of some

documents. If the crawler can crawl or harvest the Web by using metadata

information of such documents, then user can get most of the relevant and desired

documents through digital library search engines.

Table 2.3 Comparison of various Web Crawler for Digital Libraries

Techniques

Measures

An Academic
Document Search
Engine: Whitelists
and Blacklists [67]

Focused Crawling for
Educational Materials
[68]

Homepage Search and
MOPS [64]

Description This system replaces
blacklist with a
whitelist. Whitelist
policy includes two
essential factors: a
ranked seed list, and
a domain constrained
crawling rule.

The system proposed
domain ontology concepts
based query method for
searching educational
documents from web and
categorized by topic. It has
also proposed concept and
term based ranking system.

An approach to seek
scientific papers relevant
to a pre-defined research
area. This system
searches for web pages
which are created by
scientists who are active
in the research area
under consideration.

Input
Parameters

Seed URLs list,
whitelist

Domain-Ontology
concepts which are given
as queries to search engine.

A list of names of
scientists who are active
in the research area
under consideration.

Need of the
User’s
Support

No Need No User interface for
manually send correct or
wrong personal
homepage data.

Type of
Crawling
Used

Focused Crawling Concept-Focused Crawling Focused crawling with
topic oriented knowledge

Importance Use of whitelist
significantly reduces
the number of useless
URL requests and
unnecessary
downloads.
Increases the fraction
of useful documents.

This system firstly ranks
the seed documents before
start crawling for effective
results.
The system also rely on
background knowledge of
concepts and associated
topic learning terms, which
are compared with the
contents of the crawled
documents.

It searches the given
address at the depth of 1
or 2 for finding scientific
papers.

Limitation(s) While this policy
reduces crawling
irrelevant URLs, it
could miss
opportunities to
discover new
resources as well.

It does not evaluate the
retrieved documents from
the point of view of
structure of learning
content.

If the starting URLs are
too far away from the
documents, then the
search takes too much
time.

27

Table 2.4 Comparison of various Web Crawler for Digital Libraries

Techniques

Measures

Locating Online
Copy of
Scientific
Documents
[63]

Automatically
Acquiring Scientific
Documents [69, 70,
71]

Missing Content
Analysis
[65]

A Meta-Search
Enhanced
Focused
Crawling [66]

Description The heuristic-
based crawling
and distance-
based title
matching
algorithms are
used along with
citation
information in
order to find
online copies of
scientific papers
more effectively.

This framework
crucially depends on
accurate paper
classification and
researcher homepage
identification
modules.

Popular information
needs are identified
by dynamically
analyzing the query
log of the system,
identify missing
content queries, and
then direct the
system to enrich its
data

In this system, a
meta-searching
component keeps
drawing queries
from a domain-
specific lexicon,
retrieving
diverse and
relevant URLs
by querying
multiple search
engines, and
combining their
top results.

Input
Parameters

Citation
information of the
document.

A publicly-available
research paper titles
and author names are
used as queries to a
Web search engine.

Dynamically
analyze the query
log of the system
and alternative
external sources to
reduce the
knowledge gaps.

A set of starting
URLs

Need of the
User’s
Support

No need of human
browsing

No need User’s support is
required to manually
build the
taxonomies.

No Need

Type of
Crawling
Used

Focused Crawling Focused Crawling User driven Focused
Crawler

Meta-Search
based Focused
Crawling

Importance Solve the
problems of
involving human
browsing to get to
the final online
copy, and
incomplete
coverage.

The system uses
“Web Search” to
obtain seed URLs for
initiating crawls in an
open-access
digital library.

Increase the
probability to find
the proper answer
for future queries by
reducing the
knowledge gaps.

Advantage over
the Tunneling
technique.

Limitation(s) Needs to spend
time on additional
crawling and
citation matching.

An incorrectly
predicted homepage
as a seed URL may
result in crawling
irrelevant documents
and extra processing
load.

There is no
guarantee that the
external sources can
satisfy the user’s
specific needs.

More starting
URLs one uses
in the crawling
process, the
more
comprehensive
the final
collection will
be.

28

A brief discussion about the indexing process in digital library search engines is

described in next section.

2.6 INDEXER

With the huge corpus of digital information present on the WWW, the need to efficiently

find some specific piece of digital information as per user interest becomes crucial [73].

In digital libraries, the index structure [74] has been considered as the important

component for supporting fast searching. Indexing is an assistive technology mechanism

which helps to optimize the speed of digital library search engine in finding the relevant

documents against the user query. Indices are used to provide a framework for

researchers to locate the documents quickly and efficiently.

2.6.1 Architecture of Indexing Process

The architecture of a typical indexing system [75, 76] is shown in Fig.2.6. The main

component of this system is a Text Acquisition that identifies and acquires the documents

for indexing. This component is responsible to feed the real time streams of documents

(e.g. articles, research papers, blogs, videos etc.) and convert the variety of documents

into consistent text plus meta-data format. For example, if some documents are in HTML,

Word, XML or in PDF format, then this component converts all the documents types into

Fig 2.6 Architecture of Indexing Process

Articles,
Documents

Text Acquisition

Text Transformation

Documents
Data Store

Index Index Creation

Documents

Index Terms Documents

29

XML format. Metadata is the information about documents such as document type, title,

author and creation date. This identified and crawled documents are forwarded to be

saved in a Data Store. This component stores the details of the document in the form of

document type, structure, features, size etc. Text Transformation component takes the

crawled documents as an input and transforms documents into index terms or tokens. It

processes the sequence of text tokens in document to recognize structural elements of the

documents. The index terms or tokens are further forwarded to Index Creation

component which is responsible to create the data structure or index in order to support

the fast searching of information.

2.6.2 Types of Indexing Techniques

Today, the main challenge for digital library search engines is to efficiently crawl or

harvest the scientific literature present on the WWW and index them in an ordered way

for efficient retrieving and presenting relevant results to the researcher. Some of the

common indexing techniques have been discussed here as follows.

a) Inverted Indexing: Inverted Index is the most commonly used data structure to index

documents into the database. It is also named as postings file or inverted file [74, 77]. It is

called “inverted index” because it maps the each word of document with its locations in a

document or set of documents. There are several variable features or field on inverted

indexes that the users can use as per their need. These variations are as:

• List 1: A term’s inverted list only stores list of documents in which the word

appears in.

• List 2: A term’s inverted list stores the list of documents and frequency of

occurrence in the documents which it appears.

• List 3: A term’s inverted list stores the list of documents and the location (or word

positions) of each occurrence of the term in the document in which it appears.

In this case, the search system scans each word of every document that is crawled and

creates an inverted index. When the end-user hits the query by using some keywords,

then the system fetches the inverted list of terms that match with the query terms.

30

Illustrative Example: Consider small fragments of two sample documents 𝑑𝑑1and 𝑑𝑑2 as

given below:

𝑑𝑑1: An apple a day keeps the doctor away. Apple is red in color. Golden apples

are very juicy.

𝑑𝑑2: Apples are sweet and sour in taste. Apples are very good for health everyone

should eat apple

The set of terms with their term frequencies in respective documents is depicted in Table

2.5.

The indexes can be described by following lists:

• List 1: Only the documents are listed. This list is represented in the format as: (𝑑𝑑1,

𝑑𝑑2 ,...), where 𝑑𝑑𝑖𝑖 denotes the document number i.e. document identifier.

• List 2: Documents are listed with their word frequencies in document. The format

is (𝑑𝑑1: 𝑓𝑓1, 𝑑𝑑2: 𝑓𝑓2 …), where 𝑑𝑑𝑖𝑖 represents the document identifier and 𝑓𝑓𝑖𝑖denotes

the word frequency.

Table 2.5 Term Frequencies in respective Documents

Terms List 1 List 2 List 3
Apple 1,2 1:3,2:3 1:(2,9), 2:(1,8)
Day 1 1:1 1:(4)
Keeps 1 1:1 1:(5)
Doctor 1 1:1 1:(7)
Away 1 1:1 1:(8)
Red 1 1:1 1:(11)
Color 1 1:1 1:(13)
Golden 1 1:1 1:(14)
Very 1,2 1:1, 2:1 1:(17), 2(10)
Juicy 1 1:1 1:(18)
Sweet 2 2:1 2:(3)
Sour 2 2:1 2:(5)
Taste 2 2:1 2:(7)
Good 2 2:1 2:(11)
Health 2 2:1 2:(13)
Everyone 2 2:1 2:(14)
Eat 2 2:1 2:(16)

31

• List 3: Documents are listed with their word positions and word granularity. The

format is (𝑑𝑑1: (𝑤𝑤1, 𝑤𝑤2…..), 𝑑𝑑2: (𝑤𝑤1, 𝑤𝑤2…..), ...), where 𝑑𝑑𝑖𝑖 is the document

identifier and 𝑤𝑤𝑗𝑗 are the word positions.

Advantages:

• Generally, this approach for indexing the documents is used in Full-text

searching. It is very easy method for users who are not sure what or which type of

documents they want to retrieve.

• Computing the frequency of occurrence of each word in every document provides

the basis for optimizing query execution and recommendation.

Limitations:

• This method results in a huge number of irrelevant result lists of documents.

• Major drawback of this method is to rebuild the inverted list instead of updating

the existing list while adding a new document to collection. This results in high

cost in terms of time and space.

• This approach results in indexing individual words only, whereas researchers

often uses domain names, topic phrases, title of documents etc. while searching

for desired results in digital libraries.

b) Signature Files: Signature Files [77, 78], also named as word-oriented index

structures, which process each word of the document separately by using a hashing

function (or also called signature). For generating the signature, pre-processing of

document is done (i.e. applying stemming and stop words removal etc.) to get the

indexable tokens. A binary pattern is generated by setting a constant number of 1s (say

m) in the range between [1...V]. This pattern is named as the word signature. This method

divides the text of the document in a number of blocks and each block is having b non-

common, distinct words. Now, each word is mapped into bit vector. The length of each

bit vector is V bits. A block signature in the form of V-bit pattern is generated by

superimposing (i.e. bit ORed) each word signature present in a single block and saved in

32

the signature file. There are various applications of this approach like in office filing,

hypertext systems, as well as in data mining.

Illustrative Example: Consider small fragment of documents containing a block having 3

words (say D=3), the length (V) of each signature is=12 and m=4 (as shown in Table 2.6)

D1= “SGML”, D2= “Database”, and D3= “Information”

When a user hits a query, the system first generates query signature 𝑠𝑠𝑞𝑞 from query

keywords. Now, the comparison is done between the query signature 𝑠𝑠𝑞𝑞 and every block

signature 𝑠𝑠𝑏𝑏 present in signature files. The possible comparison outcomes are shown in

Table 2.6.

• If 𝑠𝑠𝑏𝑏∩𝑠𝑠𝑞𝑞 =𝑠𝑠𝑞𝑞 , The block is matched with the query.

• If 𝑠𝑠𝑏𝑏∩𝑠𝑠𝑞𝑞 ≠𝑠𝑠𝑞𝑞 , The block is not matched with the query.

• The result of comparison comes out to be matched but there is a false drop i.e. the

block signature is not matched with the query signature. In order to overcome

false drops, the further examination of block must be done.

Advantages:-

• It is more efficient approach if the users use phrases-type and proximity-type

queries.

• Unlike Inverted Index, this method handles new insertions and queries more

efficiently.

Table 2.6 Signature Generation and Comparison

Word Signature Queries & Signatures Results
SGML 010 000 100 110 SGML 010 000 100 110 Match with Block

Signature
Database 100 010 010 100 XML 011 000 100 100 No Match
Information 010 100 011 000 Intonation 110 100 100 000 False drop
Block
Signature

110 110 111 110

33

Limitations:-

• Results in a more number of false drops, which can be eliminated by doing only

sequentially search on every block signature which results in a false drop output.

• In the case of large databases, signature files result in slow execution because

their response time is linear on the number of items in the database.

• This approach allows insertions with more cost and needs significant space

overhead.

c) Citation indexing: This type of indexing was proposed in 1950s by Institute for

Scientific Information (ISI) which is also named as Thomson Reuters [79]. This method

assumes that, there are three strategies generally used by the researchers in finding their

interest of research work [80]:

1. Follow the references or citations of the known document made by their authors.

2. Searching through bibliographies or indexing services by using subject words.

3. Consult a subject expert of the area who gives a direction to the researcher about

other information like tools, techniques, authors, citations of that area which helps the

researcher.

This indexing makes a link between article and their citations i.e. who cite that article for

reference. It is a technique which allows us to trace all articles or idea from the older

publication to recently published who have cited the older publications. For making the

relationship between an older publication and recently publication, this technique

considers the references or footnotes or endnotes (citations) in the recently published

article. There are numerous advanced methods which are proposed for searching the

article that are related to each other based on citations, text, and usage information. An

Autonomous Citation Indexing (ACI) system was invented by CiteSeer [15] which

automatically extracts the context of the citations and creates a citation index in

electronic format. This system enables to:

• autonomously search articles,

• automatically extract references or citations,

34

• identify citations to the same article but written in different formats, and

• identify the context of citations.

Illustrative Example: Let’s take a look how citation index [81] works? When a research

hits a query on a query interface, a list of citations which is matched with the query is

returned by the system. The researcher can further browse the articles by tracing the

references between the articles made by citations. As shown in Fig. 2.7, the system

returns a number of citations to each article against the query “Quinlan” hit by the

researcher [81]. The “hosts” column defines the total number of unique hosts. The “self”

column represents the total number of self-citations of given paper. The graph shows the

total number of citations on the vertical side versus the year of publication for each cited

article.

Advantages:

• This method helps to reveal relationships among various publications.

Fig.2.7 An Example of Citation Indexing

35

• This method helps the researches to draw attention towards various important

corrections or retractions related to publish work of their interest area.

• The method enables the researches to identify significant improvements or

criticisms made on the previous work of a particular publication.

Disadvantages:

• Today, three type of citation indexes are available as: Science Citation Index

(SCI), Social Sciences Citation Index (SSCI), and Arts & Humanities Citation

Index (AHCI). But, the main drawback is that they need manual efforts for

selective indexing.

d) Keyphrase Indexing: Conventional systems often provide the indexing at term or

word level that appears in the document. But, when a researcher is interested to search for

an article or document in terms of topics/domains, then conventional indexing based

system returns a long list of documents. As a result, it is difficult for the researcher to

find whether the returned list fully covered his/her interested area or which kind of

refinement in queries will provide the fruitful results. Thus, to overcome the above

problem, an indexing scheme, named as Keyphrase based Indexing was proposed in [82].

Keyphrases are topical words or phrases from the document which provide the concise

description of the document content. This approach automatically extracts the keyphrases

from the document which form the basic unit for indexing. This method allows the users

to interact with the collection at the level of topics and subjects rather than words and

documents. A system named as keyphind [83] was proposed that allows browsing,

exploring, and searching large collections of text documents. This system uses the

keyphrase indexing for retrieving documents. There are total three type of indexes are

generated by the system [82] (as shown in Fig. 2.8). These are as follow:

1) Word-to-phrase index: This type of index results in creating a list of keyphrases

against all words or terms which appear in the document collection. For example,

“crawling” word presents in “focused crawling,” “incremental crawling,”

“crawling techniques,” etc.

36

2) Phrase-to-document index: This type of index results in creating a list of all the

phrases in the collection along with the list of documents in which the phrase

appears.

3) Document-to-phrase index: This type of index results in listing every document

by a number and indicates all phrases that were extracted from that document.

Advantages:

• Topical orientation: When a researcher hits a query, then the system returns a list

of keyphrases instead of document list.

• Phrase-based clustering: The system groups the documents that contain the same

keyphrases. When a keyphrase is selected by the researcher, then a list of

documents (or document cluster) is returned to the researcher instead of document

based searching.

• Query refinement: When a user hits the query, then a list of keyphrases displayed

by the system provides all possible ways to extend the query.

Fig.2.8 An Example of Keyphrase Indexing

37

Disadvantages:

• Biasing clusters on keyphrases.

• Keyphrase-based clusters are variable in sizes. Some clusters are so large in size

containing number of documents and some are too small.

e) Latent Semantic Indexing: Scott Deerwester et al. [84] proposed a new approach for

indexing documents, named as Latent Semantic Indexing (LSI) which extracts the

document from the collections based on the concepts. Unlike word-based approach, this

method helps to extract more relevant and desired documents efficiently. Most retrieval

systems check the similarity between the query terms and the terms present in

documents; whereas LSI model retrieves the information or document based on the

similarity of concept or semantic structure for finding the more relevant results. The

Singular Value Decomposition (SVD) method [85] is used for performing the concept –

based mapping. This method states that if two document vectors show the same topic,

then they also have some number of words or keywords in common. To compute the

semantic structure between these semantic similar documents, truncated SVD method is

used. LSI method is also known as dimensionality reduction technique as it converts the

high-dimensional space representation of terms of the documents into a low dimensional

space representation.

In the SVD, a large term-by-document matrix 𝐴𝐴(𝑡𝑡 × 𝑑𝑑) is decomposed into product of

three matrices. The SVD of a matrix A is written as:

 𝐴𝐴 = 𝑈𝑈𝑡𝑡×𝑛𝑛 ∗ Σ𝑛𝑛×𝑛𝑛 ∗ (𝑉𝑉𝑑𝑑×𝑛𝑛)𝑇𝑇 (2.1)

where t represents the number of terms, d denotes the number of documents, n represents

the unique dimension which is ≤ 𝑚𝑚𝑚𝑚𝑛𝑛(𝑡𝑡,𝑑𝑑), U and V are orthogonal matrices i.e.

𝑈𝑈𝑈𝑈𝑇𝑇 = 𝑉𝑉𝑉𝑉𝑇𝑇 = 1 and Σ represents a diagonal matrix where the values on the diagonal of

Σ are called the singular values.

Now, for computing the latent semantic representation, choose only top k values of Σ

(say Σ k). The remaining singular values are then set to 0. Matrix U is turned into 𝑈𝑈𝑘𝑘 by

keeping only first k columns and V matrix into 𝑉𝑉𝑘𝑘 by keeping only the first k rows.

38

When the user hits the query for purpose of retrieving the information from the

collection, then query is represented in the form of query vector using:

 𝑞𝑞 = 𝑞𝑞𝑇𝑇𝑈𝑈𝑡𝑡×𝑘𝑘𝛴𝛴𝑘𝑘×𝑘𝑘
−1 (2.2)

After that, similarity between the query vector and documents vectors is computed by

using cosine similarity coefficient. Based on this similarity value, the result list of

documents is ranked.

Illustrative Example: Consider small fragments of two sample documents 𝑑𝑑1,𝑑𝑑2 and

query q as given below:

𝑑𝑑1: Delivery of silver arrived in a silver truck

𝑑𝑑2: Shipment of gold arrived in a truck

q: Gold silver truck

Step 1: Compute term-document matrix, A and Query matrix q.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

= 𝐴𝐴 =
𝑑𝑑1 𝑑𝑑2

⎣
⎢
⎢
⎢
⎢
⎡
1 0
2
1
1
0
0

0
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎤

 𝑞𝑞 =
𝑞𝑞

⎣
⎢
⎢
⎢
⎢
⎡
0
1
0
1
0
1⎦
⎥
⎥
⎥
⎥
⎤

Step 2: Find the SVD for matrix A. First, compute the singular values 𝜎𝜎𝑖𝑖 by finding the

eigen values of 𝐴𝐴𝑇𝑇𝐴𝐴.

 𝐴𝐴𝑇𝑇𝐴𝐴 = �1 2 1 1 0 0
0 0 1 1 1 1

�

⎣
⎢
⎢
⎢
⎢
⎡
1 0
2
1
1
0
0

0
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎤

 = �7 2
2 4�

 𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆𝜆𝜆) = �7 − 𝜆𝜆 2
2 4 − 𝜆𝜆� = 𝜆𝜆2 − 11𝜆𝜆 + 24

= (𝜆𝜆 − 8)(𝜆𝜆 − 3) = 𝜆𝜆 = 3,8

Thus, Singular values are 𝜎𝜎1 = √3 and 𝜎𝜎2 = √8 = 2√2

Step 3: Find the right singular vectors (the columns of V) by finding an orthonormal set

of eigenvectors of 𝐴𝐴𝑇𝑇𝐴𝐴.

39

For 𝜆𝜆 = 3

 (𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆𝜆𝜆) �
𝑥𝑥1
𝑥𝑥2
� = 0 ⟹ �4 2

2 1� �
𝑥𝑥1
𝑥𝑥2
� = 0

Thus,

 𝑉𝑉1 =

⎣
⎢
⎢
⎡

1
√5
−2
√5⎦

⎥
⎥
⎤

 = � 0.4472
−0.8944�

Similarly, For 𝜆𝜆 = 8

 �−1 2
2 −4� �

𝑥𝑥1
𝑥𝑥2
� = 0

 V2 =

⎣
⎢
⎢
⎡

2
√5
1
√5⎦
⎥
⎥
⎤

 = �0.8944
0.4422�

Thus,

 𝑉𝑉 = � 0.4472 0.8944
−0.8944 0.4472� Σ = �1.732 0

0 2.828�

As, 𝑢𝑢𝑖𝑖 = 1
𝜎𝜎
𝐴𝐴𝑣𝑣𝑖𝑖

Thus, 𝑢𝑢1 = 1
√3

⎣
⎢
⎢
⎢
⎡
1 0
2
1
1
0
0

0
1
1
1
1⎦
⎥
⎥
⎥
⎤

 � 0.4472
−0.8944� =

⎣
⎢
⎢
⎢
⎢
⎡

0.2581
0.5163
−0.2581
−0.2581
−0.5163
−0.5163⎦

⎥
⎥
⎥
⎥
⎤

Similarly 𝑢𝑢2 = 1
2√2

⎣
⎢
⎢
⎢
⎡
1 0
2
1
1
0
0

0
1
1
1
1⎦
⎥
⎥
⎥
⎤

 �0.8944
0.4472� =

⎣
⎢
⎢
⎢
⎢
⎡
0.3162
0.6324
0.4743
0.4743
0.1581
0.1581⎦

⎥
⎥
⎥
⎥
⎤

So 𝑈𝑈 =

⎣
⎢
⎢
⎢
⎡

0.2581 0.3162
0.5163
−0.2581
−0.2581
−0.5163
−0.5163

0.6324
0.4743
0.4743
0.1581
0.1581⎦

⎥
⎥
⎥
⎤

Step 4: Find the query vector.

 𝑞𝑞 = 𝑞𝑞𝑇𝑇𝑈𝑈𝐾𝐾Σ𝐾𝐾−1

40

 𝑞𝑞 = [0 1 0 1 0 1]

⎣
⎢
⎢
⎢
⎢
⎡

0.2581 0.3162
0.5163
−0.2581
−0.2581
−0.5163
−0.5163

0.6324
0.4743
0.4743
0.1581
0.1581⎦

⎥
⎥
⎥
⎥
⎤

 �

1
1.7320

0

0
1

2.828

�

 𝑞𝑞 = [−0.1490 0.4472]

Step 5: Compute the cosine similarity between query vector and documents by using the

equation as shown below:

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞,𝑑𝑑) =
𝑞𝑞 ∗ 𝑑𝑑
|𝑞𝑞||𝑑𝑑|

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞,𝑑𝑑1) =
−0.1490 ∗ 0.4472 + 0.4472 ∗ 0.8944

�(−0.1490)2 + (0.4472)2�(0.4472)2 + (0.8944)2
 = 0.7074

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞,𝑑𝑑2) =
−0.1490 ∗ (−0.8944) + 0.4472 ∗ 0.4472

�(−0.1490)2 + (0.4472)2�(−0.8944)2 + (0.4472)2
 = 0.7070

Here, it is concluded that document 𝑑𝑑1scores higher than 𝑑𝑑2. Its vector is closer to the

query vector than other vectors.

Advantages:

• This approach considers the semantic structure of the terms with documents for

retrieving more relevant results as per user interest.

• LSI helps to reduce the problems of lexical matching by using conceptual indices

instead of literal terms of the documents for retrieval.

• This method helps to find the best similarity between small groups of terms, in a

semantic way (i.e. in a context of a knowledge corpus).

• LSI is able to handle the two major problems of keyword based queries i.e.

synonymy and polysemy.

Disadvantages:

• This method needs relatively high computational performance and memory in

comparison to other information retrieval techniques.

• More complexity exits in determining the optimal number of dimensions for

computing the SVD.

• To perform SVD on huge corpus is not feasible as the complexity of this method

increases with increasing the number of terms and documents.

41

A brief summary of the indexing techniques [169] described above is shown in Table 2.7.

Along with this, a list of few digital library search engine is also shown in Table 2.8 with

their features and the information on what type of indexing is used by them.

Table 2.7 Summary of Indexing Techniques

Indexing
Type

Features Applications Advantages Disadvantages

Inverted
Indexing
[74, 77]

• Full-Text Search.
• Stores the frequency

of occurrence of a
term in documents in
which the term
appears, in the form
of a term’s inverted
list.

• Used in Query
Optimizing.

• Easy to locate the
information when the
researcher is not
aware of what he
want to search for.

• Results in high
number of
irrelevant list of
documents or
information.

• Rebuild the
inverted list while
adding a new
document to
collection which
results in high cost.

Citation
Indexing
[79, 80, 81]

• Citation analysis is
done by considering
citations or
hyperlinks between
documents.

• Compute the rank or
priority of the
publication based on
the number of time it
has been cited.

• Find papers that cite
earlier papers.

• Analyze research
trends.

• Identify
emerging areas
of science, and
find out where
and how often a
particular article
is cited.

• Identify relationships
among various
publications.

• Identify significant
advancement made
on the previous work
of particular
publication.

• Evaluate the prestige
of an author more
accurately and
quickly.

• The citations to one
article show typical
variations in their
format. It is very
difficult to
recognize that all
of these citations
refer to the same
article.

Keyphrase
Indexing
[82, 83]

• Keyphrases are
considered as a basic
unit for indexing the
documents.

• Provides labels
for text
documents.

• Provides a concise
description of a
document’s
content.

• Used in document
categorization,
clustering.

• Topical orientation.
• Phrase-based

clustering.
• Query refinement.
• Easy to build.

• Basing clusters on
keyphrases.

• The sizes of
keyphrase-based
clusters are
variable.

Latent
Semantic
Indexing
(LSI) [84,
85]

• Document-term
matrix is used.

• SVD method is used
for performing the
concept –based
mapping.

• Automated
document
classification

• Text
summarization.

• Used for
electronic
document
discovery
(eDiscovery).

• Find the best
similarity between
small groups of
terms, in context of a
knowledge corpus.

• Solve the problem of
synonymy and
polysemy.

• The expensive
complexity
involved in
computing
truncated SVD.

42

Table 2.8 Different Indexing Methods used by Digital Library Search Engines

Digital Library
Search Engine

Type of Indexing Features

GOOGLE
SCHOLAR [80]

• Full-Text Indexing
• Citation Indexing

• Indexes the full text or metadata of scholarly literature.

YAHOO [89] • Humans are relied
upon for indexing.

• Hierarchically taxonomy is used to organize the
collection.

• Robots.txt file is used to explore more sites.
• Indexing the document features includes URL, HTML

title tags, and short description.
ALTAVISTA [86] • Meta tags are used

for indexing.
• Indexes every word in every page but does not retrieve

stop words.
• Allows the proximity searching with the connector

“NEAR”.
EXCITE [90] • Full Text Indexing • Uses concept extraction approach.

• Clustering of words is used to find the concept.
• Uses robots to do full text indexing.
• Multi-level indexing is used.

INFOSEEK [88] • Meta descriptor
tags are used for
Indexing.

• Uses robot to do full text indexing.
• Indexes third and fourth level also

CiteSeerx [15] • Autonomous
Citation Indexing
(ACI)

• Full text Indexing

• A web-based scientific literature digital library.
• Computing the citation count and re related articles for

all documents cited in the collection.
• Provides improvements in terms of cost, availability and

efficiency.
• Facilitates the researchers by providing easy navigation

and evaluation of citations by linking the references
automatically in research articles.

Academic Search
[87]

• Full-Text Indexing
• Citation Indexing

(Related Article
feature)

• Monthly indexing service

Signature
files
indexing
[77, 78]

• Word-oriented index
structures based on
hashing.

• Preprocessing of the
document is done
(lexing, stemming and
stop words removal
etc.) for getting the
indexable tokens.

• Used in text
indexing
methodology.

• Utilized in office
filing, hypertext
systems, relational
and object-oriented
databases, as well
as in data mining.

• It is more efficient
approach if the
users used phrases-
type and
proximity-type
queries.

• Handles new
insertions and
queries more
efficiently.

• Results in huge
number of False
Drops which can
be eliminated by
doing only
sequentially search
on every block
signature.

43

2.6.3 Study of Recent Indexing Techniques

A literature survey of various indexing techniques used by digital library search engines

has been done in this section. Few existing indexing techniques proposed by researchers

are discussed below:

a) Indexing Technique using Hierarchical Clustering: An approach to index

documents more efficiently by using hierarchal clustering is being proposed by

Deepti Gupta et al (2009) [91]. This method uses the Agglomerative Hierarchical

clustering algorithm in order to index the information based on similarity measure

and fuzzy string matching. The system employs both Euclidean metric and

Levenshtein metric [92] for similarity calculation and fuzzy string matching

respectively. This technique keeps the related documents in the same cluster so

that searching of documents becomes more efficient in terms of time complexity.

b) Context based Indexing using Ontology: In this method [93], index is built

on the basis of context of the document rather than on the basis of terms. The

ontology-based collection method is presented in this paper which uses context to

describe collections and search engines. The context of the documents being

collected by the crawler in the repository is being extracted by the indexer using

the context repository, thesaurus and ontology repository. The documents are then

indexed according to their respective context.

c) Trie Structure based Indexing: An improved indexing mechanism to index

the web documents is being proposed by Pooja Mudgil et al. [94] that keep the

context related information integrated with the frequency of the keyword. The

structure is implemented using Trie. The proposed contextual based indexing has

considered the presence of keywords in various HTML tags of web documents

such as head, title, keyword, description, body and link. The weight is assigned to

each of these tags and stored using Trie structure. This will help to optimize the

speed and performance in finding the relevant documents for a search query.

d) Concept-Based Semantic Annotation and Indexing: Sasa Nesic et al. [95]

presented an ontology-driven approach to semantic annotation, indexing and

44

retrieval of fine-grained units of document’s data. In this approach, the document

units and the user query are both represented by weighted vectors of ontological

concepts. To determine the relevance of the document units to given query,

similarity between their concept vectors is measured. The key part of this

approach that distinguishes it from similar existing approaches is the concept

exploration algorithm, which calculates the semantic distances between concepts

in the ontology based on the ontology relationships.

e) Sentence Context Ontology based Indexing: The author [96] proposed a

conceptual framework for modeling contexts associated with sentences in

research articles. The system also presented the Sentence Context Ontology,

which is used to convert the information extracted from research documents into

machine-understandable data. The system presented a linked data application

which uses a new semantic publishing model for providing value added

information services for the research community. The system provides a feature

of classifying the citations based on the reasons used in the articles and also

evaluated the citation analysis based on different contexts of citations to the cited

works and the author timeline.

2.6.4 Comparison of Different Indexing Techniques

After extensive study of some of prevalent indexing schemes, it is concluded that each

approach has some relative strengths and limitations. A detailed comparison of various

indexing approaches such as Hierarchical Clustering based indexing, Trie structure based

indexing, Context based indexing and Sentence Context Ontology based indexing used

by different digital library search systems is shown in Table 2.9. Comparison is done on

the basis of some measures such as main features, data structure used, type of indexing,

applications in various fields, their advantages and disadvantages

In next section, the working of query processing is described in detail.

45

Table 2.9 Comparison of Indexing Techniques

Techniques Indexing
Technique using
Hierarchical
Clustering [91]

Trie Structure
based Indexing
[94]

Context based
Indexing using
Ontology [93]

Sentence Context
Ontology based
Indexing [96]

Main
Technique
Used

Agglomerative
Hierarchical
clustering
algorithm is used
by the system in
order to keep the
information based
upon similarity
measure and
fuzzy string
matching.

This method
keeps the context
related
information
integrated with
the frequency of
the keyword.

An index is built
on the basis of
context of the
document rather
than on the terms
basis using
ontology.

A linked data
application is
developed which
provides intelligent
information services
using the extracted
information from
research articles using
Citation Context
Analysis, Conditional
Probabilistic Models
and Semantic Web for
modeling Scientific
Discourse

Type of
indexing

Agglomerative
Hierarchical
clustering based
indexing

Contextual based
indexing

Context based
indexing using
Ontology

Citation Indexing

Data
Structure
Used

Inverted Index Trie type tree
structure

Simple inverted
index

Graph based Structure

Advantage The related
documents are
grouped in the
same cluster so
that searching of
documents
becomes more
efficient in terms
of time
complexity.

It helps to
optimize the
speed and
performance in
finding relevant
documents for a
search query

Fast access to
documents.

Classification of the
citations. Evaluation
of the citation analysis
based on the different
contexts of citations
to the cited works and
the author timeline.

Limitation(s) The complexity
of this method is
O(n3) which
makes it very
slow for large
databases.

More space is
required to store
Trie structure for
large dataset.

No consideration
of ambiguity if the
user is not aware
of the context.

A larger training
dataset is required
with a focus on
achieving a higher
accuracy,

46

2.7 QUERY PROCESSING

With the rapid growth of document database, there is a rapid increase in the number of

users and consequently, in the number of queries submitted by the users to information

retrieval systems. As document collections grow larger, it becomes more challenging and

expensive task to manage them by an information retrieval system [97]. Furthermore, as

the number of queries increases, it becomes even more important to provide high query

processing rates on these collections.

Query processing mainly consist of following phases [98, 99]:

Step 1: Tokenizing: When a user inputs a query, the query processing engine must

tokenize the query stream, i.e., break it down into understandable segments.

Step 2: Parsing: Since users may employ special operators in their query such as Boolean

or proximity operators, the system needs to parse the query first into query terms and

operators.

Steps 3: Stop word removal and stemming: Stop-words are language-specific functional

frequent words that carry no information (i.e., pronouns, prepositions, conjunctions).

Examples of such words include 'the', 'of', 'and', 'to'. The first step during preprocessing is

to remove these Stop words. Stemming techniques [100] are used to find out the

root/stem of a word. Stemming converts words to their stems, which incorporates a great

deal of language-dependent linguistic knowledge. For example, the words, user, users,

used, using all can be stemmed to the word 'USE'.

Step 4: Creating the query: How each particular search engine creates a query

representation depends on how the system does its matching. If a statistically based

matcher is used, then the query must match the statistical representations of the

documents in the system. If a Boolean matcher is utilized, then the system must create

logical sets of the terms connected by AND, OR, or NOT.

Step 5: Query Expansion: Since users of search engines usually include only a single

term in a query, thus it becomes highly probable that the information they need may be

expressed [101] using synonyms, rather than the exact query terms, in the documents

which the search engine searches against. Therefore, more sophisticated systems may

47

expand the query into all possible synonymous terms and perhaps even broader and

narrower terms.

Step 6: Query Term Weighting: The Query processing involves computing weights for

the terms in the query. Sometimes the user controls this step by indicating either how

much to weight each term or simply which term or concept in the query matters most and

must appear in each retrieved document to ensure relevance.

Step 7: After this step, the expanded, weighted query is searched against the index by

matching the constituent terms with index terms. In response, a set of matched documents

are retrieved.

Step 8: Ranking: Before displaying the results, a ranking mechanism is applied to the list

of result out documents.

But before discussing the various state-of-the-art techniques in digital libraries in the next

chapter, some of the major issues pertaining to the design of effective and efficient digital

library search engines have been described in the next section.

2.8 DESIGN ISSUES IN DIGITAL LIBRARY SEARCH ENGINES

Although, the current digital library search engines come up with advanced crawling and

indexing techniques which efficiently gather and index the documents, there still exit

many issues which need to be addressed as described below:

• Large Volume: Today's web consists of billions of digital documents, the

extraction of desired content from which is a tedious task. Digital Library Search

Engines should be able to index most of the information available on WWW in an

efficient manner.

• Distributed nature of Data: The documents on the web are distributed across

various servers employing different platforms such as different digital libraries,

author homepages etc. Digital library Search engine must be designed in a way to

cope up with this distribution and accumulate the content in its local repository.

• Relevancy of Results: As most of the digital library search engines are keyword

48

based, the retrieval of relevant documents is a challenging task. Digital library

Search Engines generally return so many search results that user wastes most of

the time sifting between them for uncovering the desired information, thus leading

to the problem of Information Overkill. Digital library search engines must be

capable of returning desired documents at least on the top of result list.

• Extensibility: Digital Library Search engines should be extensible in the sense so

as to support third party functional modules e.g. mining modules [102], ranking

modules and query expansion [101] modules etc. to make them more efficient.

• Efficient data structures: The existing data structures employed in the indexing

process of digital library search engines lack valuable information related to

relevant document retrieval and are generally keyword based. Therefore, a large

number of irrelevant documents are returned posing the problem of Information

Overkill. This problem can be resolve by indexing the document using multi-level

index structure which provides better efficiency and effectiveness of digital

library search engines.

In order to resolve these challenges, some state-of-the-art techniques in digital libraries

play an important role. The next chapter is devoted to the survey of techniques such as

ranking, cluster analysis and document categorization etc. in context of digital libraries.

49

Chapter III

STATE-OF-THE-ART TECHNIQUES IN DIGITAL
LIBRARIES

3.1 INTRODUCTION

WWW [3, 4] is a vast source of dynamic and unstructured information repository

covering almost every possible digital document. These digital documents contain rich

textual information, but the exponential growth of the WWW has made it rapidly difficult

for researchers to find the desired and relevant content in a fast manner on the Web.

Thus, to retrieve effective and relevant digital information, many digital library search

engine technologies [15] are now used as automated tools in order to find, extract, filter,

and evaluate the desired information and resources. A lot of algorithms and approaches

have been reported in the literature. These approaches and techniques are well studied

and implemented for different applications and scenarios by researchers. In the next

sections, some prevalent PageRanking, Clustering and Document Categorization

techniques have been described.

3.2 PAGE RANKING

Today, the main challenge in front of search engines is to efficiently harness scientific

work present on the WWW and present relevant results to the user. Web mining

techniques are used in order to extract the relevant documents and order them. To

represent the documents in an ordered manner, Page ranking methods are being applied

which can arrange the documents in order of their relevance and importance. Some of the

common page ranking algorithms for online digital libraries have been discussed in this

section.

3.2.1 Citation Count Algorithm

This is one of the most frequent used ranking algorithms for measuring a scientist's

reputation, and named as Citation Count (CC) [103]. This method uses the citation graph

of the web to determine the ranking of scientific work. In citation graph, the nodes

50

represent publications, whereas an edge from node i to node j represent a citation from

paper i to paper j i.e. a vote from paper i to paper j. This method states that if a

publication has more number of citations (incoming links) to it, publication becomes

important. Therefore, it takes backlinks into account to order the publications. Thus, a

publication obtains a high rank if the number of its backlinks is high. Citation Count is

defined in (3.1):

 CCi = |Ii| (3.1)

where CCi represents the citation count of publication i, |Ii | denotes the number of

citations (in-degree) of the publication i.

Example Illustrating Working of CC: To explain the working of Citation Count, let us

take an example of citation graph as shown in Fig. 3.1, where A, B , C, D, E and F are six

publications.

The Citation Count for publications A, B, C, D, E and F can be calculated by using (3.1):

CC(A)=0, CC(B)=0, CC(C)=3, CC(D)=2, CC(E)=1, CC(F)=2

The ranking of publications based on Citation Count become:

CC (C) > (CC (D), CC (F)) > CC (E) > (CC (A), CC (B))

Limitations of CC: There are a number of cases where this method fails to reveal the

good picture of influence of publications in its domain [103]. Few of reasons for this are:

• It does not take into account the importance of citing paper i.e. citation from a

reputed journal gets the equal weightage as the citation from A non-reputed one.

• If two papers have similar citation count e.g. the publication D and publication F

Fig. 3.1 Example of Citation Graph

A

C

E

F

D B

51

shown in Fig 3.1, but interestingly publication F is almost 20 years younger than

the publication D, thus it had a much smaller time window to accumulate

citations. Thus, it does not take into consideration different characteristics of the

citations, like their publication date.

3.2.2 Time dependent Citation Count Algorithm

Ludmila Marian [104, 105] proposed an extension to standard Citation Count method

named as Time Dependent Citation Count (TDCC). It is a time-dependent approach

which takes into account time of the citation. This method assumes that the freshness of

citations and link structure are factors that need to be taken into account in citation

analysis while computing the importance of a publication. Thus, Citation Count

algorithm is modified by initially distributing random surfers exponentially with age, in

favor of more recent publications. The method introduces the effect of time in the citation

graph by applying a time-decay factor to the citation counts. The weight of a publication i

is denoted as Weightias given in (3.2)

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖 = 𝑒𝑒−𝑤𝑤(𝑡𝑡𝑝𝑝−𝑡𝑡𝑖𝑖) (3.2)

where 𝑡𝑡𝑖𝑖 denotes the published year of publication i, 𝑡𝑡𝑝𝑝 denotes the present time (i.e.

year), and w denotes the time decay parameter (w є (0, 1]), which quantifies the notions

of “new" and “old" citations (i.e. publications with ages less than the time decay

parameter would be considered “new"; publications with ages larger than the time decay

parameter would be considered “old") citations (in-degree) of the publication i.

Example Illustrating Working of TDCC: To illustrate the working of TDCC, let us refer

again to Fig 3.1 and the Table 3.1. By using (3.2) weight scores of publications can be

calculated as:

Table 3.1 Data of Citation Graph

Publication Publication year
A 2011
B 2008
C 1998
D 1980
E 2007
F 2000

52

 WeightA = 0 (3.2a)

 WeightB = 0 (3.2b)

 WeightC = e−w(2012−2011) + e−w(2012−2008) + e−w(2012−2000) = e−w(1) + e−w(4) + e−w(12) (3.2𝑐𝑐)

 WeightD = e−w(2012−1998) + e−w(2012−2007) == e−w(14) + e−w(5) (3.2d)

 WeightE = e−w(2012−2008) = e−w(4) (3.2e)

 WeightF = e−w(2012−2011) + e−w(2012−2008) = e−w(1) + e−w(4) (3.2f)

where w is time decay factor. Let us take the threshold age = 6 years. Here w=0 for the

publications with the ages less than 6 years (considered new publications) and w=1 for

publications with ages more than 6 years (considered old publications). By calculating

the above equations, the rank score of publications become:

TDCC (A) = 0, TDCC (B) = 0, TDCC (C) =2.0000006144, TDCC (D) = 1.000000832,

TDCC (E) = 1, TDCC (F) = 2

Here,

TDCC(C)>TDCC (F) > TDCC (D) > TDCC (E) > (TDCC (A), TDCC (B))

It may be noted that the resulting ranking of citations obtained by CC and TDCC are

different.

Advantages and Limitations of TDCC: After adding a time decay parameter, the time-

dependent ranking can differentiate between an old publication that acquired a large

number of citations over a long period of time, and a new publication [104, 105]. The

main disadvantages of this method are as:

• Adding a week or strong time decay factor to a ranking method will have an

impact on the final ordering of the documents. For example, adding a strong time

decay factor to ranking will reveal the most popular publications at the current

moment in time.

• Like CC, this method does not take into consideration the different importance of

each citation.

53

3.2.3 PageRank Algorithm

Surgey Brin and Larry Page [10, 36] proposed a ranking algorithm, named as PageRank

(PR) which extends the idea of citation analysis. In citation analysis, the incoming links

are treated as citations which provide importance to a page but this technique could not

provide fruitful results. In turn, PageRank [10] provides a better approach which is based

on the fact, that the importance of a research paper can be judged by the number of

citations the paper has from other research papers. This algorithm states that if a link

comes from an important paper then this link is given higher weightage than those which

are coming from non-important papers. These links are called as backlinks. The

PageRank of a paper u can be calculated as:

 PR(u) = (1-d) +d �
PR(v)

Nv𝑣𝑣 ∈ 𝐵𝐵(𝑢𝑢)

 (3.3)

where u represents a paper, B(u) is the set of papers that point to u, PR (u) and PR (v) are

rank scores of papers u and v respectively, 𝑁𝑁𝑣𝑣 denotes the number of outgoing links of

paper v, and d is a normalization factor.

Example Illustrating Working of PR: Let us take a previous example as shown in Fig

3.1 in order to explain the working of PageRank algorithm. The PageRanks for papers

can be calculated by using (3.3):

𝑃𝑃𝑃𝑃(𝐴𝐴) = (1 − 𝑑𝑑) + 𝑑𝑑(0) (3.3𝑎𝑎)

𝑃𝑃𝑃𝑃(𝐵𝐵) = (1 − 𝑑𝑑) + 𝑑𝑑(0) (3.3𝑏𝑏)

𝑃𝑃𝑃𝑃(𝐶𝐶) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐴𝐴)

2
+
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
+
𝑃𝑃𝑃𝑃(𝐹𝐹)

1
� (3.3𝑐𝑐)

𝑃𝑃𝑃𝑃(𝐷𝐷) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐶𝐶)

1
 +

𝑃𝑃𝑃𝑃(𝐸𝐸)
1

� (3.3𝑑𝑑)

𝑃𝑃𝑃𝑃(𝐸𝐸) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
� (3.3𝑒𝑒)

𝑃𝑃𝑃𝑃(𝐹𝐹) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐴𝐴)

2
+
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
� (3.3𝑓𝑓)

54

Let us assume the initial PageRank as 1, d is set to 0.85 and do the calculation. The rank

values of papers are iteratively substituted in above page rank equations to find the final

values until the page ranks get converged as shown in Table 3.2.

As can be observed from Table 3.2, the page ranks of papers become:

PR (D) > PR (C) >PR (F) > PR (E) > (PR (A), PR (B))

Advantages and Limitations of PR: One of the main advantages of this method is that it

ranks the publications accordingly to the importance of their citations, bringing to light

some very insightful publications that would not have been discovered with the Citation

Count method. On the other hand, there are some shortcomings of this ranking method

also as listed below [106]:

• The rank score of publication is equally distributed among its all references

irrespective of assigning the larger rank values to more important papers.

• A page rank of a publication is mostly affected by the scores of the publications

that point to it and less by the number of citations. For example, in Fig. 3.2, node

F gets higher score than node E, although node E gets 4 citations and node F gets

1 citation.

Table 3.2 Iteration Method for PageRank

Iterations PR (A) PR (B) PR (C) PR (D) PR (E) PR (F)
0 1 1 1 1 1 1
1 0.15 0.15 1.106 1.090 0.192 0.256
2 0.15 0.15 0.474 0.552 0.192 0.256
3 0.15 0.15 0.474 0.552 0.192 0.256

Fig. 3.2 Example of a Graph

 A B

E

C D

F

 P Q

T

R S

U

55

• PageRank gives high score to a node u, if it contained a cycle. For Example, Table

3.3 shows the rank results of graph shown in Fig 3.2. In this, node E gets 4

citations, whereas node T gets 3 citations. However, the PageRank score of node

T is about 2 times higher than that of node E. This happens because node T is a

part of citation cycle. But in bibliometrics, cycles represent the self-citations

which do not occur in citation graph. Thus, PageRank does not provide fruitful

results in bibliometrics.

3.2.4 Popularity Weighted Ranking Algorithm

Yang Sun and C. Lee Giles [107] gave a new ranking method based on PageRank with

significant improvement for ranking academic papers, named Popularity Weighted

Ranking algorithm. This method combines the concepts that seem to be important for

analyzing the importance of publication. The publication importance is determined on the

basis of the weighted citations from the other papers and a popularity factor of its

publication venue i.e. quality of the publication venue where a publication is published.

Unlike impact factor, it does not differentiate between journals, conferences and

workshop proceedings. The popularity factor of a publication venue v in a given year is

defined by (3.4)

 𝑃𝑃𝑃𝑃 (𝑣𝑣, 𝑡𝑡) =
nv

N
 × �

PF (i, t) × w(t)
N(t)

i∈ P

 (3.4)

where PF(v,t) represents the popularity factor of publication venue v in a given year t, P

represents the set of publication venues i which cite v in that year, 𝑛𝑛𝑣𝑣 denotes the number

of papers published in venue v in that year, w(i) is the weight which represents the

frequency that venue i cites venue v and N(i) denotes the total number of references

generated by venue i. Considering the importance of popularity factor of publication

venue, the ranking score of publication p at a previous time t is given in (3.5).

Table 3.3 Rank Results of Example Graph

Node A B C D E F P Q R S T U
CC 0 0 0 0 4 1 0 0 1 1 3 1
PR 0.15 0.15 0.15 0.15 0.66 0.71 0.15 0.15 1.15 1.28 1.38 1.32

56

 𝑅𝑅 (𝑞𝑞t) = PF�vpt� + �
R(qt)
N(qt)

t>𝑇𝑇 ,qt∈D

 (3.5)

where R(𝑞𝑞𝑡𝑡) represents the ranking score of a paper 𝑞𝑞𝑡𝑡 , which is published at time t and

cite paper 𝑝𝑝𝑇𝑇, D represents the set of papers which cite 𝑝𝑝𝑇𝑇, N(𝑞𝑞𝑡𝑡) denotes the number of

references in paper 𝑞𝑞𝑡𝑡 , PF(𝑣𝑣𝑝𝑝𝑇𝑇) denotes the popularity factor of the publication venue v

where paper 𝑝𝑝𝑇𝑇 is published.

Advantages and Limitations of Popularity Weighted Ranking Algorithm: One of the

main advantages of this method is that it overcomes the limitations of impact factor by

considering the impact of all publication venues and the probability of reader access.

• This algorithm works well for most queries but it does not work well for others.

• This method assumes that ranking score of a previously published paper will not

have any impact on later published ones i.e. it does not take into consideration the

time of publication.

• This method also does not differentiate between the popular and prestigious

authors who published the papers.

3.2.5 HITS Algorithm

Kleinberg [108, 109] proposed a more refined notion for the importance of the web pages

called Hyperlink Induced Topic Search (HITS). This method identifies two different

forms of Web pages called hubs and authorities. Authorities are pages having important

contents and hubs are pages that act as resource lists, guiding users to authorities as

shown in Fig 3.3. A good authority is a page pointed to by good hubs, while a good hub

Hubs Authorities

Fig 3.3: Hubs and Authorities

57

is a page that points to good authorities. A page may be a good hub and a good authority

at the same time.

HITS functions in two major steps.

1. Sampling Step: In this step, a set of relevant pages for a given query are collected

i.e. a sub-graph S of G is retrieved which is high in authority pages [110]. The

algorithm starts with a root set R selected from the result list of a digital library

search system. Starting with R, a set S is obtained keeping in mind that S is

relatively small, rich in relevant pages about the query and contains most of the

high authorities. HITS algorithm expands the root set R into a base set S by using

the algorithm (see Fig. 3.4).

2. Iterative Step: This step finds hubs and authorities using the output of the

sampling step. In this [111], each page is associated with two values: an authority

weight 𝑎𝑎𝑖𝑖 , and a hub weight ℎ𝑖𝑖 . Pages with a higher 𝑎𝑎𝑖𝑖 value are considered as

better authorities and pages with a higher ℎ𝑖𝑖 value as better hubs.

Let A be the adjacency matrix of the graph S (output of sampling step), v denotes the

authority weight vector and u denotes the hub weight vector. The weights 𝑎𝑎𝑖𝑖 and ℎ𝑖𝑖 of all

the nodes in S are dynamically updated as follows:

 v = (𝐴𝐴𝑡𝑡 × u) (3.6)

 u = (𝐴𝐴 × v) (3.7)

If we consider that the initial weights of the nodes as

Algorithm: HITS(R)
Input: Root set R;
Output: Base set S
Let S = R
1.For each page p є S, do Steps 3 to 5
2. Let T be the set of all pages S points to.
3. Let F be the set of all pages that point to S.
4. Let S = S + T + some or all of F.
5. Delete all links with the same domain name.
6. Return S

Fig 3.4: Algorithm to Determine Base Set

58

 𝑢𝑢0 =

⎣
⎢
⎢
⎡
1
1..
.
1⎦
⎥
⎥
⎤

Then 𝐴𝐴𝑡𝑡 × �

1
1...
1

�

After applying k steps we get the equations as:

 𝑣𝑣𝑘𝑘 = (𝐴𝐴𝑡𝑡 × 𝐴𝐴) × 𝑣𝑣𝑘𝑘−1 (3.6𝑎𝑎)

 𝑢𝑢𝑘𝑘 = (𝐴𝐴 × 𝐴𝐴𝑡𝑡) × 𝑢𝑢𝑘𝑘−1 (3.7𝑎𝑎)

Example Illustrating Working of HITS: The adjacency matrix of the graph is:

 𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 1
0 0 1
0 0 0

0 0 1
0 1 1
1 0 0

0 0 0
0 0 0
0 0 1

0 0 0
1 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 At =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
1 1 0

0 0 0
0 0 0
0 0 1

0 0 1
0 1 0
1 1 0

0 1 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

Assume the initial hub weight vector is: 𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡
1
1
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎤

We compute the authority weight vector by:

 v = (𝐴𝐴𝑡𝑡 × u)

 𝑣𝑣 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
1 1 0

0 0 0
0 0 0
0 0 1

0 0 1
0 1 0
1 1 0

0 1 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 ×

⎣
⎢
⎢
⎢
⎡
1
1
1
1
1
1⎦
⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎡
0
0
3
2
1
2⎦
⎥
⎥
⎥
⎤

Then, the updated hub weight is

 u = (𝐴𝐴 × v)

59

 𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 1
0 0 1
0 0 0

0 0 1
0 1 1
1 0 0

0 0 0
0 0 0
0 0 1

0 0 0
1 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 ×

⎣
⎢
⎢
⎢
⎡
0
0
3
2
1
2⎦
⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎡
5
6
2
0
2
3⎦
⎥
⎥
⎥
⎤

By using (3.6a) and (3.7a), the authority weights and hub weights are iteratively

calculated until the values get converged as shown in Table 3.4.

By calculating the above equations iteratively, the page ranks of papers become:

HITS (C) > HITS (F) >HITS (E) > HITS (D) > (HITS (A), HITS (B))

Limitations of HITS: Following are some constraints of HITS algorithm [108, 110]:

• Distinction between Hubs and authorities: It is not easy to distinguish between

hubs and authorities because many sites act as hubs as well as authorities.

• Topic drift: Sometime HITS may not produce the most relevant documents to the

user queries because of equivalent weights.

• Automatically generated links: HITS gives equal importance to automatically

generated links which may not have relevance for the user query.

3.2.6 PaperRank Algorithm

Zhang Guangqian [112] gave a new ranking method for publications ranking named

PaperRank based on Google's PageRank. In this method, publication’s rank score is

determined on the basis of the reading value and other factors because it considers that

the reading value of same papers may be different due to different readers. The reading

value of a paper is related to its content, the periodical in which it was published, and the

Table 3.4 Iteration Method for HITS

Iterations PR (A) PR (B) PR (C) PR (D) PR (E) PR (F)
v u v u v u v u v u v u

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0.56 0 0.67 0.70 0.22 0.47 0 0.23 0.22 0.47 0.33
2 0 1.6 0 2.55 0.82 0.04 0.23 0 0.35 0.042 0.64 0.51
3 0 0.58 0 0.75 0.73 0.00 0.08 0 0.32 0.005 0.58 0.30
4 0 0.58 0 0.73 0.73 0.001 0.03 0 0.32 0.001 0.59 0.32
5 0 0.58 0 0.73 0.73 0.001 0.03 0 0.32 0.001 0.59 0.32

60

author of the paper. Thus, this method considers the factors such as content, journal,

author, published time etc. in order to measure the reading value of papers. PaperRank of

the publication p can be calculated as:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴 × 𝐼𝐼𝐼𝐼 × 𝐷𝐷 (3.8)

where BR represents the base rank, AR denotes the AuthorRank, IF denotes the impact

factor of the journal in which it was published and D represents the published time of

publication p. Various parameters used in the PaperRank calculation are explained below.

BaseRank: The BaseRank (BR) calculates the rank of the publication by using the

PageRank algorithm. It considers the quoted time of cited publication and the importance

of the citing publication. The BaseRank formula is given as:

 𝐵𝐵𝐵𝐵(𝑢𝑢) = 𝑐𝑐 �
𝐵𝐵𝐵𝐵(𝑣𝑣)
𝑁𝑁𝑣𝑣𝑣𝑣∈𝐵𝐵(𝑢𝑢)

 (3.9)

where u represents a publication, B(u) is the set of citations that point to u, BR(u) and

BR(v) are rank scores of publications u and v respectively, 𝑁𝑁𝑉𝑉 denotes the number of

publications cited by publication v (i.e. number of references), c is a factor used for

normalization.

AuthorRank: This parameter assumes that if paper A is cited by paper B and C at the

same time, then, being cited by paper B authored by a popular and prestigious author

contributes more to the Rank value of A than being cited by paper C with an unimportant

author. Thus, it calculates the AuthorRank by considering the authors’ contribution in a

certain academic field. The AuthorRank can be computed by using an author citation

network [113] which is a directed and weighted graph where nodes represent authors,

edges represent citing relationships from author A to author B, and edge weights

represent the number of times that author A cites author B. The AuthorRank can be

calculated as:

 𝐴𝐴𝐴𝐴(𝑎𝑎) = d �
𝐴𝐴𝐴𝐴(b)
𝑁𝑁b𝑏𝑏∈𝐵𝐵(a)

 (3.10)

where a represents an author , AR(a) is the set of author’s “citing” author a, AR(a) and

AR(b) are AuthorRank of author’s a and b respectively, 𝑁𝑁𝑏𝑏 denotes the number of authors

cited by author b, d is a normalization factor.

61

Impact Factor of Journal: This parameter assumes that if paper A is cited by paper B

and C, and paper B was published in the core journal, and paper C was from unimportant

journal, then the vote from paper B to A contributes more rank value to paper A than a

vote from paper C to paper A. Thus, it considers the impact factor of journal to represent

the weight of each journal. The formula for calculating the impact factor of the journal is

defined as follow:

 𝐼𝐼𝐼𝐼(𝑗𝑗) =
𝐶𝐶
𝐴𝐴

 (3.11)

where IF(j) represents the impact factor of journal j, A denotes the total number of papers

published in journal j in the previous two years, and C denotes the quoted times of papers

in the current year.

Published Time: This parameter considers the time of the publication. It assumes that

sometimes a recently published paper having only one or two citations due to small time

window may be important to reader in a certain field. Thus, it introduces the time factor

D as follow:

 𝐷𝐷(𝑝𝑝) =
(𝑡𝑡 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑇𝑇(𝑘𝑘)} + 1)

(𝑚𝑚𝑚𝑚𝑚𝑚{𝑇𝑇(𝑘𝑘)} + 1) (3.12)

where D(p) represents time factor of paper p, t is the year in which p was published, B(p)

denotes the set of all the papers, T is a n*1 matrix composed by all the years in which all

the papers were published, and n is the total number of all the papers.

Limitations of PaperRank: Researchers have shown that scientific publications naturally

form a network on the basis of citation relationships. This algorithm can do well for the

direct relationships i.e. citation and cited relationships, but it may not adequately reflect

the lineage of scientific works. In such scenario, counting the indirect citation, indirect

co-citation, and indirect co-reference, which are feasible in the Web environment may be

considered.

3.2.7 Popularity and Similarity based PageRank Algorithm (PSPR)

Phyu Thwe [114] proposed a PageRank like algorithm for conducting a web page access

prediction named as Popularity and Similarity Based Page Rank Algorithm (PSPR). This

62

method highlights an improvement in the prediction of web page access by a user [115]. It

is based on Web Usage Mining and processes the web server log files to analyze the user’s

browsing pattern for predicting user’s next click. This method ranks the result list of a

search engine by taking into consideration the popularity and similarity among web pages

as well as the user’s navigation behavior pattern.

PSPR functions in two major steps:

1. Build Markov Model: In this step, Markov model [114, 115] is used for predicting

the behavior of a web user. It is the most widely used web usage mining algorithm

for modeling sequences or processes of browsing behavior of a user using finite-

state structure. This model takes web pages in the sequence accessed by a user as

input parameter and output a model that predicts the user next access/click. Let us

assume P be a set of web pages in a web site, P can be written as P= {p1, p2...pn},

W be a user session of a website..Then, the probability of visiting the next page p

by the user is denoted by conditional probability P = (pi|W). Assuming that i

number of pages has already been visited by the user. From here, it can be said that

the prediction of next page access does not depend on all the pages in a web

session rather can be restricted to small number of k pages. The number k also

marks the order of the Markov model. Thus, it can be judged that the web page

pi+1 will be accessed next using (3.13),

 𝑃𝑃𝑖𝑖+1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝∈𝑃𝑃�𝑃𝑃�𝑃𝑃𝑖𝑖+1 = 𝑝𝑝|𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1, …𝑝𝑝𝑖𝑖−(𝑘𝑘−1)�� (3.13)

2. Similarity Calculation: The popularity of page and transitions plus similarity

among the web pages is determined to calculate the importance of the web pages.

Similarity is computed based on the contents of the page URL. Following steps are

taken in this method:

• Select the URLs of the two pages so as to calculate similarity among them.

• The URLs are sorted in a string array being separated by a special character

‘/’ and their length is calculated.

• Weights are assigned to each array starting from the longest array to the

smallest one.

63

• The matching substrings are identified and their corresponding weights are

added and the sum is divided by the total weight to give the similarity

measure between the two.

The similarity of two web pages lies between 0.0 and 1.0. If similarity comes out to be 1,

it indicates that the two web pages are exactly same. But, if it comes out to be 0, then it is

concluded that the web pages are totally different.

Example Illustrating Working of PSPR:

Building Markov model: Let us assume a sample web session of any website as shown in

Table 3.5 for building Markov model where Session ID represents the different users and

Transitions represents the sequence of pages access by particular user.

Next, Ist order Transition Probability Matrix (TPM) (i.e. first order Markov Model) is

evaluated, where each state is composed of only single page as depicted in Table 3.6.

Then, second-order Markov model is evaluated. In this each state will be composed of two

web pages and this is decided by the entries in the first-order TPM as shown in Table 3.7

and so on.

Table 3.5 Web Session for a Website
Session ID Transitions

ID1 C, B, A
ID2 D, E, B, A, E, D

ID3 A, D, E, B, D

ID4 A, D, B, E, C

Table 3.6. Ist Order Transition Probability Matrix
 A B C D E
s1=A 0 0 0 2 1
s2=B 2 0 0 1 1
s3=C 0 1 0 0 0
s4=D 0 1 0 0 2
s5=E 0 2 1 1 0

64

This transition probability matrix can be now used to predict the next click for the given

session. For example, consider a user’s navigation sequence as D —>E—>? To predict

the next page after D and E, firstly the state {D, E} is identified in the second-order TPM

and then the page with highest probability is selected. Here, B has the highest probability

among rest of the pages as seen from Table 3.7.

Therefore, D—>E —>B is obtained.

Similarity Calculation: Consider two pages A and B with their respective page URLs as

shown in Table 3.8. Thus, the similarity of the two pages is calculated by using the steps

as described above and it comes out to be (4+2+1) / (4+3+2+1) = 0.7. It indicates that the

pages are somewhere similar but not exactly same.

Advantages and Limitations of PSPR: The main advantage of this method is that it

improves the prediction of web page access by analyzing web users' navigational patterns.

It can be applied to any web site’s navigational graph for improving browsing orders. But,

this method fails to predict directly one more step ahead.

Table 3.7 2nd Order Transition Probability Matrix

 A B C D E
{A,D} 0 1 0 0 1
{A,E} 0 0 0 1 0
{B,A} 0 0 0 0 1
{B,D} 0 0 0 0 0
{B,E} 0 0 1 0 0
{C,B} 1 0 0 0 0
{D,B} 0 0 0 0 1
{D,E} 0 2 0 0 0
{E,B} 1 0 0 1 0
{E,C} 0 0 0 0 0
{E,D} 0 0 0 0 0

Table3.8 Example of Similarity Calculation

Page

Page URL
A /project/creators/order-23/madeasy.html
B /project/creators/artificial/madeasy.html

65

3.2.8 SIMRANK: PageRank Approach Based on Similarity Measure

Shaojie Qiao et. al [116] proposed a better and promising approach to rank the query

results of web pages based on similarity measure from the vector space model named as

SimRank. This method computes the similarity of pages and applies it to partition a web

database into several web social networks (WSNs). This method utilizes the concept of

social annotations [117] named as SimRank. The web annotators associate some set of

textual content with every web page so as to provide a prior knowledge regarding the web

page to the web user without reading the internal contents of that page. In other words,

they provide a brief overview about the web page and thus make the user’s navigation

fruitful. These set of textual contents are known as annotations. The annotations are parsed

contents holding the important keywords of a web page. As seen, traditional algorithms do

not take into account the impact of content of web pages. They only employ the link

structure of web pages to determine the importance of web pages. But, the contents of a

web page, which is the required information a user is looking for, could provide a better

accuracy in ranking the result list. Thus, this method considers the similarity measure from

vector space model to compute the rank of pages. It also improves the traditional

PageRank [10, 36] algorithm by taking into account the relevance of page to a given

query.

SimRank works in the following manner:

• First, it computes similarity among the web pages of the complete web database.

• Then, it uses the similarity measure as the distance between the pages and apply k-

means algorithm [118] to form clusters with pages holding similar contents, and

• Finally, it computes the similarity with respect to the query and assigns a relevance

score to each web page. But, this method has issue that its efficiency gets affected

by the capabilities of the web crawler being utilized.

The term frequency of a term ti in the page dj is calculated by using (3.14),

 tfij =
fij

max�f1, f2, . . f|V|j�
 (3.14)

where 𝑓𝑓𝑖𝑖𝑖𝑖 denotes the frequency of the term 𝑡𝑡𝑖𝑖 in the page 𝑑𝑑𝑗𝑗 and |V| is the vocabulary size.

66

The inverse document frequency of term ti is given by using (3.15),

 idfi = log �
N

dfi
� (3.15)

where N is the total number of web pages in the web database, 𝑑𝑑𝑑𝑑𝑖𝑖denotes the number of

web pages in which the term 𝑡𝑡𝑖𝑖 appears atleast once.

Now, the overall term weight is computed as in (3.16):

 wij = �0.5 +
0.5 × fij

max�f1, f2, . . f|V|j�
� × log

N + 1
dfi

 (3.16)

The similarity measure of a query Q = {t1, t2... tn} and a page pj denoted as pj={w1j, w2j, ...,

wnj} where n is the number of terms in the query. So, similarity between two pages pa and

pb is computed by using (3.17):

 Sim(pa, pb) =
∑ wipa × wipb

n
i=1

∑ wipa
2n

i=1 + ∑ wipb
2 −∑ wipa × wipb

n
i=1

n
i=1

 (3.17)

Example Illustrating Working of SimRank: To illustrate the working of SimRank, let us

consider two papers with their contents as shown below,

P1 = The project objectives are laid down as per the required project.

P2 = Organisation signs a project yesterday.

Let the query entered is Q={project}

Based on the equations (3.14, (3.15), (3.16) and (3.17), the values obtained are:

 tfp1 =
2

11
= 0.181 tfp2 =

1
5

= 0.2

 idfp1 =
4
2

= 2 idfp2 =
4
2

= 2

 wp1,p2 = (0.5 + 0.5 × 0.181) × 2 = 1.181

 wp2,p1 = (0.5 + 0.5 × 0.2) × 2 = 1.2

 Sim(p1, p2) = 1.181×1.2
1.1812+ 1.22 −(1.181×1.2)

 = 0.99

Thus, it shows that the contents of both the papers are relevant as per the query entered.

Hence, SimRank judges with better accuracy about the papers against the content

interested to the user.

67

Advantages and Limitations of SimRank: The main advantage of this method is that it

uses similarity measures to effectively cluster and score the publications. This method uses

k-means clustering approach to divide a web database into several WSNs as well as clean

up the unrelated pages that can help reduce the cost of computation. But, this method has

issue that its efficiency gets affected by the capabilities of the web crawler being utilized.

3.2.9 Page Ranking using Social Annotation based on Language Model

Kunmei Wen et. al. [119] proposed an extension to SimRank named optimizing the results

with social annotations based on a language model. This method uses social annotations

to re-rank search results. This method uses the combination of two ranking strategies:

(a) Query-annotation similarity, and

(b) Query-document similarity in order to optimize retrieval ranking method.

This method works in the following phases:

• To build the statistical language model of social annotation.

• Calculated the similarity among query and annotation using the language model.

• Initial results of a search engine are re-ranked on the basis of combined score of

both the similarity measure.

Statistical language model: In this method, the input parameters considered for

constructing a language model [120] are as:

• Set of K initial search results denoted as D= {(R1, A1)… (Rk, Ak)} produced by a

search engine where Rk denotes the page and Ak denotes a set of annotations

against a specific Rk.

• Set of social annotations in the top K initial search results (also refer as a

temporary corpus) denoted as VA= {Wj | j = 1. . . L} where L denotes the size and

Wj is a social annotation.

• Set of the social annotations of a specific page denoted as Ai= {ai ∈ V| i = 1, . . . ,

n}

68

The steps involved in the language model construction include:

• Identify the annotations associated with the web pages and initialize the set Ak

accordingly.

• Derive temporary corpus (or the collection of all the social annotations) from the K

initial search results.

• Calculate the probability of a term denoted by wi in the set of annotations Ai for a

specific web page using the formula as shown in (3.18),

 P�wj|Aj� =
C�wj, Aj� + 1
∑ �w,, Aj� + Lw

 (3.18)

• Thus, it results in the K language models of the annotations for top K initial results.

Query-annotation similarity: User enters the query in the form of keywords, therefore a

query can be denoted as Q = {q1, q2…..qm} where 𝑞𝑞𝑖𝑖 refers to the keywords or corpus. The

probability of the existence or generation of a specific query Q in 𝐴𝐴𝑖𝑖‘s language model is

represented as 𝑃𝑃�(𝑄𝑄|𝐴𝐴𝑖𝑖)�. This is referred as probability of query generating. The

similarity computation between query and annotations involves the following steps:

• Firstly, the probability of terms appearing in specific annotation is derived from

the language model of social annotation.

• A weight is assigned on the similarity measure between query and social

annotation and the results are stored.

• The frequency count of a term w in the given query Q is represented as C(w,Q) is

taken into account to contribute in similarity score.

• Similarity weight between query and annotation is calculated by using (3.19),

 P(Q|Ai) = � P(w|Ai)C(w,Q)

w∈Q
 (3.19)

Final Rank Score: This method finally calculates the rank score of paper by integrating

the query-annotation similarity denoted by P(Q|R) and query-document similarity denoted

by P(Q|A). The combined weighted rank score is calculated by using (3.20),

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼 × 𝑃𝑃(𝑄𝑄|𝑅𝑅𝑖𝑖) + 𝛽𝛽 × 𝑃𝑃(𝑄𝑄|𝐴𝐴𝑖𝑖) (3.20)

69

where α and β are weights determined experimentally and satisfy α+ β =1.

Advantages and Limitations: This method uses the concept of annotations which are used

as a brief summary for a publication. By using this approach the results are optimized and

the newly formed search list is more accurate. But sometimes these annotations contain

incomplete and unrelated terms. Such annotations are considered as sparse in nature.

3.2.10 Comparison Study

Based on the literature analysis, a comparison of some of various ranking algorithms is

shown in Table 3.9 and Table 3.10. Comparison is done on the basis of some parameters

such as main technique used, methodology, input parameters, relevancy, quality of results

advantages and limitations. Here N denotes the number of papers. A typical digital library

search engine should ranking techniques based on the specific needs of the users. After

going through exhaustive analysis of the ranking algorithm [164, 165], it is concluded

that existing techniques have limitations in terms of response time, accuracy of results

and relevancy of results. Thus, there is scope to propose ranking algorithm which should

meet out these challenges efficiently.

The next section describes an introduction to the Document Clustering techniques used

by digital library search engines.

3.3 WEB DOCUMENT CLUSTERING

The process of grouping a set of physical or abstract objects into classes of similar

objects is called ‘‘cluster analysis” or “clustering” [121, 122]. It is an unsupervised

learning technique and has been widely used in numerous applications including market

research, data analysis and image processing. In the context of document clustering [118,

123, 124], objects are replaced by web documents and are grouped together based upon

some measure like similarity of content or of hyperlinked structure. As most of the digital

library search engines return a large and unmanageable list of documents containing the

user specified query keywords, finding the user required documents from such a large list

is usually tedious, often impossible. As a solution, the digital library search engines could

70

Table 3.9 Comparison of Various Page Ranking Algorithms

Algorithms

Measures

PaperRank [117] PSPR [114, 115] SimRank [116, 117] Social Annotation
based on language
model [119, 120]

Main
Technique
used

Web Structure
Mining, Web
content Mining

Web Usage
Mining, Web
structure mining

Web Content Mining Web content mining

Description Computes new
score of the top
‘n’ pages. Pages
returned are more
relevant.

The search result
list is ranked based
on Markov model
output and
frequency of
transition and
similarity of
papers.

Papers are ranked
according to the
content similarity
rather than the link
structure of the
pages.

Result are ranked
based on the weighted
scored determined by
calculating similarity
score between query
and annotation as well
as query and document

Input
Parameters

Backlinks,
authors, Impact
factor, time of
publish.

Web sessions
(Sequence of pages
accessed).

Papers and query
contents.

Initial search result
list, set of tags and
papers.

Complexity O (log N) O(N) , where N
denotes the
number of pages
(or states) .

O(N2) where N
denotes number of
papers.

O(K*L) where K
denotes size of the K
initial result list and L
denotes size of the
temporary corpus.

Relevancy More More relevant than
traditional
PageRank
Algorithm.

Results obtained are
relevant than the
traditional PageRank
and other extensions
of PageRank.

More relevant results
than in SimRank
approach.

Quality of
results

High Markov models are
highly vulnerable
to the data set
being used.

Increased efficiency
and accuracy in
ranking of pages in
result list.

This method highly
optimizes the initial
search results that use
only query-document
similarity.

Importance The pages are
sorted according
to the importance
of citations,
author journal.

Improves the
prediction of web
page access & can
be applied to any
web site’s
navigational graph
for improving
browsing orders.

Effectively analyze
pages or documents
with little contextual
information.

It optimizes the
ranking of initial
results by integrating
query-annotation
similarity with query-
document similarity.

Limitations Extra calculations
to find the author
ranking and time
impact of
citations.

It fails to predict
directly one more
step ahead.

Its efficiency gets
affected by the
capabilities of the
web crawler being
utilized.

In some web pages the
annotations may be
sparse and incomplete;
hence it creates a gap
between annotations
and queries.

N*= Number of Paper

71

Table 3.10 Comparison of Various Page Ranking Algorithms

Algorithm

Measures

CC [103] TDCC [104] PageRank [10,
36]

Popularity
Weighted

PageRank [107]

HITS [108, 109]

Main
Technique
Used

Web
Structure
Mining

Web
Structure
Mining

Web Structure
Mining

Web Structure
Mining

Web Structure
Mining, Web
content Mining

Description Results are
sorted based
on number
of incoming
citations.

Results are
sorted based
on time
dynamics of
the citation
graph i.e.
age of the
citations

Computes
scores at
indexing time.
Results are
sorted by taking
into account the
importance of
citing papers.

Results are sorted
according to
weighted citations
as well as
popularity factor
of publication
venue of paper.

Computes hub
and authority
scores of’ n’
highly relevant
pages on the fly.
Relevant as well
as important
pages are
returned.

I/P
parameters

Backlinks Backlinks,
publishing
time of
paper

Backlinks

Backlinks,
Publication venue

Backlinks,
forward links,
Content

Working
Levels

1 1 N N < N

Complexity O(N) O(N2) O(log N) O(MN) <O(log N)
Relevancy Less Less(More

than CC)
Less(more than
CC, TDCC)

More (less than
PaperRank)

More (less than
PaperRank)

Quality of
Results

Less Higher than
CC

Medium Higher than PR Less

Importance Simplicity of
computation.

This method
considers the
freshness of
citations by
differentiatin
g between
the old and
new
citations.

It statistically
analyses whole
citation graph at
once. It
captures not just
quantity, but
also quality of
citing papers.

This method
overcome the
limitation of
impact factor and
considers the
popularity of
publication venue.

This method
provides good
results by
considering
Hubs and
Authorizes
scores and also
considers the
content of the
paper.

Limitations Unweighted
ranking i.e. it
treats all the
citations
equally.

It does not
take into
consideratio
n the
different
importance
of each
citation.

Results come at
the time of
indexing.
Results are
sorted based on
importance of
citations.

It does not take
into account the
time of
publication.

Topic drift and
efficiency
problem.

N*= Number of Paper, M= Average Citations of a Paper

72

apply some tools to group a set of documents returned in response to a query with the aim

of finding meaningful clusters, rather than a list of ranked documents.

3.3.1 Major Categories of Clustering

In general, the major clustering methods can be classified into the following categories.

Partitioning methods: Given a database of n objects, a partitioning method constructs

K (K<=n) partitions of the data, where each partition represents a cluster. The clusters

satisfy the following requirements:

• Each group must contain at least one object, and

• Each object must belong to exactly one group.

The general criterion of a good partitioning is that objects in the same cluster are

“closed” or related to each other, whereas objects of different clusters are “far apart"

or very different. K-means, K-medoids [118] are few popular algorithms based on

partitioning method. The K-means algorithm is given in Fig. 3.5.

The key idea of K-means is simple and is as follows: In the beginning, the number of

clusters i.e k is determined. Then, the algorithm randomly assumes the centroids (or

centers) of these K clusters. If the number of objects is less than the number of

clusters, then each object is treated as the centroid of a cluster and allocated a cluster

number. Otherwise, the algorithm computes the distance (i.e., Euclidean distance)

Algorithm: K-means(D, k)
Input: A dataset D, a user specified number k
Output: k clusters
{
 Randomly Initialize cluster centroids;
 While not convergent
 {
 For each object o in D do
 Find the cluster c whose centroid is most close to o;
 Allocate o to c
 For each cluster c do
 Recalculate the centroids of c based on the objects allocated to c;
 }
}

Fig. 3.5 The K-means Algorithm

73

between each object and all centroids to get the minimum distance. Because the

location of the real centroid is unknown during the process, the algorithm needs to

revise the centroid location with regard to the updated information. After updating the

values of the centroids, all the objects are reallocated to the K clusters. The process is

repeated until the assignment of objects to clusters ceases to change, or when the

centroids move by negligible distances in successive iterations.

Hierarchical methods: Hierarchical clustering [126] constructs a hierarchy of

clusters that can be illustrated in a tree structure which is also known as a

dendrogram. Each node of the dendrogram, including the root, represents a cluster

and the parent-child relationship among them enables to explore different levels of

clustering granularity.

There are mainly two types of algorithms for hierarchical clustering:

• Agglomerative

• Divisive

The Agglomerative approach, also called the bottom up approach, starts with each

object forming a separate group. It successively merges the objects or groups that are

closed to one another, until all of the groups are merged into one, or until a

termination condition holds. The Hierarchical Agglomerative Clustering (HAC)

algorithm is presented in Fig. 3.6.

Algorithm: HAC(D)
Input: A Dataset D
Output: A hierarchy tree of clusters
{
 Allocate each object o in D as a single cluster;
 Let C be the set of the clusters;
 While |C|>1 do
 For all clusters X, YϵC do
 Compute the between –cluster similarity S(X,Y);
 Z=XᴗY, where S(X,Y) is the minimum;
 Remove X and Y from C;
 C=CUZ;
}

Fig. 3.6 The Hierarchical Agglomerative Clustering (HAC) Algorithm

74

The Divisive approach, also called the top-down approach, starts with all of the

objects in the same cluster. In successive iterations, a cluster is split up into smaller

clusters, until eventually each object is in one cluster, or until a termination condition

holds.

Density based Methods: The partitioning and hierarchical methods can find only

spherical-shaped clusters and encounter difficulty at discovering clusters of arbitrary

shapes and sizes. Other clustering methods have been developed [125] based on

notion of density, wherein if a number of data objects in the "neighborhood" exceeds

some threshold. then they are grouped together. It means, for each data point within a

given cluster, the neighborhood of a given radius has to contain at least a minimum

number of points. The DBCCOM [126] algorithm and its extension OPTICS are

typical density-based methods that perform clustering according to a density-based

connectivity analysis.

3.3.2 Similarity Measures

The key problem underlying document clustering is to determine an adequate similarity

function so that truly similar documents can be grouped together using a clustering

algorithm. In this section, some similarity functions have been discussed, which are used

for finding similarity between two documents, two queries, or one document and one

query. There are different ways to represent document contents: keywords, words in their

order, and phrases. They provide different measures of similarity, each with its own

useful information.

Document Representation: The depiction of a set of documents as vectors in a common

vector space is known as the Vector Space Model (VSM) [127]. This representation is

used for many IR operations ranging from scoring documents on a query, document

classification and document clustering. A document vector captures the relative

importance of the terms in a document, wherein each term is assigned a weight

depending on its number of occurrences in the document.

In VSM, each document can be viewed as a vector with one component corresponding to

each term in the dictionary. Let Y be the set of terms in the document collection whose

75

size is give by n. For each term yi there exist a vector yi in the vector space that represents

it. It then considers the set of all term vectors {yi} (1≤i≤n) to be the generating set of the

vector space, thus the space basis. A document vector xi is given by:

 𝑥𝑥𝑖𝑖 = �𝑦𝑦𝑖𝑖 ,1,𝑦𝑦𝑖𝑖 ,2, … … . .𝑦𝑦𝑖𝑖 ,𝑛𝑛� (3.20)

If each xi (for i = 1... m) represents a document vector of the collection, then there exists a

linear combination of the term vectors {yi} which represents each xi in the vector space.

Once a vector has been defined for each document in the corpus, they can be represented

by using a document-by-term matrix A in which each row represents a document and

each column represents a term in the corpus. The resulting document-by-term matrix A

whose element Aij denotes the occurrence of a term j in document i as shown below:

 𝐴𝐴 = �

𝐴𝐴11 𝐴𝐴12 ⋯ 𝐴𝐴1𝑛𝑛
𝐴𝐴21 𝐴𝐴22 ⋯ 𝐴𝐴2𝑛𝑛
⋮

𝐴𝐴𝑚𝑚1

⋮
𝐴𝐴𝑚𝑚2 ⋯

⋮
𝐴𝐴𝑚𝑚𝑚𝑚

� (3.21)

There are number of schemes to assign the weight to terms in a document. The simplest

approach is referred to as Term Frequency which assigns the weight to be equal to the

number of occurrences of term t in document d. It is denoted TFi,d with the subscripts

denoting the term and the document in order.

There are number of similarity measures have been proposed in literature, some of which

is described as:

a) Cosine Similarity: When documents are represented as term vectors, the

similarity of two documents corresponds to the correlation between the vectors.

This is quantified as the cosine of the angle between vectors, that is, the so-called

cosine similarity [128, 130].

Cosine Similarity measure between two documents di and dj i.e.

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � is given by (3.22):

 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � =
𝑑𝑑𝑖𝑖 ∙ 𝑑𝑑𝑗𝑗

‖𝑑𝑑𝑖𝑖‖�𝑑𝑑𝑗𝑗 �
=

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1

�∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘2𝑛𝑛
𝑘𝑘=1 ∑ 𝑤𝑤𝑗𝑗 ,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1

 (3.22)

where k denotes the size of documents.

76

This similarity measure is simple and very efficient to evaluate. This measure

gives the value in between [0, 1]. But, it does not consider the variation in the

ratings given to the documents by the different users for the computation.

b) Jaccard Coefficient: It is a statistic used for comparing the similarity and

diversity of sample sets. The Jaccard coefficient [127, 130] measures the

similarity between finite set of sample. It is defined as the size of the intersection

divided by the size of the union of the sample sets i.e. the number of shared terms

present in documents divided by the number of all unique terms present in both

documents.

Jaccard Coefficient between two documents di and dj i.e. 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � is

given by (3.23):

 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � =
�𝑑𝑑𝑖𝑖 ∩ 𝑑𝑑𝑗𝑗 �
�𝑑𝑑𝑖𝑖 ∪ 𝑑𝑑𝑗𝑗 �

=
∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘2𝑛𝑛
𝑘𝑘=1 + ∑ 𝑤𝑤𝑗𝑗 ,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1 –∑ �𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘�𝑛𝑛

𝑘𝑘=1
 (3.23)

where k denotes the size of documents.

The main disadvantage of this measure is that it can’t verify the existence of

duplicate samples i.e. over-typed words were neglected in the measurement of the

similarity.

c) Dice Coefficient: It is defined as two times the number of terms which are

common in the compared documents and divided by the total number of terms

present in both documents [128, 129].

Dice Coefficient between two documents di and dj i.e. 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � is given by

(3.24):

 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � = 2
�𝑑𝑑𝑖𝑖 ∩ 𝑑𝑑𝑗𝑗 �

|𝑑𝑑𝑖𝑖| + �𝑑𝑑𝑗𝑗 �
= 2

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘2𝑛𝑛
𝑘𝑘=1 + ∑ 𝑤𝑤𝑗𝑗 ,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1

 (3.24)

where k denotes the size of documents.

d) Overlap Coefficient: It is similar to the Dice's coefficient, but. It is also called

as Szymkiewicz-Simpson coefficient [129, 131]. This method considers two

strings a full match if one is a subset of the other and it is similar to Dice

77

Coefficient It measures the overlap between two sets by dividing the size of the

intersection by the smaller of the size of the two sets:

Overlap Coefficient between two documents di and dj i.e. 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � is

given by (3.25):

 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 �𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 � =
�𝑑𝑑𝑖𝑖 ∩ 𝑑𝑑𝑗𝑗 �

𝑚𝑚𝑚𝑚𝑚𝑚�|𝑑𝑑𝑖𝑖|, �𝑑𝑑𝑗𝑗 ��
=

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1

𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘2𝑛𝑛
𝑘𝑘=1 ,∑ 𝑤𝑤𝑗𝑗 ,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1 �

 (3.25)

where k denotes the size of documents.

If document di is a subset of dj or Vice-versa, then the overlap coefficient value is

1.

The next section is devoted to the discussion of another technique used in Digital

libraries called Document Categorization.

3.4 DOCUMENT CATEGORIZATION

The benefit of digital documents is that they can be computationally analyzed, because a

computer program can extract the document text and process it for further analysis. A

convenient way of storing also creates the need for a convenient way of retrieval: What is

the use of storing documents if they cannot be found? Naturally categorization or

classification of documents [132] has been used to make it easier to find relevant

information.

Document classification is the task of assigning documents to two or more predefined

categories. For example, a news document generated in the Reuters news agency is

classified into a number of topics, such as "crude oil", "foreign currency exchange",

acquisition" and so on. If a document can be assigned to more than one category; the

process is called multi-category classification. If a document could be assigned to only

one category, it is called singular-category classification. Multi-category classification is

more common than singular-category classification.

A brief study about some keyword extraction techniques has been discussed.

78

3.4.1 Keyword Extraction

Keywords play a crucial role in extracting the correct information as per user

requirements. Since keyword is the smallest unit which express meaning of entire

document , many applications can take advantage of it such as automatic indexing, text

summarization, information retrieval, classification, clustering, filtering, cataloging, topic

detection and tracking, information visualization, report generation, web searches etc.

[133, 134] Existing methods about Automatic Keyword Extraction [135] can be divided

into four categories:-

• Simple Statistical Approach: It comprises simple methods which do not require

any training data. These types of approaches use statistical information to identify

the keywords in the document. The statistical methods include word frequency,

term-frequency [136], term frequency-inverse document frequency (TF*IDF)

[137], word co-occurrence [136, 138] etc.

• Linguistics Approach: These approaches use the linguistic features [139] of the

words mainly sentences and documents. The linguistic approach includes the

lexical analysis, syntactic analysis discourse analysis and so on. In this work, the

linguistics approach is employed for keyword extraction.

• Machine Learning Approaches: Machine Learning approach considers the

supervised learning from the examples. They induce a model which is trained on a

set of keywords for keyword extraction. These methods require training data, and

are often dependent on the domain. This approach includes Naïve Bayes [140],

Support Vector Machine [141] etc.

• Hybrid Approaches: Hybrid approaches about keyword extraction mainly

combine the methods mentioned above or use some heuristic knowledge in the

task of keyword extraction, such as the position, length, layout feature of words,

html tags around of the words, etc. Various extraction methods discussed are for

single document but these can further be applied to multiple documents as per

their suitability [142].

Limitations of Existing Keyword Extraction Techniques: A critical look at the available

Keyword Extraction Techniques for digital libraries indicates the following limitations

79

which need to be addressed. Like the term frequency and inverse term frequency (tf-idf)

technique can’t be applied on single document to extract the keywords. Tf-idf technique

can extract important keywords by comparing two or more documents. In all these

techniques, a lot of processing is done to extract the keywords by scanning whole

document which is very time consuming. There is a need to devise a novel technique for

keyword selection and extraction.

In next section, a brief study about some document categorization techniques has been

carried out.

3.4.2 Different Categorization Techniques

Major document categorization techniques are decision trees, k-nearest neighbor,

Bayesian approaches, neural networks, regression based methods and vector based

methods. A brief description of these methods and their relative merits are discussed

below:

a) Decision Tree: Decision trees [143, 144 145] are most widely used predictive

modeling approaches used in statistics, data mining and machine learning. Here

classification is based on the learning of decision trees which consists of a

sequence of various decision rules in the form of tree like structure where the

nodes represent questions and the leaves represent the corresponding category of

documents. This method is easy to interpret for naïve users. But, decision-tree

learning is based on heuristic algorithms where decisions are made at each node

locally and cannot guarantee to return the global optimal decision tree.

b) K Nearest Neighbor (K-NN): K-NN classifier [143, 144, 145] is a case-based

learning algorithm in which the categorization is done by comparing the category

frequencies of the k-nearest neighbors. The Euclidean distance or the angle

between the feature vectors is computed as a similarity measure between

documents. These methods are sometimes called “memory based learning”

methods. This method is easy to interpret and robust to noisy training data. But, in

some cases, it is biased by value of k i.e. number of clusters.

80

c) Naïve Bayes (Idiot Bayes) Classifier: It is a supervised learning algorithm

which is based on applying Bayes’ theorem [140, 149] with the “naive”

assumption of independence between every pair of document features. This

method is feature independent means the word order is irrelevant. A disadvantage

of this method is that they can only process binary feature vectors and, thus, have

to abandon possibly relevant information.

d).Neural Networks (perceptrons) Classifier: Neural network [143, 144, 145] is

also called artificial neural network is a mathematical model inspired by

biological neural networks. It is composed of set of parallel and distributed

processing units called neurons [143, 144,145]. These neurons are interconnected

by means of unidirectional or bidirectional links by ordering them in layers. This

method can handle noisy and contradictory data very well. The main disadvantage

of this method is that neural networks are difficult to understand by naïve users

and requires high training cost due to high flexibility of neural networks.

e) Support Vector Machines (SVM): This method needs positive training

documents as well as negative training documents during the categorization

process [143, 144,146, 148]. This method is looking for the decision surface that

best separates the positive from the negative examples in the n-dimensional space.

The main advantage of this method is its simplicity, interpretability, robustness

and flexible performance.

3.4.3 Study of Recent Document Categorization Techniques

A literature survey of various document categorization techniques used by digital library

search engines has been done in this section. Few existing document categorization

techniques proposed by researchers are discussed below:

a) Publication-level Classification System of Science: A method to classify the

publications into research area at individual level of publication instead of at the

journal level was proposed by Ludo Waltman and Nees Jan van Eck [150]. This

method clustered the publications into research areas based on citation relations.

Each publication is assigned to a single research area, and research areas are

81

organized in a hierarchical structure. The methodology is able to deal with very

large numbers of publications. A noteworthy feature of this methodology is its

transparency and relative simplicity. But, in this method, value of few numbers of

parameters need to be chosen manually. The main limitation of this method is its

exclusive reliance on direct citation relations between publications.

b) Automatic classification of scientific papers in PDF: Juan C. Rendón-

Miranda et al. [151] proposed a method to classify scientific papers in PDF format

according to the first level of the ACM Classification System and then the result

is instantiated in document ontology. Once the ontology is populated, it can be

used to perform inferences and obtain implicit knowledge from the papers. For

document classification, Naïve Bayes classification approach is used.

c) Categorization of multilingual scientific Documents: Jarosław Protasiewicz

et al. [152] proposed a three layered classification for multilingual scientific

documents. Multilingual means documents containing the text parts in various

languages at the same time. The three layers work as:

(i) A preprocessing layer which generates a Vector Space Model,

(ii) Monolingual classifiers corresponding to different text parts, and

(iii) A decision layer which integrates the outputs of all the classifiers and

generates the final prediction regarding a target class.

This method states that the classification quality is improved by integrating

outputs of all multilingual classifiers that performs separately. But, the main

disadvantage of this method is that monolingual classifiers are dependent on a

dataset and training algorithms because it gave opposite results when the models

are trained by Long-Short-Term memory algorithms.

d) Fast Categorization of Web Documents represented by Graphs: A Hybrid

approach to categorize the web documents was proposed by Alex Markov et al.

[153] which was built upon both graph and vector space representations. The

graph approach provides the ability to capture important structural information

hidden in a web document and its HTML tags. This method uses the tags for

identification of hyperlinks, title, underlined, or bold text, etc. The document

82

representation techniques used by this system also gave weightage to the order

and combination of words in the text.

3.4.4 Comparison Study

By going through the literature survey of some of existing document categorization

techniques, it is concluded that each technique has some advantages and disadvantages. A

tabular comparison study is shown in Table 3.11 which compares the techniques on

Table 3.11 Comparison between various Existing Document Categorization Techniques

Indexing
Method

Publication-
level
Classification
System of
Science [150]

Automatic
classification of
scientific papers
in PDF [151]

Categorization of
multilingual
scientific Documents
[152]

Fast
Categorization of
Web Documents
Represented by
Graphs [153]

Main
Technique
Used

Classify the
publications into
research area at
individual level
of publication
instead of at the
journal level.
The publications
are clustered into
research areas
based on citation
relations

ACM
Classification
first level system
is used to
classify the
documents and
then instantiated
in document
ontology.

Three layered
classification system
for multilingual
scientific documents
is proposed. It states
that the classification
quality is improved
by integrating outputs
of all multilingual
classifiers that
performs separately.

The Graph-
Theoretic web
document
representation
technique is used
for categorizing the
web documents by
giving weightage
to tags in the
documents.

Type of
Categorization

Clustering based
on citation
relations.

Naïve Bayes
classification
approach is used.

Multinomial Naïve
Bayes method is
used.

Vector
representation,
using the k-Nearest
Neighbor (k-NN)
classification
algorithm

Advantages Efficiently deal
with deal with
very large
numbers of
publications.

It can be used to
performed
inferences and
obtained implicit
knowledge from
the papers.

It describes the
documents
sufficiently well and
there is no need to
introduce more
computationally
demanding
algorithms.

This method
captures important
structural
information hidden
in a web document
and its HTML tags.

Limitation(s) Value of few
number of
parameters need
to be chosen
manually.

This method is
under every
phase of
methodology
used.

Monolingual
classifiers are
dependent on a
dataset and training
algorithms.

It is very difficult
to be used by naive
users .

83

various parameters such as technique used, type of indexing used, advantages and

limitations.

3.5 POSSIBLE APPLICATION AREAS

The concept of document clustering, document categorization and keyword extraction

has been widely used by many researchers in optimizing the search and retrieval process

of digital library search engines. Some of the identified key areas where these techniques

can be utilized are given under:

• Building Effective Indexes: The document clustering can be utilized in building

effective index structures for digital library search engines, which in turn prompts

the efficient index searching.

• Automatic Query Expansion: The extracted information from query

categorization can be used as source for automatic query expansion [154, 155].

By categorizing the queries and then recommending the clusters of documents to

users, there becomes an opportunity for users to take advantage of category/topic

based queries and use the appropriate ones to meet his information need.

• Ranking: With the rapid growth of digital documents on WWW, the users are

becoming more and more dependent on the digital library search engines’ ranking

schemes [103, 104,107, 108, 112, 115, 116, 117] to discover more relevant

information as per their needs. Typically, users expect the more relevant

documents at the top-ranked results, and more often they do not look at the

document snippets except in the first few result pages. So, there is a need of

ranking schemes which take into account not only the overall page quality and

relevance to the query, but also the match with the users’ real search intent when

they formulate the query.

• Better Document Representation: By clustering similar documents either by their

content or by their category, the results of a search query can be presented to the

users in a much better way than the traditional ordered representation. By this

way, user can restrict his browsing to particular clusters of his interest. Thus,

Information Overkill problem can be abridged and search space can be reduced to

84

a better scale.

The next section provides a brief summary of the limitations found in the literature

survey.

3.6 REVIEW SUMMARY

A critical look at the available literature indicates the following issues, which need to be

addressed in building efficient indexing and query processing systems for digital library

search engines:

• Lack of Efficient Result Representation Techniques: In response to user queries,

a digital library search engine generally returns a large volume of results generally

presented to the user in the form of a ranked list. To search for the desired

information, user keeps on sifting between the documents and thus making extra

efforts. Some more efficient representation either in the form of clusters or in the

form of combination of cluster and ranked representation is actually needed so as

to reduce the search space.

• Low Precision: Most of the digital library search engines depict low precision.

User can’t browse all the documents one by one, and most documents are

irrelevant to the user's interest, they are highlighted and returned by digital library

search engine just because these documents posses query keywords. Even, the

most relevant documents to users’ query words or topic are generally not shown at

the top of the search results list. Hence, the time users spend for seeking out the

required information from search result list is large.

• Irrelevancy of Results: The traditional ranking methods employed by the digital

library search engines are generally based either on content-oriented or on the

link-oriented approaches i.e. it assign a page score independent of users’ query

words. Thus, the relation between academic documents and the requirement of a

researcher could not be completely matched.

• Inefficient Document Organisation Scheme: In response to user queries, a

digital library search engine generally returns only those documents/publications

whose contents are indexed by them. In some cases, there may exist paper p

85

which is linked to by papers already indexed, but is not indexed by search

engines. Is it still possible to meaningfully index p and return it in search results?

• Inefficient Retrieving Approach: As most of the digital library search engines are

keyword based, category or domain of keywords are generally ignored by them.

For instance, the topical query “apple" given to a digital library search engine

may retrieve the documents related to "apple fruit” as well as "apple computer”

together, thereby unnecessarily increasing the search space. Infact, there is a need

of optimizing user search by the way of using categorizes or taxonomies so as to

restrict it towards the right direction either by building efficient query analyzers or

by building efficient retrieving systems.

In subsequent chapters, novel approaches for Crawling, Indexing, Categorization and

Document Ranking have been proposed to resolve the mentioned issues.

86

87

Chapter IV

FOCUSED CRAWLER TO HARVEST DIGITAL
ACADEMIC DOCUMENTS

4.1 GENERAL

The WWW is a huge collection of digital documents wherein every second, a new

piece of document is added. Finding relevant academic documents or publications

indeed is a protracted task and searching required document without any explicit or

implicit knowledge adds more intricacy to the process. Generic crawlers traverse

complete web in order to generate indexes which are used later for searching and

recommending links to users. This method leads to huge storage space requirements

and usually falls short to cope up with the huge volume of digital information present

on the Web. Focused crawling in such a scenarios provides a better alternate to

generic crawling especially when topic specific and personalized information is

required.

Digital libraries which are based on focused crawling of open-access archives (e.g.

CiteSeer) often have large volume of missing publications in their collections of

archived publications viz. documents of ScienceDirect [42], ACM, Springer and IEEE

Explore [41] which require payment of fee to access the desired content. A question

arises here- How do the researchers be able to access these kind of missing documents

from digital libraries or How do digital libraries collect or crawl such category of

documents? As a solution to this, an approach of focused crawling has been

developed to improve the effectiveness of digital library crawlers.

A detailed discussion on proposed digital library focused crawler is given in the

following sections:

4.2 PROPOSED CRAWLING PROCESS OF DIGITAL LIBRARIES

The architecture of proposed focused crawler is depicted in Fig 4.1, which consists of

following functional modules:

1. Page Downloader

2. Categorization Process

88

3. Link Forecasting Process

4. Missing Document Finder Module

5. Aging Process

When a user inputs a seed document title in the form of query, then page downloader

fetches the document and downloads it from the internet. If the downloaded document

is in pdf/.ps/.pz format, then it is forwarded to Categorization process, otherwise sent

to Missing Document Finder Module. In Categorization process, first text

extractor/parser parses the downloaded document i.e. extracts the information such as

keywords, title, author, references in downloaded document etc. and then further

forwards it to Document Categorizer. This component decides the category of the

respective document with respect to Topic Taxonomy. The document is saved into

Paper Repository and also forwarded to Link Forecasting Module.

In Link Forecasting Module, first Link Extractor extracts all the outgoing links

(references) from the downloaded document. After that, Link Filter component filters

the extracted references/URLs and sends all of them to Link Priority Analyzer. The

Fig 4.1 Architecture of Proposed Crawling System

URLs

URLs
References

Less
Relevant
URLs

Keywords Keywords

I/P Seed
Documents

References/
URLs

Pdf,.ps,.pz

Categorization
Process

References

References

References

Increase
priority

Link Forecasting Module

Already
Downloaded

Ignore
List

Page Downloader

Text Extractor/Parser

Document Categorizer

Missing Document Finder module

Link Extractor

Link Filter

Link Priority Analyzer

Paper
Repository

Priority Queue

Yet To be
Crawl

Aging

Topic
Taxonomy

89

Link Priority Analyzer assigns the appropriate score to unvisited references/URLs.

This component only sends the top 10 unvisited references to priority queue and rest

unvisited references/URLs is saved to Yet to be Crawl temporary database. The

Priority Queue contains a list of unvisited URLs in the order of their assigned weight.

Aging component works at the backend, in order to increase the priority of low

priority URLs (URLs in Yet to be Crawl database) with the time span.

The working for different functional modules is described below:

4.3 PAGE DOWNLOADER

This component takes the seed document titles provided by the user or

references/URLs from the priority queue as an input and download the document in

.pdf, .ps or .pz format from the web. Initially, as an input, user provides a list of seed

documents (i.e. document titles from different domains/areas) for initiating the

crawling process.

Let us take an example, the user inputs the seed document title as: “Retrieval

Evaluation with Incomplete Information” and the page downloader download the

corresponding pdf of document from the web as shown in Fig. 4.2.

But sometimes, the page downloader gets the input seed document title or URL from

the priority queue which does not directly downloads the document in pdf. Instead of

downloading the pdf document, the URL displays the link or button to download the

pdf format of document.

Fig 4.2 Example to Download pdf of Document

90

For example, if the user inputs the seed document title: “A Component based Digital

Library Service for Finding Missing Documents”. Then, the user gets the indirect link

to download the pdf format of seed document instead of the direct link to download

the same (as shown in Fig 4.3 (a). This indirect link further provides the link or button

to download the pdf format of requested document (as shown in Fig 4.3 (b)).

In these cases, this page downloader component also checks for the link or button on

the given URL for downloading the document. If it fails to download the pdf format of

document, then the URL is forwarded to missing document finder module for further

processing.

4.4 CATEGORIZATION PROCESS

In this process, downloaded documents are first parsed and then categorized based

upon their research area or category. After going through the detailed literature survey

(b)

Fig 4.3 Example of when Button or Link is given on the Web Page to Download pdf

(a)

91

[150, 151, 152, 153], few limitations were identified in existing document

categorization approaches as discussed in chapter II which need to be resolved. To

overcome these issues, a document categorization technique has been proposed to

categorize the documents into the predefined categories.

The proposed categorization system [165] works on dynamic databases instead of

static ones. The system incrementally categorizes the newly uploaded documents into

the predefined categories based on various measures. In this system, a novel approach

for keyword extraction is used. In this technique, keywords are extracted from

research papers/documents by reading bookmarks. It has been assumed here that the

bookmarks contain most important keywords of the paper. Due to bookmarks reading,

system neither needs to scan the full paper nor requires storing the paper. Thus,

bookmarks extraction is used to improve the efficiency of the system in terms of

space and time complexity. To understand the working, the detailed process of the

proposed categorization system is outlined in Fig. 4.4., where the dashed outline

represents the proposed text extraction process. In order to achieve the required task,

architecture is divided into two major sub-systems as given below:

• Text Extractor/Parser

• Document Categorizer

Fig 4.4 Architectural Flow of Categorization System

Document Categorizer

Text Extractor Keyword Extractor

Bookmark Creator

Bookmarks
Exist?

No

Yes

Keyword Database

Topic Taxonomy

Paper Repository

Downloaded Document
(from Page Downloader)

Keywords

Keywords

Text Extractor/ Parser

92

First, the downloaded document which is forwarded by page downloader is parsed by

the Text Extractor or Parser. In this categorization system, Bookmark Creator is an

inactive module. This module becomes active only when the downloaded and parsed

document does not contain bookmarks. Once the bookmarks have been created by this

module, Keyword Extractor becomes functional and extracts keywords from

bookmarks and applies stop word removal techniques on extracted keywords. These

keywords are saved in Keyword Database. Now, the Document Categorizer decides

the category of the paper by considering the pre-defined categories stored in the form

of Topic Taxonomy and saves the paper in main database i.e. Paper Repository. An

algorithm for categorization process is described in Fig 4.5. The description of the

various functions used in the algorithm is given below:

1. Bookmark (): Check whether bookmarks exist in paper or not. If they do not exist, then

return null otherwise, save bookmarks in bookmarks variable.

2. Create_bookmark() : It creates the bookmarks of the paper and update existing paper.

3. Key_extract() : This function extracts tokens from data passed as parameter; removes

stop words and performs stemming function on keywords.

4. Document_category() : Decides the category of the research paper based on keywords

of the paper and keywords existing in different categories of topic taxonomy. Then, it

uploads the paper in respective category.

5. Incre_Key_filter() : This function is part of topic taxonomy component which

incrementally updates the keywords of categories stored in topic taxonomies. Detailed

Algorithm: Categorizer(P, CKD, KD)

 I/P: Paper P, Category keyword Database CKD (i.e. Topic Taxonomy) , Keyword Database KD
O/P: Updated CKD, Updated Paper Repository CDD
{

 bookmarks ← Bookmark (P) //Extract bookmarks of a paper
 If(bookmarks = = Null)
 {
 Create_bookmark(P) // bookmarks creation
 bookmarks ← Bookmark(P)
 }
 keywords ← Key_extract(bookmarks) //Extract keywords from bookmarks
 CDD ← Document_category(P, keywords, CKD)
 CKD ← Incre_key_filter(keywords, CKD)
} //end of

Fig 4.5 Algorithm for Categorization Process.

93

working of Increment key filter is discussed in Section 4.4.6.

The detailed description of various modules and data structures involved in this

process is explained below:

4.4.1 Text Extractor

This component takes the downloaded document in pdf format as an input and

extracts all the text of the document like title, authors, keywords, bookmarks,

references etc. This extracted information is forwarded to Document categorizer.

(Subsection 4.4.4)

4.4.2 Bookmark Creator

This module comes into play when bookmarks are not present in the newly

downloaded paper/ document. It creates the bookmarks and upgrades the paper. This

module scans the whole paper and uses following principles or rules to create

bookmarks:

i. Words emphasized by application of bold, italic or underlined fonts,

ii. Using headings of the research paper,

iii. Words typed or written in upper case,

iv. The size of the font applied,

v. Normalized Sentence Length, which is the ratio of number of words occurring

in sentence over number of words occurring in the longest sentence of the

document.

After this, the selected paper is upgraded with bookmarks and processed by the next

module called keyword extractor.

4.4.3 Keywords Extractor

This module processes only those papers which are having bookmarks. So, after

checking the bookmarks in the previous step, this module extracts the bookmarks

from the paper. Then, finds the keywords from these bookmarks and applies stop

word removal. After this, stemming algorithm is applied on each term of text files by

porter.java which uses Porter’s Stemming algorithm [156, 157]. There are some other

stemmers that are available as- Lovins stemmer [158], Dawson Stemmer [159]. But

94

Porter’s stemmer is the prevalent stemmer in Information Retrieval and Language

Processing problems because its performance is pretty good, hence is also used in

present context.

On the basis of the frequency of the keywords, it chooses top ten frequent keywords

and stores them in the categorized keyword database.

4.4.4 Document Categorizer

In this module, the category of each downloaded document is decided and the

document in turn is saved with that category in the Paper Repository database. This

module incrementally categorizes the newly uploaded or downloaded documents into

the predefined categories based on different measures. First, it extracts the keywords

of the paper under processing from the keyword database. Then, compare these

keywords with the keywords of pre-defined categories at top level by using cosine

similarity measure [128, 129, 130]. The category having highest cosine similarity

value amongst all is the most relevant category for the selected article/paper. After

this, the resultant category is explored further. This process is repeated until the most

relevant category at the lowest level is found. At last, document categorizer uploads

the paper in the resultant category. For keyword comparison purposes, cosine

similarity measure [128, 129, 130] is used which is explained below.

Cosine Similarity: Cosine similarity is a measure of similarity between two vectors by

measuring the cosine of the angle between them.

Given two vectors of same attributes, P and Q, the cosine similarity Sim(P,Q), is

computed as shown in (4.1):

 Sim(P, Q) =
P. Q

�P ��‖Q����
=

∑ Pi × Qi
n
i=1

�∑ Pi
2n

i=1 × �∑ Qi
2n

i=1
 (4.1)

where 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖 are components of P and Q, n is the size of both vectors P and Q.

4.4.5 Topic Taxonomy

Taxonomies have been used to simplify studying the world by stratifying and

partitioning it since ancient times. More recent examples are Yahoo! [160] and the

Virtual Library [161]. The purpose of this set of categories is to provide a kind of

basis (in the mathematical sense) onto which the user maps her interests (the focus

95

topics). Eventually, the focused crawler will assign relevance scores to each visited

document based on how well it matches the categories associated with the focus

topics. Thus, the use of taxonomy provides a natural mechanism to control the recall-

precision trade-off.

In this proposed system, a set of multi level topic taxonomies are used to categorize

the documents. For topic taxonomy, instead of using the existing canonical

taxonomies, the system considers the digital document libraries or archives of some

universities for taking the different types of categories. The detailed description about

the data set used and the process to create categories is explained in Appendix A.

The schema for this data structure is shown in Fig. 4.6 and description regarding

various fields of this schema is shown in Table 4.1.

4.4.6 Incremental Keyword Filter

It is a part of topic taxonomy component. In the incremental technique, it updates the

keywords of categories whenever a new research paper is uploaded by merging the

new keywords with the existing processed keywords instead of starting from scratch.

This not only saves the processing time but also saves the memory. The algorithm of

this component is outlined in Fig 4.7.

 Category_Keyword_Database

Category_ID Category Keyword_ID Keyword Frequency

Fig 4.6 Schema for Topic taxonomy

Table 4.1 Description of Topic Taxonomy

Field Description

Category_ID Each category in topic taxonomy is assigned a unique serial number i.e. ID for
referencing. The ID can be a sequential number or string e.g. Cl. C2. C3 etc.

Category Name of the category corresponding to category_ID.

Keyword_ID When parser tokenizes a retrieved archive, a set of token or keyword (possible
strings of characters) are produced. Punctuations are usually thrown out in this
process. A token is stored in this field with a unique serial number i.e. ID.

Keyword Name of the keywords corresponding to keyword_ID.

Frequency It is the number of occurrences of the specified keyword in the category.

96

As shown in algorithm: First, the module takes the keywords of the uploaded paper

and the keywords of its sub-category. Then, selects the keywords of higher

importance and keep them in the decided sub-category.

4.4.7 Advantages of Proposed Categorization Process

Proposed approach of categorization has the following advantages:

1. Using bookmark technique, to extract the important keywords of the document

instead of scanning the whole documents, results in reducing the time

complexity considerably without any adverse effect on the quality of results.

2. The mechanism works in an offline mode, thus does not affects the online

query processing time of the search engine. Rather, it improves the search

engine efficiency.

3. More precise and relevant results are retrieved by the users because of multi-

level hierarchy of categories in topic taxonomy.

The next section describes another module, proposed in this work, towards crawling

digital library documents.

4.5 LINK FORECASTING MODULE

This module extracts all the references from the document and forecasts them for

further processing. The functioning of sub components of this module is described

below:

Algorithm: Incre_key_filter (PK,CKD)

 I/P: Paper Keywords, Categorized_Keywords_Database
O/P: Updated keyword database
{

 Step1: Take the keywords of newly downloaded/uploaded paper.
 Step2: Take keywords of the sub-category in which paper is saved.
 Step 3: Merge the keywords of first two steps, updating the frequency of repeated Keywords.
 Step4: Sort the keywords according to updated frequencies.
 Step5: Choose the top ten keywords and update the category with them.
 Step 6:Return the updated keyword database
}

Fig 4.7 Algorithm for Incremental Keyword Filter Module

97

4.5.1 Link Extractor

This component takes a document as an input and extracts all the references (i.e. out-

going links) of the document. These extracted links are forwarded to Link filter for

further processing.

4.5.2 Link Filter

This component is optional. For limiting the boundaries of crawling area, an ignore

list of URL types, references or domains is provided to crawler as per the user

behavior which the user do not want to crawl. The Ignore List is a set of file types that

contains the types of URLs, references or domains as per the user interest to be

ignored by the crawler while crawling. Thus, this component takes the extracted out-

links of the documents and matches them with the ignore list of URLs. If any match is

found, the corresponding link will be removed and not forwarded for further

processing. Table 4.2 shows an example of Ignore List. This step helps in reducing

the overall processing costs.

4.5.3 Link Priority Analyzer

This component assigns the priority to all unvisited references/URLs which are

extracted from the downloaded document. It assigns the priority order to the

references/URLs by analyzing the relevance of cited references with the downloaded

document. It means, the unvisited cited references might be relevant to the

downloaded documents. This component helps to put, on top of the ranked URL list,

those URLs with higher rate of satisfying the user's needs. For computing the

relevance between the downloaded document and unvisited URLs, Jaccard

Coefficient measure [127, 130] is taken into account. It is defined as the size of the

intersection divided by the size of the union of the sample sets i.e. the number of

Table 4.2 Sample Ignore List

File Types Extensions

image .jpg, .bmp, .gif, .png, .jpeg, .mpeg

video .flv, .avi, .mp4, .wmv, .avi

98

shared terms present in documents divided by the number of all unique terms present

in both documents. The Jaccard coefficient score is computed as:

 𝐽𝐽_𝑆𝑆𝑆𝑆𝑆𝑆�𝐷𝐷𝑖𝑖 ,𝑅𝑅𝑗𝑗 � =
�𝐷𝐷𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗 �
�𝐷𝐷𝑖𝑖 ∪ 𝑅𝑅𝑗𝑗 �

=
∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1

∑ 𝑤𝑤𝑖𝑖 ,𝑘𝑘2𝑛𝑛
𝑘𝑘=1 + ∑ 𝑤𝑤𝑗𝑗 ,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1 –∑ �𝑤𝑤𝑖𝑖 ,𝑘𝑘 ,𝑤𝑤𝑗𝑗 ,𝑘𝑘�𝑛𝑛

𝑘𝑘=1
 (4.2)

where 𝑆𝑆𝑆𝑆𝑆𝑆�𝐷𝐷𝑖𝑖 ,𝑅𝑅𝑗𝑗 � represents the Jaccard similarity score between the downloaded

document Di and unvisited URL Rj , n represents the size of both the downloaded

document and the document title corresponding to the unvisited URL, wi and wj

denotes the weight of the term in the document i and j.

4.6 MISSING DOCUMENT FINDER MODULE

This module comes into the play when the page downloader does not find the .pdf

format of document for downloading. This module is the heart of the proposed system

which is responsible to find the desired document by using alternative methods and

techniques. This module works as shown in Fig 4.8.

In this module, the reference/URL which is not in pdf format, is forwarded to meta-

data extractor. The metadata extractor extracts the meta-data of the reference/URL

i.e. title, author, publication venue etc. This freely available information about the

URL is used to extract more related or missing information about the document. This

type of information is used to frame more related queries for specific subject

Fig 4.8 Missing Document Finder Module

References/URLs

Search Engines

URLs URLs

Queries Results

Meta Data Extractor

Query Formation Module

Sn S2 S1

Paper Filter Homepage Filter

Similar Paper
URls DB

Author Homepage
URLs DB

Priority Queue

99

disciplines. In our framework, the meta-data information is used to frame two types of

queries:

Type1= Research Paper Titles, and

Type2=Author Name Queries.

By using this information, the Query Interface automatically generates and submits

queries to two or more search engines (e.g. yahoo, google, google scholar etc.)

requesting the more specific information. The list of search results resulting from the

type1 queries are filtered by the paper filter and saved into a temporary database i.e.

Similar Paper URLs DB. The results from type 2 queries are filtered by the

Homepage Filter and saved into a temporary database i.e. Author Homepage URLs

DB. The predicted academic author homepages and paper titles both are served as

seeds and send to Priority Queue for further crawling.

The working of sub components is described in detail as below:

4.6.1 Query Formation Module

Meta-data record is used to generate the multiple queries which are further used for

requesting the relevant document of respective query. In this proposed system,

different types of queries are formed.

Let’s take an example a paper having title “Alternatives for Interconnection of Public

Packet Switching Data Networks” and whose authors are catalogued as: Vic

DiCiccio, Carl A. Sunshine, James A. Field, Eric G. Manning. Various queries

formed are:

• Q1: Unquoted title (e.g. Alternatives for Interconnection of Public Packet

Switching Data Networks).

• Q2: Quoted title (e.g. “Alternatives for Interconnection of Public Packet

Switching Data Networks”)

• Q3: Name of first catalogued author (e.g. Vic DiCiccio)

• Q4: Name of all catalogued authors (e.g. Vic DiCiccio, Carl A. Sunshine,

James A. Field, Eric G. Manning)

After the query formation, these queries are forwarded to different search engines for

finding more desired results.

100

4.6.2 Author Homepages Filter

Author homepages are also known as academic homepages and form potential seed

URLs for initiating crawls in digital libraries. For the system to be effective and

efficient, it is imperative to identify these pages from the search results of author

name queries. When a researcher hits an author name query (i.e. Q3 and Q4), the

retrieved list of search results contain a lot of non-homepage URLs which are

expected to be diverse with web pages ranging from commercial websites such as

LinkedIn, social media websites such as Twitter and Facebook, publication listings

such as Google Scholar, Research Gate, and several more. To handle this problem,

filters are used to remove these types of irrelevant URLs from the search result list

against author name query. Here, two types of filters are used by the system in order

to find the more relevant author homepages.

• URL Features: Intuitively, the URL strings of academic homepages can be

expected to contain, terms such as “people” “author”, or “home” and less

likely to be hosted on domains such as “linkedin”, “twitter”, and “facebook”.

In the proposed system, URL strings are tokenized based on the “slash (/)”

separator and the domain-name part of the URL based on the “dot (.)”

separator.

For the example (as shown in Fig 4.9), the URLs which contain the author

name as URL string (john.blitzer.com) has more possibility to link with the

author homepage as compared to the URL which contain the URL string

Linkedin (https://www.linkedin.com/in/john-blitzer-425665).

Fig 4.9 Example of URL feature

101

• Name-match Features: This feature takes the general factor into consideration

that generally researchers tend to use their name or part of URL string of their

homepages.Two types of match features are specified:

(1) a Boolean feature that indicates whether any part of the author name

matches a token in the URL string, and

(2) a Numeric feature that indicates the extent to which name tokens overlap

with the (non-domain part of) URL string given by the fraction:

≠ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

≠ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 (4.3)

For the example (as shown in Fig 4.10) author name “Kavi Arya” and the URL

string: https://www.cse.iitb.ac.in/~kavi/, the two features have values as:

A Boolean feature=“true” and

A Numeric feature= |𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 |
|𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 |

 = 1
2

 =0.5, respectively.

Based on these features, the system classifies the URLs into homepages and non-

homepages category, filters them and further forwards them for initiating crawling in

digital libraries.

4.6.3 Paper Filter

This component filters the URLs with no or less interest to the user against paper title

query (i.e. Q1 and Q2). This step helps to reduce the processing cost of the next step.

Fig 4.10 Example of Name-Match Feature

102

For this, the system considers the URLs having title similarity value of the document

greater than the threshold value as compared to requested document title (i.e. Q1 and

Q2). For computing the similarity, the Jaccard similarity coefficient [127, 130] is

computed over the keywords of the titles by using eq. (4.2).

4.6.4 Example Illustration

Let us take an example to illustrate the working of missing document finder module.

Assume, the system takes the seed URL i.e. document title: “A Heuristic-based

Hierarchical Clustering Method for Author Name Disambiguation in Digital

Libraries”. First, the page downloader tries to download the pdf format of the

document against the seed URL, but suppose it fails. Then the document is forwarded

to missing document finder module. Here, the module first extracts the metadata of the

URL (i.e. title, authors). By using this meta data, the system forms different queries

and hits these queries on different search engines. As per the type 2 query (i.e.

document title in quotes), when the system hits the query: “A Heuristic-based

Hierarchical Clustering Method for Author Name Disambiguation in Digital

Libraries”, the search result list (as shown in Fig 4.11) is extracted. After computing

the similarity value by paper filter, top URLs are forwarded to priority queue. It is

Fig 4.11 Search Result list against query on Google search engine

103

noted that by going through these URLs, by clicking the first URL, system will get the

pdf of respective document).

4.7 AGING PROCESS

As discussed above (in Section 4.5.3), the system first computes the priority score of

each unvisited URLs and then depending upon their priorities sends them to Priority

Queue or Yet to be Crawl Database for further processing. But Sometimes, a situation

occurs when a low priority or yet to be crawled URL never get crawled because

higher priority URLs take over since the list of unvisited URLs is never empty.

Let’s take an example to understand the concept of how are the URLs be processed in

case of priority scheduling: Consider, A, B and C are three URLs whose priority and

processing time is given as show in Table 4.3.

According to Table 4.3, the system first starts to crawl the URL A having highest

priority 2, then C and further B having lowest priority 0 (as shown in Fig 4.12).

Before the processing of URL B, suppose if some high priority URL comes in the

priority queue for crawling, then control is given to that URL keeping URL B behind.

Sometimes, this situation can lead infinite waiting for the URLs which are having

very low priority thus, creating the problem of Starvation. Thus, the low priority

URLs tend to never be crawled unless their priority is increased by some means. To

overcome this problem, the system considers the concept of Aging.

This concept is used to ensure that URLs with lower priority will eventually complete

Table 4.3 Example of Priority Scheduling
URL Processing Time Priority

A 10 2

B 5 0

C 8 1

Processes A C B
Time 0 10 18 23

Fig 4.12 Example of Priority Scheduling

104

Table 4.4 Parsed Documents

Tittle of the
page/document

OSI Reference Model: An Overview

Authors Gaurav Bora, Saurabh Bora, Shivendra Singh, Sheikh Mohamad
Arsalan

Keywords with their
frequency (only top 10 is
taken)

Layer=11,Protocol=8, OSI= 4, Architecture= 3, Manage= 2,
Connect= 1, Multiplex=1, Split=1, Transfer=1, Physical=1

Venue International Journal of Computer Trends and Technology (IJCTT)
Year of published/upload Jan 2014

their crawling. This technique can be used to reduce starvation of low priority URLs.

There are many ways to implement aging, but all have the same principle that the

priority of a process should increase as it waits in the ready queue. The increase in

priority may or may not be equal to the waiting time of the process. In this

component, the system sets up some rules and according to those rules, increases the

priority level of low priority URLs. When the priority level is reached at a certain

threshold value, then corresponding low priority URL will be forwarded to priority

queue for crawling.

For Example, suppose a system with priority range of 0-60 with 0 means the highest

priority. Consider a process with priority 40. If we increase its priority by 1 every 15

minutes, then in more than 10 hour the process will age to 0 priority and get executed.

4.8 IILLUSTRATION OF PROPOSED CRAWLING SYSTEM

Let us assume one hypothetical example to illustrate the working of the proposed

system. Assume that the system takes a list of seed documents i.e. document titles

provided by user as:

1. OSI Reference Module: An Overview

2. Web Usage Mining And Pattern Discovery

3. A Novel Approach for Document Ranking in Digital Libraries

4. Using Cohesion and Coupling for Software Remodularization: Is It Enough?

Let’s consider only one seed document i.e. “OSI Reference Module: An Overview”

for illustrating the working of proposed digital library focused crawler.

First, the page downloader downloads the respective document. If the document is in

pdf/.ps/.pz format, then it is forwarded to text extractor/parser which parses the

https://en.wikipedia.org/wiki/Starvation_(computing)

105

as shown in Table 4.4, otherwise sends it to missing document finder module. Now,

the document categorizer decides the category of the document on the basis of its

keywords. The system considers the online topic taxonomy (as shown in Fig 4.13) for

instance. The keywords of each category are shown in Table 4.5.

The categorizer compares the document keywords with the keywords of the topic

taxonomy categories. Table 4.6 shows the comparison of keywords of parsed paper

and keywords of the categories for deciding the category of document.

The similarity between the keywords of parsed paper P and keywords of categories C

is computed by using (4.1):-

Table 4.5 Keywords

Keywords of Parsed
Document

Keywords of Categories

Networking Soft Computing
Analysis

&Design of
Algorithm

Keywords Freq Keywords Freq Keywords Freq Keywords Freq
Learning 3 Switch 15 Neural 13 Algorithm 27
Genetic 10 SNMP 10 Neuron 9 Complexity 22
Habituation 1 Wired 14 Genetic 18 Optimize 16
Architecture 3 UDP 6 Crossover 13 NP-Hard 15
Defuzzificatio
n

5 Ethernet 5 Defuzzificati
on

15 NP-
Complete

15

Connect 1 ATM 10 Expert 12 Sort 12
Expert 4 Wireless 8 Mutation 3 Space 17
Split 1 OSI 15 Learning 2 Symptotic 15
Transfer 1 Layer 21 Chromoso-

me
1 Asymptotic 17

Mutation 1 Signaling 7 Habituation 1 Time 15

Fig 4.13 Topic Taxonomy

106

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝐶𝐶) =
18 ∗ 10 + 15 ∗ 5 + 12 ∗ 4 + 13 ∗ 1 + 14 ∗ 3 + 7 ∗ 1

√1127 ∗ √152202

=
365

33.57 ∗ 12.32
= 0.882

The relevancy value of Networking category with the document is 0.714. There are no

common keywords between the document and other two categories. So for them, the

relevancy value is 0. Thus, Networking is selected as the document category. If the

document is relevant, then link extractor extracts all the out-going links (references)

as shown in Table 4.7.

Now, the link filter filters the links by referring the ignore list. It forwards all the

extracted links to link priority analyzer except link number 15 due to an image link

(as shown in Table 4.7). The link Priority Analyzer finds priority of extracted

unvisited URLs by computing the Jaccard coefficient similarity score between the

downloaded document and title of the unvisited documents/URLs. The Jaccard

similarity score is also shown in Table 4.7.

The top 10 ranked unvisited URLs are forwarded to priority queue for further

crawling and rest of the links are saved to yet to be crawl temporary database

Now, for illustrating the working of Missing Document Finder Module, let’s take

reference or link number 12 (as shown in Table 4.7).

Table 4.6 Frequency of Keyword

Keywords Frequency in category Frequency in paper

Neural 13 0

Neuron 9 0

Genetic 18 10

Crossover 13 0

Defuzzification 15 5

Expert 12 4

Mutation 3 1

Learning 2 3

Chromosome 1 0

Habituation 1 1

107

When this reference goes for further crawling, then page downloader is not able to

download its pdf (as shown in Fig 4.14 (a)) and link is forwarded to Missing

Table 4.7 Extracted Link with their Similarity Score
 Reference Jaccard

Similarity
Score

1 L. G. Roberts, Β. D. Wessler, "Computer network development to
achieve resource sharing", Proc. SJCC, pp. 543-549, 1970.

0.719

2 L. Pouzin, "Presentation and major design aspects of the CYCLADES
computer network", Proc. 3rd ACM-IEEE Commun Simp., pp. 80-87,
1973-Nov.

0.689

3 J. H. McFayden, "Systems network architecture: An overview", IBM
Syst. J., vol. 15, no. 1, pp. 4-23, 1976.

1.44

4 G. E. Conant, S. Wecker, "DNA An Architecture for heterogeneous
computer networks", Proc. ICCC, pp. 618-625, 1976.

1.063

5 H. Zimmermann, "High level protocols standardization: Technical and
politica! issues", Proc. ICCC, pp. 373-376, 1976-Aug.

0.751

6 "ISO/TC97/SC16", Provisional model of open systems architecture,
Mar. 1978.

0.902

7 "ISO/TC97/SC16", Reference model of open systems interconnection,
June 1979.

0.555

8 H. Zimmermann, N. Naffah, "On open systems architecture", Proc.
ICCC, pp. 669-674, 1978-Sept.

0.817

9 H. V. Bertine, "Physical level protocols," this issue pp. 433-444. 0.822

10 H. C. Folts, "Procedures for circuit-switched service in synchronous
public data networks," and "X.25 transaction-oriented features-
Datagram and fast select," this issue, pp. 489-496.

0.515

11 J. W. Conard, "Character oriented data link control protocols," this
issue, pp. 445-454.

0.766

12 Vic DiCiccio, Carl A. Sunshine, James A. Field, Eric G. Manning D.
E. Carlson, "Alternatives for interconnection of public packet
switching data networks," Published in Proceeding SIGCOMM '79
Proceedings of the sixth symposium on Data communications Pages
120-125.

0.615

13 "IS 4335",High level data link control-elements of procedure, 1977. 0

14 "X25", Orange Book, vol. VIII-2, pp. 70-108, 197 0

15 http://media.techtarget.com/digitalguide/images/Misc/osi.gif

16 "ISO/TC97/SC16/N23",Proposal for a standard virtual terminal
protocol, Feb. 1978.

0.782

17 "EEC/WGS/165", Data entry virtual terminal protocol for EURONET. 0.766

18 "DP 6429", Extended control characters for I/O imaging devices. 0

19 J. Day, "Terminal protocols”, this issue, pp. 585-593. 0.850

108

Document Finder Module for forming different combination of queries using title and

author’s name on different search engine.

While hitting the Q2 type query i.e. document title in quoted form, then a search result

list (as shown in 4.14 (b)) is returned by search engine and is forwarded to priority

queue for further processing after applying paper filter. From this list, pdf downloader

is able to download the pdf of respective document as shown in Fig 4.14 (c).

(c)

Fig 4.14 (a) When pdf downloader is not able to download pdf, (b) list of search result while
hitting the Q2 type query i.e. Quoted Title of document and, (c) when pdf downloader
downloads the document by getting the link through missing Document Finder Module

(b)

(a)

109

Here, it can be concluded that by using meta data information for forming different

types of queries on different search engine, the proposed digital library focused crawler

proves to get more efficient and effective results.

4.9 SUMMARY

The proposed approach discussed in this chapter is summarized in Table 4.8. It is

observed that proposed digital library focused crawler optimizes the crawl process of

the digital library search system.

The next chapter describes in detail proposed indexing technique i.e. the technique

developed for the organization of documents at the backend in order to retrieve the

results efficiently and effectively on the front end of the search engine.

Table 4.8 Summary of Proposed System
Parameters Focused Crawler

Module

Optimization

Crawler

Metric Crawling topic specific papers and find the missing documents information.

Mined Web

Resource

Web graph, various data structures and Search engines like Google, Google

scholar.

Type of Mining Web Structure and Web Content

Advantages • The papers are categorized while crawling thus provide more precise and

relevant results to the user.

• The relevant papers which previously were not appearing in the results are

made to appear.

110

110

111

Chapter V

MULTI-LEVEL INDEXING TO INDEX DIGITAL
DOCUMENTS

5.1 GENERAL

With the huge corpus of digital information present on the WWW, the need to efficiently

find specific piece of digital information as per user interest becomes crucial. A digital

library search engine is an information retrieval system designed to find the online

academic documents or article stored on WWW as per the user interest. In digital

libraries, the index structure has been considered as the important component to support

fast searching. Indexing [73, 74] is an assistive technology mechanism which helps to

optimize the speed of digital library search engine in finding the relevant documents

against the user query. Indices are used to provide a framework for researchers to locate

the documents quickly and efficiently. In this chapter, a multi-level index structure is

proposed.

5.2 PROPOSED APPROACH OF INDEXING

The proposed system provides a sequential as well as direct access of documents stored

in the index. Also, the documents are clustered on the basis of category, which further

provides more refined results to the user query. The architecture of proposed system is

shown in Fig 5.1 wherein the Web Crawler (discussed in chapter IV) crawls or harvests

the digital documents from the WWW, and these crawled documents are saved in a Paper

Repository. From the Paper Repository, the documents are processed by the Similarity

Analyzer for computing the similarity between the documents. Based on these similarity

values, the Clustering Generator generates the clusters and stores these clusters into

clustering database. Then, Index Generator generates the index structure by using the

information from the paper repository (i.e. category of paper) as well as clustering

database. When a user or researcher hits a query through Search Interface, the Query

Keyword Extractor extracts the query terms and forwards them to Query Analyzer, first

extracts the category of the query by using the Topic Taxonomy and then query category

112

is searched in the primary database. Once a category match is found, then the query terms

are matched with the keywords associated with each clusters in order to get the clusters

of documents. After matched cluster is found, the list of documents under matched

cluster is retrieved and sent to the dynamic ranking component for ranking the retrieved

results as per user query. Finally, a ranked list of documents is returned to the user

through search interface.

The detailed working of the component modules is described in the following sections.

5.3 WEB CRAWLER

This module is responsible to crawl all the digital documents from the WWW and stored

them into the paper repository. Before storing the digital documents, pre-processing of

the digital documents is done and saved in the form of keywords, title, author, references,

Fig 5.1 Architecture of Proposed Search System

Query Processing Engine

Pre-Processing Module

Query Results

Final
Ranked
Results

Query

Query term

Terms

Query
Category

Term +
Category

Matched
Cluster

User

Web Crawler

Clustering Tool

Similarity

Paper
Repository

Clustering Database

Index Generator

Query Analyzer

Dynamic Ranking

Search Interface

Index

Query keyword Extractor

Topic
Taxonomy

WWW

User Logs Ranking
Query

Research Papers

113

their category etc. The detail working of this component has been described in Chapter

IV.

5.4 PRE-PROCESSING MODULE

The pre-processing module is responsible to extract relevant information from documents

so as to solve in the index. This module (as shown in Fig. 5.1) contains further two

modules Similarity Analyzer and Cluster Generator which are described below in detail.

5.4.1 Similarity Analyzer

This module takes the documents from the paper repository as an input and computes the

similarity between them. The computation of similarity between the documents means:

which keywords or terms appear in the document, at what location and they appear in

(i.e. frequency of occurrence)? There are lots of approaches that have been used to

calculate the similarity between two publications, but here the proposed system takes the

weight of the keywords present in the document into consideration for computing the

similarity.

Similarity between the publication P and publication Q can be measured by computing

cosine similarity measure [128, 130] which is denoted by Sim (P, Q). The cosine

similarity measure is denoted as shown below:

 Sim(𝑃𝑃,𝑄𝑄) = cosθ =
P. Q

�P ��‖Q����
=

∑ 𝑊𝑊p,i × Wq,i
n
i=1

�∑ 𝑊𝑊𝑝𝑝 ,𝑖𝑖
2n

i=1 × �∑ 𝑊𝑊𝑞𝑞 ,𝑖𝑖
2n

i=1

 (5.1)

where 𝑊𝑊𝑝𝑝 ,𝑖𝑖 and 𝑊𝑊𝑞𝑞 ,𝑖𝑖 denote the weight of term 𝑡𝑡𝑖𝑖 in the publication P and Q respectively.

The weight i.e. 𝑊𝑊𝑡𝑡 of a term is computed as:

 𝑊𝑊𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 (5.2)

where 𝑡𝑡𝑡𝑡𝑡𝑡 denotes the term frequency and 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 denotes the inverse document frequency.

𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡are further described as:

Term- Frequency: In information retrieval, term frequency is defined as the raw count of

a term i.e. the number of times a term appears in a document. Term frequency (tf) [137]

of any term t is denoted as:

114

 𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (5.3)

Inverse Document Frequency: It is defined to measure how important a term is. While

computing term frequency, all terms are considered equally important. However it is

known that certain terms, such as "is", "of", and "that", may appear a lot of times but

have little importance. Thus, we need to weight down the frequent terms while scaling up

the rare ones. The inverse document frequency (idf) [137] of any term t is computed as:

 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (5.4)

5.4.2 Cluster Generator

This component is used to find out the clusters of documents which are similar in nature.

The clustering of publications is done based on the category as well as similarity between

them. The algorithm works as follows: initially, all publications are assumed to be

individual i.e. not belonging to any cluster. First, the publications having the similar

category are extracted from the paper repository, and then, the similarity between all

these similar documents is calculated by using (5.1). If the similarity measure between

the publications is greater or equal to the threshold value (ɽ), then the papers are placed

into the same cluster or group. This process is repeated until all publications belong to

any one of the clusters. Finally, the returned clusters are stored in the Clustering

Database. The algorithm for computing the similarity and generating the clusters is

outlined in Fig 5.2.

5.4.3 Illustrative Example:

Consider four documents with the fragment content as given below:

𝑑𝑑1=A computer system is a basic functional system including hardware and software

which are required to make it functional for the user.

𝑑𝑑2=A system software is a type of computer program which is designed to run a

computer’s hardware and application programs. The operating system is example of

system software.

115

𝑑𝑑3= A computer system receives user input, process data and with this processed data,

create information for storage and output.

𝑑𝑑4= Operating system is the system software which is designed to provide a platform to

other software. It co-ordinates between devices and schedules multiple tasks as per

priority.

The set of terms with their term frequencies in respective documents is depicted in Table

5.1.

Let ∑𝐹𝐹𝑑𝑑1 = 12 , ∑𝐹𝐹𝑑𝑑2 = 16 ,∑𝐹𝐹𝑑𝑑3 = 13 and ∑𝐹𝐹𝑑𝑑4 = 14 i.e. the number of terms in 𝑑𝑑1,𝑑𝑑2,

𝑑𝑑3and 𝑑𝑑4 respectively.

Let us calculate the term frequency (tf) for the term “system” using (5.3).

Algorithm: Cluster (D)
Input: set of n documents with similar category D ={d1,d2,d3....,dn}.
Output: k clusters of documents , C ={c1,c2,c3,......,ck}.
{
STEP1: Convert all the documents in the vector form.
STEP2: for (i=1, i≤ 𝑛𝑛, i++)
 {
 Flag(di)= false
 C={∅}
 Ci={di}
 }
 For (i=1, i≤ 𝑛𝑛,i++)
 {
 Take document di
 For (j=2,j≤ 𝑛𝑛,j++)
 {
 Compute Sim(di, dj)
 }
 }
STEP3: If Sim(di , dj) ≥ threshold (TH)
 {
 Ci = Ci∪{di , dj}
 Flag(di) = Flag (dj) = true
 If Ci ≠ ϕ then
 C= C ∪ Ci
}
STEP4: Extract 𝑑𝑑𝑖𝑖 or 𝑑𝑑𝑗𝑗 on their similarity basis and assign a cluster.
}

Fig 5.2 Algorithm for Clustering the Documents

116

In d1:

𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2

12
= 0.166

Let us assume that there are in total 10,000 documents crawled by the crawler and in only

100 documents the term system is present. The inverse document frequency for the same

can be calculated using (5.4).

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = log
10,000

100
= 2

Therefore, by using (5.2), the weight of the term system in d1 can be calculated as below:

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑1 = 0.166 ∗ 2 = 0.332

Similarly, the TF and IDF for the term system in document d2 can be calculated.

𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2

16
= 0.125

 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = log
10,000

100
= 2

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑2 = 0.1251 ∗ 2 = 0.250

In 𝑑𝑑3:

𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

13
= 0.076

Table5.1 Term Frequencies and their Weights

Terms Term Frequencies in Documents Weight of Terms in Documents
Fd1 Fd2 Fd3 Fd4 Wt in d1 Wt in d2 Wt in d3 Wt in

d4
System 2 2 1 1 0.332 0.250 0.153 0.142
Computer 1 2 1 0 0.02 0.04 0.01 0
Hardware 1 1 0 0 0.02 0.01 0 0
Software 1 2 0 2 0.02 0.04 0 0.04
User 1 0 1 0 0.02 0 0.01 0
Information 0 0 1 0 0 0 0.01 0
Storage 0 0 1 0 0 0 0.01 0
Output 0 0 1 0 0 0 0.01 0
Input 0 0 1 0 0 0 0.01 0
Data 0 0 2 0 0 0 0.04 0
Program 0 2 0 0 0 0.04 0 0
Design 0 1 0 1 0 0.01 0 0.02
Operating 0 1 0 1 0 0.01 0 0.02

117

 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = log
10,000

100
= 2

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑3 = 0.076 ∗ 2 = 0.153

In 𝑑𝑑4:

𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

14
= 0.071

 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = log
10,000

100
= 2

 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑4 = 0.071 ∗ 2 = 0.142

Similarly, weight for all the terms can be calculated as shown in Table 5.1.

Now, the similarity analyzer computes the similarity between the documents by using

(5.1) as shown in Table 5.2.

In this system, after analyzing the similarity values between the documents, the average

value of the similarity values is calculated and is considered as a threshold value. Here, in

this case, threshold value is assumed as 0.5 or 50%.

Since, 0.79 > 0.50 (i.e. which is greater than the threshold value). Hence, it can be

concluded that documents d1 and d4 have been allotted to the same cluster.

5.5 INDEX GENERATOR

The index generator generates the index by using the information from the clustering

database which consists of the cluster of similar category documents. The index structure

formed here is the multilevel index structure.

5.5.1 Index Structure

In this proposed system, two types of indexes are generated i.e. primary index and sec-

Table 5.2. Similarity Matrix

 d1 d2 d3 d4
d1 1
d2 0.290 1
d3 0.158 0.799 1
d4 0.730 0.228 0.199 1

118

-ondary index (as shown in Fig 5.3). Primary index consists of the term ID, term and their

corresponding categories. Secondary index consists of the multi-level index structure. In

this type of index structure, indices are constructed in levels. Multilevel index makes the

search process fast and more efficient as compared to other types of index structures. In

secondary multi-level index, the first level of index is category based search which

consists of the category ID (C_id) and category, second level consist of the category ID,

G_keywords i.e. keywords associated with each clusters and cluster ID (G_id) of the

corresponding category of the terms. The last level consists of the corresponding

document IDs of the documents present in that cluster.

Fig 5.3 Multi-Level Index Structure

5.5.2 Illustrative Example

Let us suppose, user fires the query “measure algorithm complexity”. Here, first, the

query processing engine analyses the query and finds the category of query term. In this

case (as shown in Fig 5.3), the category comes out to be analysis & design of algorithm

i.e. C_id -->C3. After that, this category will be searched in the secondary index; if

match appears, then this category ID is now searched in the next level of secondary index

for cluster based search. As in this case, system has already found out the category of the

query i.e C3, next system finds the clusters by using cluster based search. At this level,

C_id G_id Addr
C1 G1
C1 G2
C1 G3

Secondary Index

Cluster based Search

G_id Doc_id
G1 D1,D2,D10
G2 D4,D6,D8
G3 D76,D31,D38
G4

G8 D14,D32,D45

G10 D13,d56

C_id Category Addr
C1 Soft

Computing

C2 Networking
C3 Analysis &

Design of
algorithm

Keyword
id

Keyword C_id

1 Algorithm C1,C3
2 Network C2,

C4
3

 C_id G_id Addr
C3 G8
C3 G9
C3 G10

Keyword based Search

Primary Index

Category based Search

119

the query terms are matched with keywords of all clusters of corresponding category ID.

If the match found, then corresponding cluster ID is retrieved and the documents

contained in that cluster ID will be retrieved as the final result set of the search process.

Thus, in this case query keywords such as measure, algorithm, and complexity are

compared with keywords of all clusters corresponding to category C3. After comparison,

the clusters that comes out to be G8 and thus, documents corresponding to this clusters

are D14, D32 and D45.

Thus, final ordering of retrieval process is as:

C_id  C3  G_id  G8  D14, D32, D45

If, in any case, the category of the query term is not found in the topic taxonomy

database, then primary index structure is used for performing the normal keyword-based

search.

5.5.3 Data Structures

Data structures play an important role in the task of information accumulation. The

existing data structures employed by indexing process have been updated for the sake of

better interpretability, efficiency and effectiveness. Following are the modified data

structures, which are used in the crawling & indexing process of the proposed Digital

Library Search system.

The schema for these data structures is shown in Fig. 5.4.

Fig 5.4 Data Structures for Crawling and Indexing Process

C_ID G_ID G_Keywords Doc_ID

keyword Doc_ID Freq

URL Doc_ID C_ID Category Ref_URL

Keyword Doc_ID Freq In-Links Out-Links Rank Download_Score Bookmark_CC

Keyword_Store

Paper_Repository
Link Store

Index

Clustering_Database

120

It may be noted that Paper Repository is basically a combination of two sub-schemas:

Link store and Keyword store. The four data structures are described in detail as follows.

a) Paper_Repository: This repository contains entire information about all downloaded

papers. It employs two data structures to store this information: the link store and

keyword store. The link store contains structural summary of the citation graph, while

keyword store contains information regarding the content of papers/documents. The

description of various fields in these two schemas is described in Table 5.3.

(b) Clustering Database: Clustering Database keeps the record of the category and the

clusters of documents which belong to that particular category. The fields in the

clustering database indicate the information as shown in Table 5.4.

(c) Index: Index contains information about all the keywords (terms) present in the

downloaded papers. Here, a keyword means something different from a token. A

Table 5.3 Description of Paper Repository

Field Description

URL Name of the Reference (say ri), which has been fetched and downloaded from the
web.

Ref_URL Name of the references/URLs corresponding to out linked pages i.e. references of
the fetched paper.

C_ID The Category ID of the paper, in which the specified paper appears.

Keyword Name of the keywords corresponding to keyword_ID.

Doc_ID When parser tokenizes a retrieved archive, a set of token or keyword (possible
strings of characters) are produced. Punctuations are usually thrown out in this
process. A token is stored in this field with a unique serial number i.e. ID.

Frequency It is the number of occurrences of the specified keyword in the category.

Table 5.4 Description of Clustering _Database

Field Description

C_ID The Category ID of the paper, in which the specified paper appears.

G_ID The Cluster ID of the paper, in which the specified paper appears.

G_Keywords The cluster keywords are the keywords associated with each cluster.

Doc_ID The Document ID of the paper, in which the specified keyword appears.

121

normalized token after undergoing linguistic preprocessing (stemming, lemmatization

processes etc.) is called as keyword. Index stores all the paper keywords alphabetically.

The fields in the index indicate the information as shown in Table 5.5.

The next section describes the working of query processing engine, developed in this

work, towards relevant document retrieval by taking into consideration the category of

user queries.

5.6 QUERY PROCESSING ENGINE

This component takes the user query as an input and processes it for finding the desired

results. The query processing engine performs the tokenization, stemming and

lemmatization on the user query and finds the category of query term by comparing the

keywords of query terms with the keywords of category in topic taxonomy. For

computing the similarity, the cosine similarity measure [128, 130] is used by using (5.1).

The matched query category and term are in turn searched in the index structure, and the

clusters of documents related to the query are retrieved. The cluster of documents is

Table 5.5 Description of Index

Field Description

Keyword A normalized token in a paper.

Doc_ID The Document ID of the paper, in which the specified keyword appears.

In-Links The number of back links of the paper derived from the Link_Store repository.

Out-Links The number of forward links of the paper derived from the Link_Store repository.

Frequency It is the number of occurrences of the specified keyword in the category.

Download
Score

It is an integer number indicating the number of times users downloaded the paper.
This information is derived from the search engine logs.

Rank It is a score provided to a paper which is generally based upon its link information
e.g. Google's PageRank. The rank may also be provided on other parameters of the
paper such as its content, click count etc.

Bookmark_CC It is a score provided to a paper which is generally based upon its link and content
information.

122

extracted on the basis of their category and their similarity with the query term. This

component is further divided into sub-components as:

1. Query Keyword Extractor

2. Query Analyzer

3. Dynamic Ranking

5.6.1 Query Keyword Extractor

This component takes the submitted user query as an input, extracts the query keywords

and forwards them to query analyzer for further processing.

5.6.2 Query Analyzer

Query analyzer analyses the query and performs tokenization, lemmatization and

stemming on the submitted query to find out the category of the terms from the topic

taxonomy. Both the query term and its category are searched in the index structure. First,

the clusters of documents are extracted on the basis of their category. If, in any case, the

category of the query is not present in the topic taxonomy database, then the normal

keyword-based search is performed which returns the documents related to the user query

in search operation, and the index structure for this is the general inverted index

containing the terms and their document IDs i.e. the primary index.

For finding the category of the query, the system compares the query terms with the

keywords of categories in topic taxonomy. For computing the similarity, cosine similarity

measure [128, 130] is used as illustrated in (5.1).

5.6.3 Dynamic Ranking

The query processing engine retrieves the digital library search result list in the form of

clusters from the index against the user query. Now, in order to rank the result list so that

most relevant results get appear at the top of list, dynamic ranking is computed. The

detailed description of this module is described in next chapter.

123

5.6.4 Illustrative Example

Suppose a user fires a query “Mutation and crossover operator” on the system. Query is

processed by applying tokenization, stop word removal and stemming techniques and

resultant keywords retrieved are mutation, crossover and operator.

Now, the query analyzer decides the category respective to the query by comparing its

keywords with keywords of the categories. The comparison of these keywords with

keywords of existing categories is done to decide the main category. Table 5.6 contains

the keywords of main categories.

Table 5.7 shows the cosine similarity values obtained after comparing the query

keywords with the keywords of main categories.

After comparison, resultant category is Soft Computing. Now move further in the main

category to decide the sub-category, the keywords of sub-categories of soft computing

Table 5.6 Keywords in Main Categories

Keywords of Main Categories
Networking Soft Computing Analysis & Design of Algorithm

Keywords Frequency Keywords Frequency Keywords Frequency
Switch 15 Neural 13 Algorithm 27
Node 12 Fuzzy 23 Complexity 22
Protocol 14 Genetic 18 Greedy 16
Wireless 11 Inference 13 NP-Hard 15
Multiplex 9 Defuzzification 15 NP-Complete 15
SNMP 10 Back-

12 Sort 12

TCP/IP 8 Mutation 13 Search 17
OSI 15 Regression 14 Symptotic 15
Layer 21 Chromosome 8 Asymptotic 17
Route 7 Simulate 7 Knapsack 15

Table 5.7 Cosine Similarity Values

Category Cosine similarity value
Networking 0
Soft Computing 0.23
Analysis and Design of Algorithm 0

124

are shown in Table 5.8.

Similarity values which are obtained by comparing query keywords with the sub-

categories of soft computing using cosine similarity are shown in Table 5.9.

It can be observed from the comparison that the most relevant category is Genetic

Algorithms.

Next, the query processing module processes the query along with the category and

retrieves the matched cluster of documents as per the user query.

Let us consider some set of documents (denoted by A, B, C, D……..,J) the under same

category but grouped into two different clusters or groups as per their similarity measures

as depicted in Table 5.10. Let user fires a query as:

Q: Concept of page ranking algorithms in web mining.

First, the query processing engine extracts the keywords from the query which are listed

below:

Concept, page, ranking, algorithms, web, mining

Table 5.8 Keywords of Sub-Category

Keywords of Sub-category
Neural Network Fuzzy Logic Genetic Algorithms

Keywords Frequency Keywords Frequency Keywords Frequency
Neural 13 Fuzzy 23 Genetic 18
Learning 14 Inference 13 Mutation 13
Backpropagation 12 Defuzzification 15 Crossover 10
ADALINE 7 Uncertainty 8 Chromosome 8
Activation 5 Expert 5 Fitness 12
Neuron 9 Logic 18 GA 8
SVM 7 Membership 13 Selection 8
Habituation 4 Controller 8 Reproduction 7

Table 5.9 Cosine Similarity Values

Category Cosine similarity value
Neural Network 0

Fuzzy Logic 0
Genetic Algorithms 0.45

125

Now, the similarity score between the query terms and the cluster keywords is computed

using (4.1) as show in Table 5.10.

After analyzing the Table 5.10 data, it is concluded that, the cluster I is the matched for

forming the result set of the query fired. Now, the papers in the matched cluster will be

rearranged according to dynamic rank which is discussed in next Chapter.

5.7 SUMMARY

A multi-level indexing method is proposed which maintains the primary and secondary

index of the document corpus. Through primary index, general keyword based search is

performed to retrieve the results whereas through secondary index, results are retrieved

based on category and cluster. By using the multi-level approach, an efficient index

structure is maintained. A comparison summary of this proposed method with existing

methods is also described in Table 5.11.

The next chapter describes in detail the proposed ranking technique, the technique

developed for front end of the digital library search engine for result representation.

Table 5.10 Similarity Value between Clusters and Query Terms

Cluster
No.

S.No Paper Title Keywords Similarity

I A Page Ranking Algorithms for Web Mining web, mining, rank,
algorithms, page,
ranking, structure,
link, categories,
content, weighted,
algorithm

0.56

B Comparative study of Page Ranking
Algorithms for Web Mining

C A Survey- Link Algorithm for Web Mining

D Analysis of Various Web Page Ranking
Algorithms in Web Structure Mining

E Application of Page Ranking Algorithm in
Web Mining

F Web Mining Research: A Survey

II G Web Crawler Architecture Web, crawler,
architecture,
application,
crawling, historical,
background,
foundation, key,
future, directions,
search

0.21

H How search engines work and a web crawler
application

I Mercator: A scalable, extensible Web crawler

J Web Crawler: Extracting the Web Data

126

Table 5.11 Comparison of Indexing Techniques

Technique

Measures

Indexing
Technique
using
Hierarchical
Clustering
[91]

Trie
Structure
based
Indexing [94]

Context
based
Indexing
using
Ontology
[93]

Sentence
Context
Ontology based
Indexing [96]

Proposed
Indexing
Mechanism

Main
Technique
Used

Agglomerative
Hierarchical
clustering
algorithm is
used by the
system in
order to keep
the
information
based upon
similarity
measure and
fuzzy string
matching.

This method
keeps the
context related
information
integrated
with the
frequency of
the keyword.
The structure
is
implemented
using Trie.

An index is
built on the
basis of
context of the
document
rather than on
the terms
basis using
ontology.

A linked data
application is
developed
which provides
intelligent
information
services using
the extracted
information
from research
articles using
Citation Context
Analysis,
Conditional
Probabilistic
Models and
Semantic Web
for modeling
Scientific
Discourse

The system
provides a
sequential as
well as direct
access of
documents
stored in the
index. Also,
the documents
are clustered
on the basis of
category,
which further
provides more
refined results
to the user
query.

Type of
Indexing

Agglomerative
Hierarchical
clustering
based
indexing

Contextual
based
indexing

Context
based
indexing
using
Ontology

Citation
Indexing

Category and
Clustering
based Indexing

Data
Structure
Used

Inverted Index Trie type tree
structure

Simple
inverted
index

Graph based
Structure

Multi-level
Inverted Index

Advantage The related
documents are
grouped in the
same cluster
so that
searching of
documents
becomes more
efficient in
terms of time
complexity.

It helps to
optimize the
speed and
performance
in finding
relevant
documents for
a search
query.

Fast access to
documents.

Classification of
the citations.
Evaluation of
the citation
analysis based
on the different
contexts of
citations to the
cited works and
the author
timeline.

Multi-level
index structure
is used in
which first
documents are
classified
based on
category and
then grouped
into cluster
based on
similarity.

Limitations The
complexity of
this method is
O(n3) which
makes it very
slow for large
databases.

More space is
required to
store trie
structure for
large dataset.

No
consideration
of ambiguity
if the user is
not aware of
the context.

A larger training
dataset is
required with a
focus on
achieving a
higher accuracy,

More space is
required.

127

Chapter VI

SEARCH RESULTS REPRESENTATION USING
CLUSTERING AND RANKING

6.1 GENERAL

Now a days’, due to exponential growth of digital documents in digital libraries, the task

performance of extracting and ranking the relevant documents as per user query is

degrading gradually. Hence, there is a need to employ some methods or techniques to

find, extract, filter and order the desired information. Ranking mechanism plays an

important role in digital libraries as it enables the user to find the desired document easily

and efficiently. Various ranking algorithms have been proposed in the literature [103,

104, 107, 108, 112, 113, 115, 116] based on different measures like number of citations

to a research paper, content of paper, impact factor of publication, venue, year of

publishing, bookmarks etc. But, these existing ranking algorithms (as discussed in

Chapter III) sometimes provide irrelevant results due to certain shortcomings, which

indicate a scope for further improvement in ranking mechanisms. In this paper, a ranking

mechanism is proposed that carries out static as well as dynamic ranking to rank the

documents in digital libraries. The proposed algorithm considers the citations of the

paper, bookmarks of the paper, user’s feedback and clustering process for ranking. This

approach is explained in detail, which uses Web Content, Web Structure as well as Web

Usage Mining to display an ordered search result list in cluster form in accordance with

the user interest.

6.2 PROPOSED APPROACH FOR RANKING DOCUMENTS

The proposed approach considers the bookmarks and citations of the papers as an input.

Bookmarks are the set of keywords that describe the complete content of the paper and

citations are the references of the paper that describes the links, to the paper (backlinks).

Here, a list of digital library search results is returned to the user as a hierarchy of clusters

relevant to user query. Moreover, the papers within the each cluster are ranked as per

their relevancy. This type of search result organization helps the user to limit his search

128

within the cluster having high query-cluster similarity score instead of searching in a long

list of results.

The entire process (outlined in Fig. 6.1) from giving the user query to getting the results

can be explained by the following steps:

• Similarity Matrix and Clusters Generation

• Static Rank Calculation

• Dynamic Rank Calculation

These steps have been explained in detailed in subsequent sections.

Fig 6.1 Workflow of the System

Displayed to the user

Similarity Matrix

Frontend (Query Processing)

Match the query keywords
with the cluster keywords

Matched cluster

Backend (Clustering & Static Rank Computation)

Hits a query
Extract query keywords
by query extractor

Compute the dynamic rank of all the
papers within the matched cluster.

Finally, ranked the papers according to
static rank and dynamic rank values
within the matched clusters

Get the Data from
Paper Repository

Calculate the similarity among the
papers by Similarity Analyzer

Generate the Clusters Compute the Static
Rank of all the papers.

Save all the papers in their respective clusters with
their static rank values in Paper Cluster DB.

Paper Repository
(Crawled Papers)

Generate the Index

129

6.3 SIMILARITY MATRIX AND CLUSTERS GENERATION

In this step, the similarity between the publications is computed by considering the

weight of the keywords or terms present in the documents. For comparison, cosine

similarity score is used. After computing the similarity values, the method generates the

groups of the similar publications, called as clusters. Finally, the returned clusters are

stored in the Paper Cluster Database. The detailed working of this step has already been

described in Chapter V.

6.4 STATIC RANK CALCULATION

The proposed clustering and ranking approach [166] considers three parameters named as

Download Score, PageRank and Bookmark based Citation Count for computing the static

rank of each paper or document in the cluster. The final static rank of each paper is

computed by using (6.1) is stored in the clustering database along with the paper.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐵𝐵𝐵𝐵𝐵𝐵_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (6.1)

The papers within each cluster are rearranged on the basis of this static weight.

These three parameters are described in details as below:

6.4.1 Download Score

This parameter extracts the number of downloads of any paper (from user logs or search

log) to compute the download score for each paper in the cluster. Download score of

paper P is calculated by using (6.2):

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (6.2)

Here, maximum downloads represents the number of download of any paper with highest

number.

The search logs [162] constructed by the search engines act as a good resource for

recording users' search histories and the necessary information about users’ browsing

behavior over the search results. An entry in the log records every single access made by

users corresponding to their search queries. Thus, a log mainly contains users’ queries

130

and corresponding visited documents or URLs, as well as other information about their

browsing activities. The click-through or download patterns stored in the logs can capture

derivative traces, which can further be utilized to characterize the users and their

interests.

A typical search log [162] can be regarded as a file consisting of a series of requests,

wherein a request consists of a number of fields. The format of search log is shown in Fig

6.2.

The important fields are outlined below along with their description:

• User ID: the IP address of the client's computer. This is sometimes also an

anonymous user code address assigned by the search engine server.

• Date: The date of the interaction as recorded by the search engine server.

• Time: The time of the interaction as recorded by the search engine server.

• Query: The query terms as entered by the user.

• Clicked URL: The documents or URLs clicked or downloaded from the search

result list by users.

During the searching phase of the proposed system, whenever a user download any

document, then a count is generated corresponding to that document which represents the

number of times that document is downloaded by the users. This count is taken as an

input to compute the download score.

A sample fragment of search log used by proposed digital library search system is shown

in Appendix B.2.

6.4.2 PageRank

Page rank of the paper is calculated by using the PageRank Algorithm [10, 36, 106]. This

method computes the rank of a paper by considering the number of citations (i.e.

UserID Date Time Query User_Agent Clicked URL

Fig 6.2 Format of Search log

131

backlinks) of the paper. This algorithm states that if a link comes from an important paper

then this link is given higher weightage than those which are coming from non-important

papers. These links are called as backlinks. The PageRank of a paper P can be calculated

as:

 PR(𝑃𝑃) = (1-d) +d �
PR(𝑄𝑄)

Nq𝑄𝑄 € 𝐵𝐵(𝑃𝑃)

 (6.3)

where P represents a paper, B(P) is the set of papers that point to P, PR (P) and PR (Q)

are rank scores of papers P and Q respectively, 𝑁𝑁𝑄𝑄 denotes the number of outgoing links

of paper Q, and d is a normalization factor usually set to 0.85.

Illustrative Example: Let us take an example as shown in Fig 6.3 in order to explain the

working of PageRank algorithm. Here, consider six papers denoted by A, B, C, D, E and

F. The PageRanks for papers can be calculated by using (6.3):

 𝑃𝑃𝑃𝑃(𝐴𝐴) = (1 − 𝑑𝑑) + 𝑑𝑑(0) (6.3𝑎𝑎)

𝑃𝑃𝑃𝑃(𝐵𝐵) = (1 − 𝑑𝑑) + 𝑑𝑑(0) (6.3𝑏𝑏)

𝑃𝑃𝑃𝑃(𝐶𝐶) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐴𝐴)

2
+
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
+
𝑃𝑃𝑃𝑃(𝐹𝐹)

1
� (6.3𝑐𝑐)

𝑃𝑃𝑃𝑃(𝐷𝐷) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐶𝐶)

1
 +

𝑃𝑃𝑃𝑃(𝐸𝐸)
1

� (6.3𝑑𝑑)

𝑃𝑃𝑃𝑃(𝐸𝐸) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
� (6.3𝑒𝑒)

𝑃𝑃𝑃𝑃(𝐹𝐹) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝐴𝐴)

2
+
𝑃𝑃𝑃𝑃(𝐵𝐵)

3
� (6.3𝑓𝑓)

Fig 6.3 Citation Graph

A

C

E

F

D B

132

Let us assume the initial PageRank as 1 and d is set to 0.85. The rank values of papers are

iteratively substituted in above page rank equations to find the final values until the page

ranks get converged as shown in Table 6.1.

The final page ranks of papers represent the following ordering:

PR (D) > PR (C) >PR (F) > PR (E) > (PR (A), PR (B))

6.4.3 Bookmark Based Citation Count Rank

This method takes the content of the paper which cited the publication or paper along

with the number of citations as an input. In this algorithm [168], the relevancy score

between the main paper and the paper which cited the main paper is computed on the

basis of their content. To check the relevancy between papers, it uses the bookmarks

instead of comparing the whole content of the papers. For comparison, cosine similarity

measure [128, 130] is used as given in (4.1).

Bookmark based Citation Count i.e. BCC_ Rank of any paper P is computed as:

 𝐵𝐵𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑃𝑃) =
∑ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝑄𝑄)𝑄𝑄∈𝐵𝐵(𝑃𝑃)

|𝐵𝐵(𝑃𝑃)| (6.4)

where B(P) is the set of all papers which cited paper P. This rank calculates the score on

the basis of ratio of total similarity score between main paper and the backlinked paper to

the total number of back linked papers.

• Illustration of Proposed Algorithm

An example is taken to explain the bookmark based citation count ranking. The citation

graph of existing papers in the database is shown in Fig 6.4. Assume that a paper B is

selected to compute the BCC rank.

Table 6.1 Iteration Method for PageRank

Iterations PR (A) PR (B) PR (C) PR (D) PR (E) PR (F)
0 1 1 1 1 1 1
1 0.15 0.15 1.106 1.090 0.192 0.256
2 0.15 0.15 0.474 0.552 0.192 0.256
3 0.15 0.15 0.474 0.552 0.192 0.256

133

First, the system extracts the bookmarks of the paper B as shown in Table 6.2. From

these bookmarks, keyword extraction module selects the important keywords on the basis

of their occurrence after applying stop word removal and stemming.

The top ten selected keywords along with their frequency are shown in Table 6.3.

Now, to calculate the BCC rank of the selected paper B, system extracts the research

papers having citations to it. As shown in Graph, Paper A and C cited the selected paper

B .Now, system extracts the top ten keywords from the bookmarks of A & C respectively

with their frequency of occurrence in each paper as shown in Table 6.3.

Table 6.2 Bookmarks of the Research Paper B

Network security: it's time to take it seriously
Introduction
Network security
Differentiating data security and network security
History of network security
Brief history of internet
Security timeline
Internet architecture and vulnerable security aspects
Ipv4 and ipv6 architectures
Attacks through the current internet protocol ipv4
Security issues of ipv6
Security in different networks
Current developments in network security
Hardware developments
Software developments
Future trends in security
Conclusion
Future scope of work
Acknowledgment
References

Fig 6.4 Citation Graph of Papers

A

B

C

D

E
F

G

134

Following calculations are done to compare these two sets of keywords by using cosine

similarity:-

 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵,𝐴𝐴) =
9 ∗ 11 + 4 ∗ 6 + 4 ∗ 5 + 3 ∗ 2 + 3 ∗ 3 + 2 ∗ 3 + 2 ∗ 3

√92 + 42 + 42 + 32 + 32 + 32 + 22 + 22 + 22 + 12 ∗ √112 + 62 + 52 + 22 + 32 + 32 + 32

 =
170

√153 × √213
 =

170
180.38

 = 0.924

Similarly, paper B is compared with paper C also.

The cosine similarity scores obtained after comparison of bookmarks of citations with

bookmarks of selected paper are shown in the Table 6.4:

The BCC rank of paper B can be calculated by using (6.4):

𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐵𝐵) =
Total Cosine Similarity Score
Total number of cited paper

 =
0.924 + 0.497

2

 =
1.42

2
 = 0.71

The BCC rank of the paper B comes out to be 0.71. Similarly, BCC ranks of other papers

can be calculated.

Table 6.4 Cosine Similarity Values of Paper with Citation

Paper Title Cosine Similarity score

Network Security: History, Importance, and Future (A) 0.924
Network Security Attacks Solution and Analysis (C) 0.497

Table 6.3 Frequency of Keywords

Keyword of B Frequency Keyword of A Frequency Keyword of C Frequency
Security 9 Security 11 Security 2
Network 4 Network 6 Basic 2
Internet 4 Internet 5 Attacks 2
Architecture 3 History 3 Network 1
IPv4 3 IPv4 3 Tools 1
Developments 3 IPv6 3 Techniques 1
History 2 Architecture 2 Types 1
IPv6 2 Attacks 2 Tips 1
Future 2 Current 2 Introduction 1
Time 1 Protocol 2 Security 2

135

• Comparison Study

The proposed Bookmark based Citation Count Ranking (BCC) method ranks the

retrieved papers in order to organise them in an efficient and user friendly manner as

opposed to the ordered list returned by Citation Count (CC) [103] and PageRank (PR)

[10, 36, 106]. If only ranking is concerned, the proposed BCC algorithm is an iterative

algorithm but unlike CC and PR, it uses both the link structure and content of the

citations of documents and as a result, it returns relevant as well as important papers on

the top of the digital library search result list. Rather considering similarity of the papers

itself, it uses the similarity of the citations with the paper to find the rank of the

concerned paper. The comparison summary of the three ranking algorithms CC, PR and

BCC is given in Table 6.5.

Table 6.5 Comparison Study of CC,PR and BCC

Algorithms

 Measures

Citation Count (CC)
[103]

PageRank (PR) [10, 36,
106]

Bookmark Based
Citation Count (BCC)

Main
Technique
used

Web structure mining Web structure mining Web Structure Mining,
web content mining

Description Results are sorted based
on number of incoming
citations.

Papers are sorted according
to the link structure of the
papers and citations to the
paper.

Input
Parameters

Backlinks Backlinks Bookmarks, query’s
content

Working
Level

1 N* N*

Degree of
Relevancy
with Query

Does not check the
relevancy with the
query.

Does not check the
relevancy with the query.

Checks the relevancy with
the query

Different
Scanning
Options

No Scanning.

No Scanning.

Scans only the Bookmarks
the Paper.

Importance Simplicity of
computation. It is
proven method which
has been used for many
years in scientometrics.

Traditional method that
focuses on the link
structure to determine
relevance.

To compute the similarity,
no needs to scan the whole
paper only bookmarks are
compared.

Limitations Unweighted ranking i.e.
it treats all the citations
equally and does not
take into account the
time.

Results obtained at the
time of indexing and not at
the query time.

More space and time
complexity is required
because of computing
ranks on the fly.

*N: number of papers

136

• Retrieval of Relevant Papers by BCC

The crawler passes the parsed downloaded papers along with their static ranks calculated

using (6.1) to the indexer for indexing the papers. When some user submits his query to

the digital library search interface, the query processor matches the query keywords in the

index and retrieves a set of papers with pre-assigned static rank value, which are further

passed to dynamic ranking module (see section 6.5) to calculate the final rank. The user

now can find the more desired and relevant papers in the first few pages of the search

result list.

Following are the advantages of BCC:

1. As BCC method uses content similarity along with link structure of papers and their

access information, the top returned papers in the result list are supposed to be highly

relevant to user information needs.

2. The rank value of any paper by PageRank method will be same either it is seen by user

or not because it is totally dependent upon link structure of citation graph. While the

ordering of papers using BCC is more target-oriented because it also considers the

content similarity within citations.

3. In BCC, a user can not intentionally increase the rank of a paper by citing the paper

itself i.e. self-citations because the rank of the paper depends on the similarity among the

citations (not only on the number of citation).

6.5 DYNAMIC RANK CALCULATION

Dynamic rank means the rank given to the returned papers on the fly i.e. on the basis of

submitted query. This phase takes the matched cluster as an input which is extracted by

query processing engine against the user query. The dynamic rank is computed based on

the similarity between the user’s query and papers within the matched cluster. Thus, the

dynamic rank of any document or paper is described as the similarity [128, 130] between

the query q and paper d which is calculated by using (6.5):

 Dynamicrank (d) = sim(q, d) =
∑Wq,j × Wd,j

�∑W2
q,j × �∑W2

d,j

 (6.5)

137

where 𝑊𝑊𝑞𝑞 ,𝑗𝑗 and 𝑊𝑊𝑑𝑑 ,𝑗𝑗 denotes the weight of term 𝑡𝑡𝑗𝑗 in the query q and paper d

respectively. These weights can be computed by calculating the frequency of occurrence

of term 𝑡𝑡𝑗𝑗 in q and d.

Finally the papers within the matched clusters are ranked and returned to the user based

on the static rank and dynamic rank.

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡(𝑝𝑝) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑝𝑝) (6.6)

An example illustration of dynamic rank is described in next section along with the static

rank computation.

6.6 ILLUSTRATION OF PROPOSED CLUSTERING AND RANKING

MECHANISM

Let’s take an example of paper database (as shown in Table 6.6) to explain the ranking

Table 6.6 Final Rank Values

Cluster
No.

Paper
Id

Paper Title Down
-load
Score

Page
Rank

BCC Static
Weight

Sim
(q,c)

Dynamic
Rank

Rank

C1 A Page Ranking
Algorithms for
Web Mining

0.9 0.192 0.037 1.129 0.566 0.752 1.881

D Empirical study
of ranking
Algorithms for
Web Mining

0.7 0.349 0.047 1.096 0.223 1.319

F Analysis of
Web Page
Ranking
Algorithms in
Web Structure
Mining

1 0.564 0.022 1.587 0.748 2.33

G Web Mining
Research: A
Survey

0.8 0.15 0 0.95 0.549 1.49

C2 B Web Crawler
Architecture

0.9 0.15 0 1.05 0.213

Not Calculated as
C2 is not matched.

C How search
engines work
and application
of a web
crawler

0.8 0.256 0.074 1.130

E Mercator: A
scalable,
extensible Web
crawler

0.7 0.502 0.054 1.256

138

mechanism of the proposed algorithm. Here A, B, C etc denote the papers in the

database.

First, the similarity analyzer will compute a similarity score between the already existing

papers in the database and form the cluster (as described in Chapter V). On the basis of

the similarity matrix, let’s assume two clusters are formed as shown in Table 6.6. After

the generation of clusters, clusters are saved in the cluster database along with most

frequently occurred set of keywords as shown in Table 6.7.

Static Ranking: Static ranking mechanism is performed for computing the weight for each

paper within a cluster. For static ranking, Download Score, BCC and Page Rank of each

paper are computed by using (6.2), (6.4) and (6.3) as shown in Table 6.6 In this example,

the maximum number of downloads is assumed to be 10. Finally, the static rank is

computed by adding all these three parameter as shown in Table 6.6.

Now, Assume user fires a query as:

Q : “Various Page Ranking Algorithms”

The query keyword extractor extracts the keywords from the user’s query which are

listed below,

Query Keywords: various, page, rank, algorithm.

Now, the system extracts the most relevant cluster from the database against the user

query by comparing the query keywords with the keywords of cluster. The similarity

score between the query and the cluster keywords is computed by using (4.1) is also

shown in Table 6.6.

Clearly, it can be seen that the cluster C1 is the suitable cluster for forming the result set

of the query fired. The papers in the C1 will be re-ordered according to the dynamic rank

Table 6.7 Keywords Attached to Each Cluster

Cluster No. Keywords

C1 web, mining, rank, algorithms, page, rank, structure, link, categories, content,
weighted, algorithm

C2 Web, crawler, architecture, application, crawl, historical, background, foundation,
key, future, directions, search

139

(as shown in Table 6.6) and will be displayed to the user as search result set. The final

ordered result set provided to the user is shown in Table 6.8.

6.7 COMPARISON STUDY

A critical look at the available literature concluded that each algorithm has some relative

strengths and limitations. The proposed approach ranks the results in order to organize

them in an efficient and easily accessible manner as compared to Citation Count (CC),

PageRank (PR) and Content based Citation Count (C3) algorithms. Proposed approach

considers combination of all three mining i.e. Web Content, Web Structure and Web

Usage mining for ranking the more relevant results at the top of search result list as

compared to PR, CC and C3. The comparison of the proposed ranking mechanism with

three ranking algorithms CC, PR and C3 based on different parameters is shown in Table

6.9.

Table 6.9 Comparison between CC, PR, C3 and Proposed Approach
Algorithms

Measures

Citation
Count (CC)
[103]

PageRank (PR)
[10, 36, 106]

Content Based
Citation Count
(C3) [110]

Proposed Ranking
(Clustering and Ranking
Method)

Main
Technique

Used

Web
Structure
Mining

Web Structure
Mining

Web Structure
Mining, Web
Content Mining

Web Structure Mining, Web
Content Mining, Web Usage
Mining, Clustering

Description Results are
ranked by
considering
the number
of incoming
citations.

Computes scores at
indexing time.
Results are sorted
by taking into
account the
importance of
citing papers.

Rely on links as
well as content
of the paper.

Results are ranked by taking
into account the link
structure as well as content
similarity among the papers.
It also involves clustering of
papers for enhancing the
results.

I/P
parameters

Backlinks Backlinks

Backlinks and
Summary of the
publication

Bookmarks, query’s
content, paper posted time,
number of downloads

Table 6.8 Final Result Set against the User’s Query
S.No Paper Title
F Analysis of Various Web Page Ranking Algorithms in Web Structure Mining
A Page Ranking Algorithms for Web Mining

G Web Mining Research: A Survey

D Empirical study of Ranking Algorithms for Web Mining

140

6.8 SUMMARY

Proposed ranking technique is summarized in Table 6.10 from where it can be observed

that ranking technique is targeted towards presenting relevant results to the user.

The proposed crawling, indexing and ranking techniques were implemented and test run

was carried on some sample citation graphs and user logs. The implementation details

and the results obtained thereof are discussed in the next chapter.

Table 6.10 Summary of Proposed Ranking Technique

Parameters Clustering Ranking Technique

Module

Optimization

Query Processor

Metric Presenting the search results in the form of clusters with ranked pages

within.

Mined Web

Resource

Web Graph, Document Contents and User logs

Type of Mining Web Content Mining, Web Usage Mining and Web Structure Mining

Advantages User search space will be reduced as he can direct his search to a

fraction of documents in a particular cluster of his interest.

Relevancy Less Less(more than
CC, Time
dependent Citation
Count)

Medium High

Quality of
Results

Less Medium High High

Importance Simplicity of
computation.

It statistically
analyses whole
citation graph at
once. It captures
not just quantity,
but also quality of
citing papers.

The rank of the
paper is
calculated on the
basis of citations
to the paper and
content of the
paper.

User will get the results in
the form of sorted order of
papers within the cluster.

Limitations It considers
all the
citations
equally.

Results come at the
time of indexing
and not at the query
time.

More space and
time complexity
is required
because of
computing rank.

More complexity in terms of
time and space.

141

Chapter VII

IMPLEMENTATION RESULTS AND ANALYSIS

7.1 GENERAL

A Unified Digital Library Search System has been developed in this work that overcomes

the problem of relevant document retrieval by mechanizing the process of crawling,

indexing, ranking and query processing of digital library search engines.

The proposed techniques have been implemented and their result analysis has been

carried out. The following sections provide in detail the data set and the experiments

conducted for evaluation of different techniques.

7.2 PERFORMANCE METRICS

There are three performance metrics that have been used for performance analysis of

proposed approaches, namely Precision, Recall and F-measure. These metrics, are

defined below.

a) Precision (P): It is defined as a fraction of retrieved documents/ publications that

are relevant to the query.

Mathematically, Precision is given by:

 𝑃𝑃 =
𝑅𝑅𝑅𝑅

(𝑅𝑅𝑅𝑅 + 𝑊𝑊𝑊𝑊𝑊𝑊) (7.1)

where RD is the number of relevant documents and WRD is the number of

irrelevant i.e. RD+WRD represents the total number of retrieved documents.

b) Recall (R): It is defined as a fraction of relevant documents or publications that

are successfully retrieved by the digital library search system.

Mathematically, Recall is given by:

 𝑅𝑅 =
𝑅𝑅𝑅𝑅

(𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑁𝑁𝑁𝑁) (7.2)

where RD is the number of relevant documents and NRD is the number of

relevant documents which are not retrieved i.e. RD+NRD represents the total

number of relevant documents presents in WWW.

c) F-measure (F): Mathematically, it combines both precision and recall.

142

F-measure is given by:

 𝐹𝐹 =
2𝑃𝑃𝑃𝑃

(𝑃𝑃 + 𝑅𝑅) (7.3)

where an equal weight is assigned to both P and R.

7.3 EXPERIMENTAL EVALUATION OF PROPOSED CRAWLER

For the implementation of the proposed crawling technique, Java JDK 6.0, mySql 5.6,

Apache PDFBox 1.8.9 and WordNet Version 3.0 is used. Experiments are performed on

Dual-Core Intel Pentium IV or higher Processor with 2.60GHz frequency and 4.00 GB

RAM. NetBeans IDE is used for the implementation of the proposed system.

A detailed discussion on the implementation and evaluation of proposed techniques is

given in this section. Testing of the proposed crawler system was conducted and the

home screen is shown in Fig. 7.1.

The home page comprises of an input box for giving the seed URLs or document titles

and a search button. On clicking the button, the result(s) are displayed on the Crawler

interface. For analysis, the administrator can feed 10-15 seed document titles from the

computer science field as shown in Fig 7.2. Here, a database of approximately 100

documents is crawled by the crawler.

Fig 7.1 Home Page of Crawling System

143

The system first downloads, parses and then finds the category of the downloaded

documents as shown in Fig. 7.3.

Fig 7.3 Paper Repository with Category Information

Fig 7.2 List of Seed Document Titles

144

After this, the system extracts all the references of the downloaded document and finds

the similarity score between extracted references and downloaded document (as shown in

Fig 7.4).

Depending upon these similarity values, the link priority analyzer assigns the priority to

unvisited URLs and forwards them to priority queue for further crawling. In this way,

crawler crawls the WWW for gathering the documents only in the case if pdf format of

document is available. If pdf format of document is not available or pdf downloader is

not able to download (in case of missing information or access authorities), then URL is

processed by Missing Document Finder Module.

In Missing Document Finder Module, system first extracts the meta-data of references (as

shown in Fig 7.5 and Fig 7.6) for framing multiple queries to be sent to different search

engines such as Google and Google Scholar.

Fig 7.5 shows quoted and unquoted title types queries formed by extracting meta-data of

missing documents and Fig 7.6 shows the author name’s queries formed by extracting

meta-data of missing documents.

Fig 7.4 Similarity Values Computed by Link Priority Analyzer

145

Fig 7.5 Extracting meta-data information (i.e. Title) of references for finding missing document

Fig 7.6 Extracting Author’s Information of References for finding Missing Document

146

Fig 7.7 shows the result list obtained after hitting the unquoted title type query on search

engine Google and Google Scholar.

The results of the proposed crawling approach are compared and analyzed based on user

query with Citeseerx and Google Scholar.

For instance, if a researcher, when browses for research paper related to query “Survey of

Recent Web Prefetching Techniques”, then the results screen after browsing in the

proposed system is shown in Fig.7.8. The snapshot of the returned list of result papers

after submitting the same query on CiteseerX’s interface and Google Scholar’s interface is

shown in Fig 7.9 and Fig. 7.10.

As shown in Fig 7.8, Fig 7.9 and Fig. 7.10, proposed crawler system and Google Scholar

finds the documents corresponding to user query whereas CiteseerX does not find the

results corresponding to the query.

Fig 7.7 Results after Browsing Paper Title Query (i.e. without quotes) from Different Search Engines

147

Fig 7.8 Result Screen of Proposed Crawler for query “Survey of Recent Web Prefetching
Techniques”

Fig 7.9 Result Screen of CiteSeerx for query “Survey of Recent Web Prefetching Techniques”

148

Thus, it is observed that the proposed unified framework for Digital Library search

System gives more precise results than existing approaches for the example scenario. By

using multiple query formation techniques on different search engines, the proposed

system harvest publisher’s site, author homepages and WWW efficiently. For the large

size of database, the precision of proposed approach is even more than the existing

systems.

For experimental analysis of the proposed focused crawler, list of seed document titles

are given as:

• Data Mining and their Applications

• Information Retrieval Techniques

• Network topologies and Ethernet

• Issues in Networking Protocol

Now, the crawler starts the crawling process to download the documents from the list.

The runs of the proposed focused crawler and the process of experimental evaluation are

given below.

On the first run of the focused crawler, it collected about 10 references corresponding to

each of the assigned URLs, thus collectively a sample of 40 reference URLs is collected.

Fig 7.10 Result Screen of Google Scholar for query “Survey of Recent Web Prefetching Techniques”

149

Out of 40 references that have been crawled, 31 references are the documents (in pdf

format found) and 9 are the URLs or missing documents. There are 11 references that not

crawled by our proposed crawler. So, using the terms defined above:

Thus, RD=31, WRD=9, NRD=11.

By using eq. 7.1, 7.2 and 7.3, values of precision, recall and F-measure are as:

P=31/(31+9)=77.5%

R=31/(31+11)=75.6%

and F=2*77.5*75.6/(77.5+75.6)=76.53%.

Similarly, Focused crawler is run more time for analysis and the values of precision,

recall and F-measure comes out to be shown in Table 7.1 and graphically shown in Fig

7.11.

Table 7.1 P, R and F values of Proposed Crawler

Run # P(in %) R(in %) F(in %)
1 77.5 75.6 76.53
2 75 73.1 74.03
3 76 74.2 75

Fig. 7.11 P, R and F Values for each Runs of Proposed Crawler

70

71

72

73

74

75

76

77

78

1 2 3 4

V
al

ue
s o

f P
er

fo
rm

an
ce

 M
et

ri
cs

Runs

P (in %)

R(in %)

F(in %)

150

7.4 IMPLEMENTATION RESULTS OF PROPOSED DIGITAL LIBRARY

SYSTEM

Proposed digital library (DL) Search system has been implemented on Java JDK 6.0 and

tested on the citation graph given in Appendix B. Home screen of the proposed system is

shown in Fig 7.12. On clicking the search button, search interface of the proposed digital

library system is displayed for the submission of a topical query by the user as shown in

Fig 7.13.

Fig 7.12 Home Screen of Proposed Digital Library Search System

Fig 7.13 Search Interface of Proposed DL Search System

151

At the back end, for retrieving the relevant results as per user query, the system first

generates the clusters based on the similarity values computed by the similarity analyzer

as shown in Fig 7.14. Fig 7.15 shows the static rank values of documents computed at the

backend which involves the parameters PR, Number of Downloads and BCC (described

in Section 6.4). A log called search log (refer Section 6.4.1) is used to record the number

of downloads of documents.

This log is updated in JavaScript, which records user’s download events on the

downloaded document as shown in Fig 7.15. The log is periodically accessed by static

ranking module to find out ranks of various documents. When a query is submitted, the

most recent calculated rank values are returned depending on the static and dynamic rank

values.

On the front end, when a user fires a query then the query analyzer finds the category of

query by comparing the query keywords with the keywords of categories as shown in

Fig. 7.16. Then based on category, relevant cluster (s) is retrieved and the documents

within the cluster are ranked as per the dynamic rank computed by query processing

engine and results are displayed to the user.

Fig 7.14 Cosine Similarity Values calculated by Similarity Analyzer

152

It can be observed from the screen shots that the proposed system crawls the WWW

efficiently and researcher gets the desired results as per his query.

Fig 7.16 Computation of Query Category by Query Analyzer

Fig 7.15 Fragment of Number of Downloads Saved in Log

153

Fig. 7.17 shows the result screen after submitting a query “Survey of Web Page Ranking

Algorithm” to the search interface.

Fig. 7.17 Result Screen of proposed System for Query “Survey of Web Page Ranking Algorithm”

Fig. 7.18 Google Scholar’s Results for Query “Survey of Web Page Ranking Algorithm”

154

For comparing this scenario with Google Scholar and CiteseerX, the same query i.e.

“Survey of Web Page Ranking Algorithm” was submitted on Google Scholar’s interface

and CiteseerX. The snapshots of result list after submitting the query are shown in Fig.

7.18 and Fig 7.19.

It can be seen that result list contains few irrelevant documents in Google Scholar and

Citeseerx results list. To be noted, the encircled document “Web page Classification:

Features and Algorithms”, which was appearing at order 3 in the Google Scholar results

(as shown in Fig. 7.18) and encircled document “Planning Algorithm”, which was

appearing at order 5 in Citeseerx results (as shown in Fig 7.19) are irrelevant as compared

to proposed system results against user query. Therefore, search space has been reduced

to large extent by using proposed DL system.

The result analysis of proposed DL system, Google Scholar and CiteSeerx for query

“Survey of Web Page Ranking Algorithm” is given in Fig. 7.20. The comparison is shown

with respect to precision values.

Fig. 7.19 CiteSeerX’s Results for Query “Survey of Web Page Ranking Algorithm”

155

A group of 25 users from computer science domain were asked to search on proposed

system and other keyword based search engines like Google Scholar, Citeseerx etc. The

net performance of proposed system in terms of quality of search results and reduced

navigation time is found to be higher than traditional digital library search system.

Fig 7.20 Comparison of Precision Values between CiteSeerx, Google Scholar and Proposed DL
System

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
Citeseer 1 1 1 1 1 0.83 0.85 0.75 0.66 0.6

Google Scholar 1 1 0.66 0.75 0.6 0.5 0.42 0.5 0.55 0.5

Proposed DL system 1 1 0.66 0.75 0.8 0.83 0.85

Pr
ec

is
io

n
Va

lu
e

Search Results in Order

Fig. 7.21 Comparison of Precision Values between the Existing Approach and Proposed Approach as
per User’s Perceptive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U1 U3 U5 U7 U9 U11 U13 U15 U17 U19 U21 U23 U25

Pr
ec

is
io

n
Va

lu
e

Users

Citeseerx

Google Scholar

Proposed Approach

156

The system is also analyzed based on the performance measure precision by taking

different queries from different categories. Two query sets were taken from different

categories and each query set included 10 queries fired by different users on search

interface as shown in Table 7.2.

The graph plotted between average precision, recall and F-measure values for Query Set

1 and Query Set 2 is shown in Fig 7.22.

Table 7.2 Query Sets given Different Users

SNo. Query Set 1(Information Retrieval) Query 2 (Networking)
1 Survey of Ranking Algorithms Issues in Networking Protocols
2 Web Mining Algorithms OSI Layer Architecture
3 Comparative Analysis of Page Ranking

Algorithm
Data Link Layer Protocol

4 Web Crawler for Digital Documents Difference between Wired and Wireless
Communication

5 Information Retrieval Techniques Recent Trends in Networking
6 Data Mining and their Applications Network Topologies and Ethernet
7 Social Network Analysis in Information

Retrieval
Difference between Switches, Routers and
Modem

8 Recent Trends in Natural language
Programming

Study of Media Access Protocol

9 Issues in Web Pre Fetching Techniques Various Types of Topologies in Networking
10 Mining Techniques in Information Retrieval Internet Protocol v4 and v6

Fig 7.22 A graph showing Precision (P), Recall (R) and F-measure (F) values for Query Set 1
and Query Set 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P R F

QuerySet 1

QuerySet 2

157

The next section describes the implementation details of proposed document

categorization approach, which is based on multi level hierarchical structure to categorize

the documents as per their topic.

7.5 DOCUMENT CATEGORIZATION

The proposed document categorization mechanism is implemented using Java JDK 6.0,

NetBeans IDE , WordNet Version 3.0, PDFBox, MS-Access. Experiments are performed

on Dual-Core Intel Pentium IV or higher Processor with 2.60GHz frequency and 4.00 GB

RAM. The prebuilt topic taxonomy database is used as described in Appendix A.

Categorization system was separately implemented to check its accuracy and has later

embedded with the main search system.

Fig 7.23 displays the home page of the proposed categorization system for digital

libraries. This page provides two options:-

1. Upload the new research paper

2. Search papers by submitting queries

In the upload section, a new research paper is uploaded in the database from the

repository. The upload section is protected through password and can be accessed by

authentic users or administrators. Depending upon the success or failure of the uploading

Fig. 7.23 Home Screen of the Proposed Document Categorization System

158

action, different outcomes are returned to the user. In the search section, upon submitting

the user query, if the research papers related to the query exist in the database then their

links are returned to the user otherwise an error page is displayed to the user.

Upload Section: After selecting the paper, system checks whether this selected paper

exist in the database or not. If the paper does not exist in the database then it goes through

various processing modules. First of all, information about the research paper i.e. authors,

titles, references etc is extracted and the bookmarks of the paper are extracted. Then, the

important keywords from the bookmarks are selected by the system and stored in the

database.

After this, comparison is done between the keywords of paper and keywords of the

categories. First the comparison is done with the main categories. After deciding main

category, comparison is done to select the sub-category. Suppose the main category of

the uploaded paper is Networking, then the comparison is done with the keywords of sub-

categories as shown in Fig. 7.24.

On the basis of similarity of these keywords, the category of the paper is decided and all

this information gets stored in the database. This information is stored in the database as

shown in Fig. 7.25.

Fig. 7.24 Keywords of the Networking Category

Fig. 7.25 Paper information in the Categorized Document Database

159

After this processing, the paper is successfully uploaded in the database and following

outcome is displayed to the user by the system as shown in Fig. 7.26.

Along with the option of uploading, the proposed system provides the facility to search

the database. If a user wants to search the documents, then he selects the option of

searching by just clicking on the search option. The search interface shown in Fig. 7.27 is

displayed to the user to search the database.

Search Interface: To search in the digital library, user has to submit a query either by

entering the Title of the paper or any keyword based query as shown in Fig 7.27. After

entering the query, the user proceeds by clicking on the submit button. System processes

the submitted query. First of all, query is tokenized and the keywords of the paper are

matched with the keywords of category on the basis of which category of the query is

Fig. 7.27 Interface for searching the database

Fig. 7.26 Successful Uploading of the Paper

160

decided.

The category having highest cosine similarity value with the query terms is the most

relevant category. Thus using cosine similarity measure, the leaf node category is decided

in the domain tree. The links of the papers within the decided category are returned back

to the user and following list of resultant papers is displayed as shown in Fig. 7.28.

On this output page, user has the option to view the paper of his choice. User can select

the paper from the list according to his requirement and the click on View Paper button to

view the selected paper.

The results of the proposed multi level document categorization approach are compared

with the single level approach. Consider a sample fragment of two queries for which

comparison is done. The comparison is done on the basis of precision value. The results

obtained after submitting the query Q1: “SNMP is a standard TCP/IP Protocol” and Q2:

“Working of artificial digital library” are shown in Table 7.2 along with those obtained

from single level approach.

Analysis of these two approaches is done by plotting a graph between their precision,

recall and F-measure as shown in Fig. 7.29.

Fig. 7.28 Resultant List of Papers

161

Table 7.3 Resultant Papers for both the Approaches

Query Results of Single Level Approach Results of Multi Level Approach
1. SNMP
is a
standard
TCP/IP
Protocol
Query

Topics in network and service management Research and Implementation of
SNMP in For CES Framework.

A Management System for PLC Networks Using
SNMP Protocol

 6LoWPAN-SNMP: Simple
Network Management Protocol for
6LoWPAN

OS1 Reference Model-The IS0 Model of
Architecture for Open Systems Interconnection

A Management System for PLC
Networks Using SNMP Protocol

A Brief Tour of the Simple Network Management
Protocol – CERT

OS1 Reference Model-The IS0
Model of Architecture for Open
Systems Interconnection

Dynamic Routing Protocols II OSPF SNMP protocol based home
automation system

SNMP protocol based home automation system
6LoWPAN-SNMP: Simple Network Management
Protocol for 6LoWPAN
Towards Autonomic Network Management: an
Analysis of Current and Future Research Directions
Research and Implementation of SNMP in For CES
Framework
Types of Computer Networks and their Topologies

2.
Working
of
artificial
digital
library

Neural network approach to quantum-chemistry data:
Accurate prediction of density functional theory
energies

Neural network approach to
quantum-chemistry data: Accurate
prediction of density functional
theory energies.

Character Recognition Using Neural Networks Artificial Neural Network
Modelling for the Study of pH on
the Fungal Treatment of Red mud

Face Recognition using Principle Component
Analysis, Eigenface and Neural Network

Artificial Neural Network to
Predict Skeletal Metastasis in
Patients with Prostate Cancer

Optimization and Evaluation of a Neural-Network
Classifier for PET Scans of Memory-Disorder
Subjects.

A Hierarchical Self-organizing
Associative Memory for Machine
Learning

Artificial Neural Network Modelling for the Study of
pH on the Fungal Treatment of Red mud

Face Recognition using Principle
Component Analysis, Eigenface
and Neural Network

A Hierarchical Self-organizing Associative Memory
for Machine Learning

Artificial Neural Network to Predict Skeletal
Metastasis in Patients with Prostate Cancer

Neural Network with Memory and Cognitive
Functions

Optimized Approximation Algorithm in Neural
Networks Without Over fitting.

162

The next section describes the implementation details of proposed ranking algorithm

BCC, which is based on Web Content and Structure Mining.

7.6 BOOKMARK BASED CITATION COUNT

The Bookmark based Citation Count (BCC) method has been proposed for the Clustering

and Ranking technique described in Section 6.3. It has been implemented and its

comparison is carried out with Citation Count (CC), Time Dependant Citation Count

(TDCC) and PageRank (PR). Result analysis depicts that BCC produces relevant i.e. best

possibly matched documents in the top of the results. The BCC has been implemented in

.NET technology. For the present experimentation, citation graph shown in Appendix B

is considered by BCC.

Fig 7.29 Comparison between Single level and Multi level Approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P R F P R F

Single Level Approach Multi level Approach

Query1

Query2

163

The result analysis of ranking algorithm BCC has been carried out by comparing the

results with CC, PR and TDCC approach using graphical analysis. Fig 7.30 shows the

CC, TDCC, PR and BCC values for documents of the citation graph given in Appendix

B. Analysis of these approaches is done by plotting a graph between their rank score as

shown in Fig. 7.31.

It is observed that the proposed Bookmark based Citation Count gives more precise

results than existing approaches for the example scenario. BCC method considers the

content similarity of citations with the cited publication for ranking the publication

whereas PR method computes the ranking by considering only number of backlinks; CC

considers the incoming links and TDCC method consider the incoming links with the age

of the publication.

Fig 7.30 Variation of CC, PR, TDCC and BCC Values

164

The next chapter concludes the work accomplished in this thesis. The future research

directions are also enumerated in this regard.

Fig 7.31 Comparison of CC, TDCC, PR and BCC Values

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

CC

TDCC

BCC

PR

165

Chapter VIII

CONCLUSION AND FUTURE SCOPE

8.1 CONCLUSION

In this thesis, shortcomings of existing systems have been resolved in order to get

efficient and quality documents as per a researcher query. A unified search system for

digital libraries which improves the relevancy of search results and reduces the search

space is designed which effectively achieves the following objectives:

• Unified System to Crawl Maximum Documents: A unified framework for online

digital library search engine is proposed in order to cover the existing web as

maximum as possible. The experimental results have shown a highly increase in

coverage by incorporating proposed framework for online digital library search

engines.

• Approach to Categorize Documents: In the proposed categorization system, the

approach of grouping together the related research papers within a category is

developed. By this way, it is often easier to scan a few coherent groups than many

individual papers thereby reducing the search space.

• Efficient Document Organization Scheme: With the help of indexing module,

documents are organized in a multi-level hierarchal structure. It maintains the

primary index for keyword based searching and secondary index consists of multi

level index structure, which provides the retrieval of documents based on category

and clustering. This scheme works in such a way that, it provides fast and more

efficient retrieval of relevant documents as per user’s query.

• More Relevant Results: In this work, documents are analyzed in order to achieve

more relevant results based on content, link and User browsing behavior. The

experiment results have shown that with the help of considering clustering and

ranking based approach, the results corresponding to users’ query provide more

relevant results as per user’s interest.

Summarizing, a design of a novel digital library search engine for efficiently crawling,

index, order and represent the documents has been proposed that not only addresses the

166

problems prevailing in the existing digital library systems but also uses the missing

document finder module and document categorization as the major source of the topical

information retrieval system.

After the analyzing the experimental results, following observations regarding the

performance of proposed system have been drawn:

• High Precision: The results were analyzed using the performance metrics:

Precision, Recall and F-measure. High values of performance metrics for various

tests conducted on the system indicate that it accurately retrieves the documents

that the user desires.

• Extensibility: The classification of the proposed work is done in such a way that a

modular architecture is developed with the expectation that new functionalities

can easily be added by third parties according to their requirements.

• Robustness: The system is robust in the sense that it is able to find the missing

documents by employing missing document finder module. So, the system, after

getting the URLs with dangling information during the crawl process is unlikely

to break or fall.

8.2 FUTURE SCOPE

Some of the possible extensions and issues that could be further explored in the near

future are as follows:

• Automatic Creation of Taxonomy: In the proposed system, categories of

considered taxonomy are pre-defined. There is a scope of dynamic creation of

categories and sub-categories under them.

• Crawler Freshness: The crawler downloads the documents which get stored in

database. After downloading, there is need to revisit them again to get up-to-date

copy or missing information of documents. So, an automated mechanism may be

developed that will revisit documents for updated documents.

• Compatibility with Semantic web: The Proposed framework may be made

compatible with the semantic web in order to get more refined and relevant

results.

170

REFERENCES

[1] D. Kelly, “Methods for Evaluating Interactive Information Retrieval Systems with

Users,” Foundations and Trends® in Information Retrieval, vol. 3, no. 1–2, pp. 1-224,

2009.

[2] X. Dong and T. Su. Louise, “Search Engines on the World Wide Web and Information

Retrieval from the Internet: A Review and Evaluation,” Online and CD-Rom Review,

vol. 21, no. 2, pp. 67-82, 1997.

[3] R. B. Yates and B. R. Neto, Modern information retrieval, vol. 463, New York: ACM

press,v1999.

[4] C. Manning, P. Raghavan and S. Hinrich, “Introduction to Information Retrieval,”

Natural Language Engineering, vol. 16, no. 1, pp. 100-103, 2010.

[5] Google Search Engine. http://www.google.com

[6] B. R. Schatz, “Information Retrieval in Digital Libraries: Bringing Search to the Net,”

Science, vol. 275, no. 5298, pp. 327-334, 1997.

[7] M. Krishnamurthy, “Open Access, Open Source and Digital Libraries: A current Trend

in University Libraries around the World,” Program: electronic library and

information systems, vol. 42, no. 1, pp. 48-55, 2008.

[8] R. Pandey, “Digital Library Architecture,” DRTC Workshop on Digital Libraries:

Theory and Practice, Bangalore, pp. 1-16, 2003.

[9] H. Suleman, E. A. Fox, and D. P. Madalli, “Design and Implementation of Networked

Digital Libraries: Best Practices,” DRTC Workshop on Digital Libraries: Theory and

Practice, pp. 79-87, 2003.

[10] S. Brin and P. Lawrence, “The Anatomy of a Large-Scale Hypertextual Web Search

Engine,” Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107-117, 1998.

[11] A. Spink, D. Wolfram, M. B. J. Jansen and T. Saracevic, “Searching the Web: The

Public and their Queries,” Journal of the American society for information science and

technology, vol. 52, no. 3, pp. 226-234, 2001.

[12] B. E. Brewington and G. Cybenko, “How Dynamic is the Web? 1,” Computer

Networks, vol. 33, no. 1-6, pp. 257-276, 2000.

[13] N. Duhan, A. K. Sharma, and K. K. Bhatia, “Page Ranking Algorithms: A Survey,” In

Proc. IEEE International Advance Computing Conference, 2009, pp. 1530-1537.

171

[14] W. B. Croft, D. Metzler and T. Strohman, Search engines: Information retrieval in

practice, vol. 520, Reading: Addison-Wesley, 2010.

[15] K. D. Bollacker, L. Steve and C. L. Giles, “CiteSeer: An Autonomous Web Agent for

Automatic Retrieval and Identification of Interesting Publications,” In Proc. second

international conference on Autonomous agents, ACM, 1998, pp. 116-123.

[16] S. Das and M. Krishnamurthy, “Architectural Components of Digital Library: A

Practical Example Using DSpace,” In Proc. Trends in Management of Academic

Libraries in Digital Environment (TMALDEN), Jain University, Bangalore, 2014, pp.

183-194.

[17] D. Gourley, “An Architecture for the Evolving Digital Library,” EDUCAUSE

Information Resources Library, vol. 26, 2001.

[18] R. Kahn and R. Wilensky, “A Framework for Distributed Digital Object Services,”

International Journal on Digital Libraries, vol. 6, no. 2, pp. 115-123, 2006.

[19] R. E. Kahn and D. K. Ely, “System for Uniquely and Persistently Identifying,

Managing, and Tracking Digital Objects,” U.S. Patent 6,135,646, 24 October, 2000.

[20] G. Marchionini, “Exploratory Search: from Finding to Understanding,”

Communications of the ACM, vol. 49, no. 4, pp. 41-46, 2006.

[21] W. Hong, J. Y. L Thong, W. M. Wong and K.Y. Tam, “Determinants of User

Acceptance of Digital Libraries: An Empirical Examination of Individual Differences

and System Characteristics,” Journal of Management Information Systems, vol. 18, no.

3, pp. 97-124, 2002.

[22] B. J. Jansen and A. Spink, “How are We Searching the World Wide Web? A

Comparison of Nine Search Engine Transaction Logs,” Information processing &

management, vol. 42, no. 1, pp. 248-263, 2006.

[23] M. Kobayashi and K. Takeda, “Information Retrieval on the Web,” ACM Computing

Surveys (CSUR), vol. 32, no. 2, pp. 144-173, 2000.

[24] L. Braden-Harder, S. H. Corston, W. B. Dolan and L. H. Vanderwende, “Apparatus

and Methods for An Information Retrieval System that Employs Natural Language

Processing of Search Results to Improve Overall Precision,” U.S. Patent 5,933,822, 3

Aug., 1999.

172

[25] J. Bar-Ilan and M. Levene, “A Method to Assess Search Engine Results,” Online

Information Review, vol. 35, no. 6, pp. 854-868, 2011.

[26] AOL Search Engine. https://search.aol.com/

[27] Web Crawler Search Engine. https://www.webcrawler.com/

[28] Yahoo Search Engine. https://in.search.yahoo.com/

[29] Good Search Engine. https://www.goodsearch.org/

[30] DuckDuckGo Search Engine. https://duckduckgo.com/

[31] Bing search Engine. https://www.bing.com/

[32] Yacy Search Engine. https://yacy.net/

[33] Cliqz Search Engine. https://cliqz.com/en/whycliqz/search-engine

[34] C. Castillo, “Effective Web Crawling,” ACM sigir forum, vol. 39, no. 1, pp. 55-56,

2005.

[35] J. A. Curtis and G. F. Scherer, “Search Engine using Indexing Method for Storing and

Retrieving Data,” U.S. Patent 6,278,992, 21 Aug., 2001.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:

Bringing Order to the Web,” Tech. Report, Stanford InfoLab, 1999.

[37] R. Blumberg and S. Atre, “The Problem with Unstructured Data,” Dm Review, vol. 13,

no. 42-49, pp. 62, 2003.

[38] O. Hoeber and T. Khazaei, “Evaluating Citation Visualization and Exploration

Methods for Supporting Academic Search Tasks,” Online Information Review, vol. 39,

no. 2, pp. 229-254, 2015.

[39] CiteSeer Digital Library. citeseerx.ist.psu.edu/

[40] Google Scholar Search Engine. https://scholar.google.co.in/

[41] IEEE Digital Library. https://ieeexplore.ieee.org/Xplore/home.jsp

[42] Science Direct Digital Library. https://www.sciencedirect.com/

[43] Open Access Journals Search Engine. www.oajse.com/

[44] Academic Publications eJournal. apejournal.weebly.com/

[45] Academic Search Digital Library. https://www.academic-search.com/

[46] Springer Digital Library Search Engine. https://link.springer.com/

[47] J. Sun and B. Z. Yuan, “Development and Characteristic of Digital Library as a Library

Branch,” IERI Procedia, vol. 2, pp.12-17, 2012.

173

[48] B. Nahak and P. S. Patra, “Planning, Designing and Developing of Digital Libraries

and Digital Preservation,” INFLIBNET Centre, Gandhinagar, 2014.

[49] A. Shiri, “Digital Library Research: Current Developments and Trends,” Library

Review, vol. 52, no. 5, pp. 198-202, 2003.

[50] D. Bhatt, D. A. Vyas and S. Pandya, “Focused Web Crawler,” Advances in Computer

Science and Information Technology, vol. 2, no. 11, pp. 1-6, 2015.

[51] B. Ganguly and R. Sheikh, “A Review of Focused Web Crawling Strategies,”

International Journal of Advanced Computer Research, vol. 2, no. 4, pp. 261, 2012.

[52] D. Bergmark, C. Lagoze, and A. Sbityakov, “Focused Crawls, Tunneling, and Digital

Libraries,” In Proc. International Conference on Theory and Practice of Digital

Libraries, Springer, Berlin, Heidelberg, 2002, pp. 91-106.

[53] S. Chakrabarti, M. V. D. Berg, and B. Dom, “Focused Crawling: A New Approach to

Topic-Specific Web Resource Discovery,” Computer networks, vol. 31, no. 11-16, pp.

1623-1640, 1999.

[54] W. Wang, X. Chen, Y. Zou, H. Wang and Z. Dai, “A Focused Crawler based on Naive

Bayes Classifier,” In 2010 Third International Symposium on Intelligent Information

Technology and Security Informatics (IITSI), 2010, pp. 517-521.

[55] H. L. Yu, L. Bingwu and Y. Fang, “Similarity Computation of Web Pages of Focused

Crawler,” In Proc. IEEE 2010 International Forum on Information Technology and

Applications (IFITA), pp. 70-72.

[56] P. Boldi, B. Codenotti, M. Santini and S. Vigna, “Ubicrawler: A Scalable Fully

Distributed Web Crawler,” Software: Practice and Experience, vol. 34, no. 8, pp. 711-

726, 2004.

[57] J. Cho and H. G. Molina, “Parallel crawlers,” In Proc. ACM 11th International

Conference on World Wide Web, 2002, pp. 124-135.

[58] S. Sharma, A. K. Sharma and J. P. Gupta, “A Novel Architecture of a Parallel Web

Crawler,” International Journal of Computer Applications, vol. 14, no. 4, pp.38-42,

2011.

[59] T. V. Udapure, R. D. Kale and R. C. Dharmik, “Study of Web Crawler and its Different

Types,” IOSR Journal of Computer Engineering, vol. 16, no. 1, pp. 1-5, 2014.

174

[60] N. Singhal, A. Dixit and A. K. Sharma, “Design of a Priority based Frequency

Regulated Incremental Crawler,” International Journal of Computer Application, vol.

1, no. 1, pp. 47-52, 2010.

[61] J. Cho and H. G. Molina, “The Evolution of the Web and Implications for An

Incremental Crawler,” Tech. Report, Stanford, 1999.

[62] A. K. Sharma and A. Dixit, “Self Adjusting Refresh Time based Architecture for

Incremental Web Crawler,” International Journal of Computer Science and Network

Security, vol. 8, no. 12, pp. 349-354, 2008.

[63] B. W. On and D. Lee, “PaSE: Locating Online Copy of Scientific Documents

Effectively,” In Proc. Springer International Conference on Asian Digital Libraries,

Berlin, Heidelberg, 2004, pp. 408-418.

[64] G. Hoff and M. Mundhenk, “Finding Scientific Papers with Homepagesearch and

MOPS,” In Proc. ACM 19th annual international conference on Computer

documentation, 2001, pp. 201-207.

[65] D. Carmel, E. Y. Tov and H. Roitman, “Enhancing Digital Libraries using Missing

Content Analysis,” In Proc. ACM 8th ACM/IEEE-CS joint conference on Digital

libraries, 2008, pp. 1-10.

[66] J. Qin, Y. Zhou and M. Chau, “Building Domain-Specific Web Collections for

Scientific Digital Libraries: A Meta-Search Enhanced Focused Crawling Method,” In

Proc. IEEE 2004 Joint ACM/IEEE Conference on, 2004, pp. 135-141.

[67] J. Wu, P. Teregowda, J. P. F. Ramírez, P. Mitra, S. Zheng, and C. L.Giles, “The

Evolution of a Crawling Strategy for an Academic Document Search Engine:

Whitelists and Blacklists,” In Proc. ACM the 4th Annual ACM Web Science

Conference, 2012, pp. 340-343.

[68] K. Premlatha and T. Geetha, “Focused Crawling for Educational Materials from the

Web,” International Journal of Computer Science & Informatics, vol. 1, no. 2, pp. 26-

29, 2011.

[69] S. D. Gollapalli, C. L. Giles, P. Mitra, and C. Caragea, “On Identifying Academic

Homepages for Digital Libraries,” In Proc. ACM the 11th annual international

ACM/IEEE joint conference on Digital libraries, 2011, pp. 123-132.

175

[70] S. D. Gollapalli, K. Patel, and C. Caragea, “A Search/Crawl Framework for

Automatically Acquiring Scientific Documents,” arXiv preprint arXiv:1604.05005,

2016.

[71] S. Das, P. Mitra and C. Giles, “Learning to Rank Homepages for Researcher Name

Queries,” The International Workshop on Entity-Oriented Search, Citeseer, pp. 53-58.

2011.

[72] Z. Zhuang, R. Wagle and C. L. Giles, “What's there and What's not?: Focused Crawling

for Missing Documents in digital libraries,” In Proc. ACM the 5th ACM/IEEE-CS joint

conference on Digital libraries, 2005, pp. 301-310.

[73] J. E. Conover and D. M. C. Anthony, “System and Method for Cataloguing Digital

Information for Searching and Retrieval,” U.S. Patent 6,701,314, 2 March, 2004.

[74] S. Ceri, A. Bozzon, M. Brambilla, E. D. Valle, P. Fraternali, and S. Quarteroni, “Meta-

Search and Multi-Domain Search,” Web information retrieval, Data-centric systems

and applications, Springer, pp 161-179, 2013.

[75] P. Sojka and M. Liska, “Indexing and Searching Mathematics in Digital Libraries,” In

Proc. Springer International Conference on Intelligent Computer Mathematics, Berlin,

Heidelberg, 2011, pp. 228-243.

[76] RongJin, “Text Processing”, http://slideplayer.com/slide/7097844/

[77] J. Zobel, A. Moffat and K. Ramamohanarao, “Inverted files versus Signature Files for

Text Indexing,” ACM Transactions on Database Systems (TODS) , vol. 23, no. 4, pp.

453-490, 1998.

[78] Y. Chen, “Signature Files and Signature Trees,” Information Processing Letters, vol.

82, no. 4, pp.213-221, 2002.

[79] J. T. Y. Ching and K. R. Chennupati, “Collection Evaluation through Citation Analysis

Techniques: a Case Study of the Ministry of Education, Singapore,” Library Review,

vol. 51, no. 8, pp. 398-405, 2002.

[80] A. W. K. Harzing and R. V. Wal, “Google Scholar as a New Source for Citation

Analysis,” Ethics in science and environmental politics, vol. 8, no. 1, pp. 61-73, 2008.

[81] S. Lawrence, C. L. Giles and K. Bollacker, “Digital Libraries and Autonomous Citation

Indexing,” Computer, vol. 32, no. 6, pp. 67-71, 1999.

http://slideplayer.com/slide/7097844/

176

[82] T. D. Nguyen and M. Y. Kan, “Keyphrase Extraction in Scientific Publications,” In

Proc. Springer International conference on Asian digital libraries, Berlin, Heidelberg,

2007, pp. 317-326.

[83] C. Gutwin, G. Paynter, I. Witten, C. N. Manning and E. Frank, “Improving Browsing

in Digital Libraries with Keyphrase Indexes,” Decision Support Systems, vol. 27, no.

1-2, pp. 81-104, 1999.

[84] P. Kanerva, Pentii, J. Kristoferson and A. Holst, “Random Indexing of Text Samples

for Latent Semantic Analysis,” In Proceedings. of the Annual Meeting of the Cognitive

Science Society, vol. 22, no. 22, 2000.

[85] E. Garcia, “Singular Value Decomposition (svd) a Fast Track Tutorial,” Using the

Singular Value Decomposition, 2006.

[86] ALTAVISTA Digital Library Search Engine. https://digital.com/about/altavista/

[87] Academic Search Engine. https://academic.microsoft.com/

[88] INFOSEEK Digital Library Search Engine.

https://web.archive.org/web/20090520050825/http://www.clubi.ie:80/webserch/engin

es/infoseek/index.htm

[89] S. Malik, “A Comparative Study of two major Search Engines: Google and Yahoo,”

Oriental Journal of Computer Science & Technology, vol. 1, no. 7, pp. 29-37, 2014.

[90] EXCITE Digital Library Search Engine. www.excite.com/

[91] D. Gupta, K. K. Bhatia and A. K. Sharma, “A Novel Indexing Technique for Web

Documents using Hierarchical Clustering,” International Journal of Computer Science

and Network Security, vol. 9, no. 9, pp. 168, 2009.

[92] S. H. Cha, “Comprehensive Survey on Distance/Similarity Measures between

Probability Density Functions,” City, vol. 1, no. 2, pp. 1, 2007.

[93] P. Gupta and A. K. Sharma, “Context based Indexing in Search Engines using

Ontology,” International Journal of Computer Applications, vol. 1, no. 14, pp. 49-52,

2010.

[94] P. Mudgil, A. K. Sharma, and P. Gupta, “An Improved Indexing Mechanism to Index

Web Documents,” In Proc. IEEE 2013 5th International Conference on Computational

Intelligence and Communication Networks (CICN), 2013, pp. 460-464.

177

[95] S. Nešić, F. Crestani, M. Jazayeri and D. Gašević, “Concept-based Semantic

Annotation, Indexing and Retrieval of Office-like Document Units,” Adaptivity,

Personalization and Fusion of Heterogeneous Information, LE CENTRE DE

HAUTES ETUDES INTERNATIONALES D'INFORMATIQUE

DOCUMENTAIRE, pp. 134-135, 2010.

[96] M. A. Angrosh, S. Cranefield, and N. Stanger, “Contextual Information Retrieval in

Research Articles: Semantic Publishing Tools for the Research Community,” Semantic

Web, vol. 5, no. 4, pp. 261-293, 2014.

[97] S. Bashir and A. Rauber, “On the Relationship between Query Characteristics and IR

Functions Retrieval Bias,” Journal of the American Society for Information Science

and Technology, vol. 62, no. 8, pp. 1515-1532, 2011.

[98] M. Coates, “Search Engine Queries used to Locate Electronic Thesis and Dissertations:

Differences for local and non-local users,” Library Hi Tech, vol. 32, no. 4, pp. 667-

686, 2014.

[99] H. Khatri, “Query Processing over Incomplete Autonomous Web Databases,” PhD

diss., Arizona State University, 2006.

[100] N. Alemayehu and P. Willett, “The Effectiveness of Stemming for Information

Retrieval in Amharic,” Program, vol. 37, no. 4, pp. 254-259, 2003.

[101] H. Cui, J. R. Wen, J. Y. Nie and W. Y. Ma, “Probabilistic Query Expansion using

Query Logs,” In Proc. ACM 11th international conference on World Wide Web, 2002,

pp. 325-332.

[102] Z. Zhang and O. Nasraoui, “Mining Search Engine Query Logs for Query

Recommendation,” In Proc. ACM 15th international conference on World Wide Web,

2006, pp. 1039-1040.

[103] J. Beel and B. Gipp, “Google Scholar's Ranking Algorithm: the Impact of Citation

Counts (an Empirical Study),” In Proc. IEEE Third International Conference on

Research Challenges in Information Science, 2009, pp. 439-446.

[104] L. Marian, “Ranking Scientific Publications based on their Citation Graph,” Tech

Report, .No. CERN-THESIS-2009-029. 2009.

178

[105] L. Marian, J. Y. Le Meur, M. Rajman and M. Vesely, “Citation Graph based Ranking

in Invenio,” In Proc. Springer International Conference on Theory and Practice of

Digital Libraries, Berlin, Heidelberg, 2010, pp. 236-247.

[106] A. Sidiropoulos and Y. Manolopoulos, “Generalized Comparison of Graph-based

Ranking Algorithms for Publications and Authors,” Journal of Systems and Software,

vol. 79, no. 12, pp. 1679-1700, 2006.

[107] Y. Sun and C. L. Giles, “Popularity Weighted Ranking for Academic Digital

Libraries,” In Proc. Springer European Conference on Information Retrieval, Berlin,

Heidelberg, 2007, pp. 605-612.

[108] J. M. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,” Journal of the

ACM (JACM), vol. 46, no. 5, pp. 604-632, 1999.

[109] Math Explorer's Club, “The Mathematics of Web Search”,

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html

[110] S. Singla, N. Duhan and U. Kalkal, “A Novel Approach for Document Ranking in

Digital Libraries using Extractive Summarization,” International Journal of Computer

Applications, vol. 74, no. 18, pp. 25-31, 2013.

[111] L. Li, Y. Shang and W. Zhang, “Improvement of HITS-based Algorithms on Web

Document,” In Proc. ACM 11th international conference on World Wide Web, 2002,

pp. 527-535.

[112] Z. Guangqian and L. Xin, “Study on the Method of Ranking Scientific Papers,” In Proc.

IEEE 2010 International Conference on E-Business and E-Government (ICEE), 2010,

pp. 3062-3066.

[113] Y. Ding, E. Yan, A. Frazho and J. Caverlee, “PageRank for Ranking Authors in Co‐

citation Networks,” Journal of the American Society for Information Science and

Technology, vol. 60, no. 11, pp. 2229-2243, 2009.

[114] P. Thwe, “Proposed Approach for Web Page Access Prediction using Popularity and

Similarity based Page Rank Algorithm,” International Journal of Science and

Technology Research, vol. 2, no. 3, pp. 240-246, 2013.

[115] M. Deshpande and G. Karypis, “Selective Markov Models for Predicting Web Page

Accesses,” ACM Transactions on Internet Technology (TOIT), vol. 4, no. 2, pp. 163-

184, 2004.

179

[116] S. Qiao, T. Li, H. Li, Y. Zhu, J. Peng and J. Qiu, “SimRank: A Page Rank Approach

based on Similarity Measure,” In Proc. IEEE 2010 International Conference on

Intelligent Systems and Knowledge Engineering (ISKE), 2010, pp. 390-395.

[117] V. T. Nguyen, “Using Social Annotation and Web Log to Enhance Search Engine,”

International Journal of Computer Science Issues, IJCSI, vol. 6, no. 2, pp. 1-6, 2009.

[118] M. P. S. Bhatia and D. Khurana, “Experimental Study of Data Clustering using k-

Means and Modified Algorithms,” International Journal of Data Mining & Knowledge

Management Process, vol. 3, no. 3, pp. 17-30, 2013.

[119] K. Wen, R. Li, J. Xia, and X. Gu, “Optimizing Ranking Method using Social

Annotations based on Language Model,” Artificial Intelligence Review, vol. 41, no. 1,

pp. 81-96, 2014.

[120] J. R. Bellegarda, “Statistical Language Model Adaptation: Review and Perspectives,”

Speech communication, vol. 42, no. 1, pp. 93-108, 2004.

[121] A. Z. Broder, S. C. Glassman, M. S. Manasse and G. Zweig, “Syntactic Clustering of

the Web,” Computer Networks and ISDN Systems, vol. 29, no. 8, pp. 1157-1166, 1997.

[122] C. Carpineto, S. Osiński, G. Romano and D. Weiss, “A Survey of Web Clustering

Engines,” ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 17, 2009.

[123] D. J. Lawrie and W. B. Croft, “Generating Hierarchical Summaries for Web Searches,”

In Proc. ACM 26th annual international ACM SIGIR conference on Research and

development in informaion retrieval, 2003, pp. 457-458.

[124] H. Toda and R. Kataoka, “A Search Result Clustering Method using Informatively

Named Entities,” In Proc. ACM 7th annual ACM international workshop on Web

information and data management, 2005, pp. 81-86.

[125] D. Beeferman and A. Berger, “Agglomerative Clustering of a Search Engine Query

Log,” In Proc. ACM the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, 2000, pp. 407-416.

[126] N. Duhan and A. K. Sharma, “DBCCOM: Density Based Clustering with Constraints

and Obstacle Modeling,” In Proc. Springer International Conference on Contemporary

Computing, Berlin, Heidelberg, 2011, pp. 212-228.

180

[127] A. Jain, A. Jain, N. Chauhan, V. Singh and N. Thakur, “Information Retrieval using

Cosine and Jaccard Similarity Measures in Vector Space Model,” International Journal

of Computer Applications, vol. 164, no. 6, pp. 28-30, 2017.

[128] A. Huang, “Similarity Measures for Text Document Clustering,” In Proc. sixth new

zealand computer science research student conference (NZCSRSC2008), Christchurch,

New Zealand, 2008, pp. 49-56.

[129] K. Maher, M. S. Joshi, “Effectiveness of Different Similarity Measures for Text

Classification and Clustering,” International Journal of Computer Science and

Information Technologies, vol. 7, no. 4, pp. 1715-1720, 2016.

[130] V. Thada and V. Jaglan, “Comparison of Jaccard, Dice, Cosine Similarity Coefficient

to Find Best Fitness Value for Web Retrieved Documents using Genetic Algorithm,”

International Journal of Innovations in Engineering and Technology, vol. 2, no. 4, pp.

202-205, 2013.

[131] P. Achananuparp, X. Hu and X. Shen, “The Evaluation of Sentence Similarity

Measures,” In Proc. Springer International Conference on data warehousing and

knowledge discovery, Berlin, Heidelberg, 2008, pp. 305-316.

[132] D. Boley, M. Gini, R Gross, E. H. S. Han, K. Hastings, G. Karypis, V. Kumar, B.

Mobasher, and J. Moore, “Partitioning-based Clustering for Web Document

Categorization,” Decision Support Systems, vol. 27, no. 3, pp. 329-341, 1999.

[133] J. Kaur and V. Gupta, “Effective Approaches for Extraction of Keywords”

International Journal of Computer Science Issues (IJCSI), vol. 7, no. 6, pp. 144, 2010.

[134] D. B. Bracewell, F. Ren and S. Kuriowa, “Multilingual Single Document Keyword

Extraction for Information Retrieval,” In Proc. IEEE 2005 International Conference on

Natural Language Processing and Knowledge Engineering, 2005, pp. 517-522.

[135] C. Zhang, “Automatic Keyword Extraction from Documents using Conditional

Random Fields,” Journal of Computational Information Systems, vol. 4, no. 3, pp.

1169-1180, 2008.

[136] Y. Matsuo and M. Ishizuka, “Keyword Extraction from a Single Document using Word

Co-occurrence Statistical Information,” International Journal on Artificial Intelligence

Tools, vol. 13, no. 01, pp. 157-169, 2004.

181

[137] J. Ramos, “Using Tf-idf to Determine Word Relevance in Document Queries,”

Proceedings of the first instructional conference on machine learning, vol. 242, pp.

133-142, 2003.

[138] R. M. Alguliev and R. M. Aliguliyev, “Effective Summarization Method of Text

Documents,” In Proc. IEEE The 2005 IEEE/WIC/ACM International Conference on

Web Intelligence, 2005, pp. 264-271.

[139] W. B. Frakes and R. B. Yates, “Introduction to Information Storage and Retrieval

Systems.” In Information retrieval: Data structures and algorithms, vol. 331.

Englewood Cliffs, NJ: prentice Hall, 1992.

[140] F. Sebastiani, “Machine Learning in Automated Text Categorization,” ACM computing

surveys (CSUR), vol. 34, no. 1, pp. 1-47, 2002.

[141] K. Zhang, H. Xu, J. Tang and J. Li, “Keyword Extraction using Support Vector

Machine,” In Proc. Springer International Conference on Web-Age Information

Management, Berlin, Heidelberg, 2006, pp. 85-96.

[142] S. Fisher and B. Roark, “Query-Focused Summarization by Supervised Sentence

Ranking and Skewed Word Distributions,” In Proc. Document Understanding

Conference, DUC-2006, New York, USA. 2006.

[143] M. Maharasi and N. A. Sophia, “A Survey of Text Categorization and its Various

Approaches,” International Journal of Computer Science and Information

Technologies, vol. 6, no 3, pp. 2663-2666, 2015.

[144] P. Bolaj and S. Govilkar, “A Survey on Text Categorization Techniques for India

Regional Languages,” International Journal of computer science and Information

Technologies, vol. 7, no. 2, pp. 480-483, 2016.

[145] V. C. Gandhi and J. A. Prajapati, “Review on Comparison between Text Classification

Algorithms,” International Journal of Emerging Trends & Technology in Computer

Science, vol. 1, no. 3, pp. 75-78, 2012.

[146] H. Brücher, G. Knolmayer, and M. A. Mittermayer, “Document Classification Methods

for Organizing Explicit Knowledge,” Institute of Information Systems, pp. 1-25, 2002.

[147] B. V. Dasarathy, “Nearest Neighbor ({NN}) Norms:{NN} Pattern Classification

Techniques,” IEEE Computer Society Tutorial, 1991.

182

[148] C. C. Aggarwal and C. X. Zhai, “A Survey of Text Classification Algorithms,” Mining

text data, Springer, Boston, MA, 2012, pp. 163-222.

[149] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos and C. D. Spyropoulos, “An

Experimental Comparison of Naive Bayesian and Keyword-based Anti-Spam Filtering

with Personal E-mail Messages,” In Proc. ACM 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, 2000, pp. 160-167.

[150] L. Waltman and N. J. V. Eck, “A New Methodology for Constructing a Publication‐

level Classification System of Science,” Journal of the American Society for

Information Science and Technology, vol. 63, no. 12, pp. 2378-2392, 2012.

[151] J. C. R. Miranda, J. Y. A. Llane, J. G. G. Serna and N. G. Franco, “Automatic

Classification of Scientific Papers in PDF for Populating Ontologies,” In Proc. IEEE

2014 International Conference on Computational Science and Computational

Intelligence (CSCI), vol. 2, 2014, pp. 319-320.

[152] J. Protasiewicz, M. Mirończuk and S. Dadas, “Categorization of Multilingual Scientific

Documents by a Compound Classification System,” In Proc. Springer International

conference on artificial intelligence and soft computing, Cham, 2017, pp. 563-573.

[153] A. Markov, M. Last and A. Kandel, “Fast Categorization of Web Documents

Represented by Graphs,” In Proc. Springer International Workshop on Knowledge

Discovery on the Web, Berlin, Heidelberg, 2006, pp. 56-71.

[154] J. Bhogal, A. MacFarlane and P. Smith, “A Review of Ontology based Query

Expansion,” Information processing & management, vol. 43, no. 4, pp. 866-886, 2007.

[155] C. Claudio and G. Romano, “A Survey of Automatic Query Expansion in Information

Retrieval,” ACM Computing Surveys (CSUR), vol. 44, no. 1, pp. 1, 2012.

[156] W. Kraaij and R. Pohlmann, “Porter’s Stemming Algorithm for Dutch,”

Informatiewetenschap, pp. 167-180, 1994.

[157] M. F. Porter, “Snowball: A Language for Stemming Algorithms,” 2001.

[158] A. G. Jivani, “A Comparative Study of Stemming Algorithms,” Int. J. Comp. Tech.

App., vol. 2, no. 6, pp. 1930-1938, 2011.

[159] C. Moral, A. de Antonio, R. Imbert and J. Ramírez, “A Survey of Stemming Algorithms

in Information Retrieval,” Information Research, vol. 19, no. 1, pp. n1, 2014.

183

[160] A. Callery and D. T. Proulx, “Yahoo! Cataloging the Web,” Journal of Internet

Cataloging, vol. 1, no. 1, pp. 57-64, 1997.

[161] Blooms Taxonomy Virtual Library, https://www.virtuallibrary.info/blooms-

taxonomy.html

[162] B. J. Jansen, “Search Log Analysis: What It is, What’s been Done, How to Do It,”

Library & information science research, vol. 28, no. 3, pp. 407-432, 2006.

[163] S. Singla, N. Duhan and U. Kalkal, “A Novel Approach for Document Ranking in

Digital Libraries using Extractive Summarization,” International Journal of Computer

Applications, vol. 74, no. 18, pp. 25-31, 2013.

[164] S. Gupta, N. Duhan and P. Bansal, “A Comparative Study of Page Ranking Algorithms

for Online Digital Libraries”, International Journal of Scientific & Engineering

Research, vol. 4, no 4, pp.1225-1233, 2013.

[165] S. Gupta, N. Duhan and P. Bansal, “Categorization of Documents in Digital Libraries

in Multi Level Taxonomy By Using Bookmark”, International Journal of Computer

Engineering and Applications, vol. XI, no. X, pp. 1-10, 2017.

[166] S. Gupta, N. Duhan and P. Bansal, “Efficient Method of Retrieving Digital Library

Search Results using Clustering and Time Based Ranking,” International Journal of

Applied Engineering Research (IJAER), vol. 12, no 22, pp. 12305-12314, 2017.

[167] S. Gupta, N. Duhan, P. Bansal and J. Sidhu, “Page Ranking Algorithms in Online

Digital Libraries: A Survey”, In Proc. 2014 3rd International Conference on Reliability,

Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions),

2014, pp. 1-6.

[168] N. Duhan, P. Bansal and S. Gupta, “An Approach for Ranking Search Results in Digital

Library using Bookmark,” In Proc. 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, 2016, pp. 3424-3429.

[169] S. Gupta, N. Duhan and P. Bansal, “Indexing Online Academic Documents In Digital

Libraries: A Survey”, In Proc. International Conference on Electrical, Electronics,

Computers, Communication, Mechanical and Computing (EECCMC), 2018, pp. 1-6.

182

Appendix A

DATA SET FOR TOPIC TAXONOMY

Taxonomy is a classification system. Normally, the aim of taxonomy is to group things

according to similarities in some respect such as similarities in structure, role, behavior,

etc. As the Greek root "taxis" implies, it is about putting things in order. In the proposed

Document Categorization system (described in Section 4.4.5) a set of multi-level topic

taxonomies are used to categorize the documents. For topic taxonomy, instead of using

the existing canonical taxonomies, the system considers the digital document libraries or

archives of some universities for extracting the different types of categories. The archives

considered for constructing topic taxonomy by proposed system are:

• Cornell University Library arxiv.org

• ACM Computing Classification System-2012

By considering the some digital document archives, the proposed system considers the

categories as shown in Fig A.1.

Now, the retrieved archives are parsed, stop words such as “the” and “is” are eliminated,

words are stemmed using the porter stemming algorithm and the term frequency (tf) of

each word is calculated. The words are ordered by their weight after which a certain

number of words are extracted with high weight value as shown in Table A.1 to Table

A.9.

183

Table A.1 Keywords of Categories

Software Engineering Soft Computing Formal Languages and
Automata Theory

Tool 10 Neural 13 Automata 20
Metric 11 Neuron 9 Theory 24
Debug 9 Genetic 18 Formal 17
Coupl 7 Crossover 13 Language 19
Software 23 Defuzzification 15 Grammar 15
Test 21 Expert 12 Computation 10
Cases 6 Mutation 3 Complexity 17
Program 10 Learn 2 Class 9
Cohesion 8 Chromosome 1 Machine 6
Quality 9 Habituation 1 Finite 8

Fig A.1 Structure of Topic Taxonomy

 Computer Science Domain

Networking

Soft Computing

Analysis & Design of
Algorithms

Information Retrieval

Software Engineering

Theory of Computation

Cryptography & Security

Artificial Intelligence

Information Systems

Network Protocol
Type of Network

Routing Protocol

Algorithm Methodologies
Complexity Analysis

NP-Hard & NP-Complete

Web Mining
Web Search Engine

Document Representation

Neural Network
Fuzzy Logic
Genetic Algorithm

Information Storage System

Database Design & Models

Cryptography

Security Services

Models of Computation

Formal Languages & Automata Theory

184

Table A.2 Keywords of Categories

Cryptography and Security Information Retrieval Networking
Sender 9 Web 8 Switch 15
Authentication 23 Mining 9 SNMP 10
Public 16 Rank 10 Wired 14
Key 20 Index 9 UDP 6
Cryptography 26 Crawl 7 Ethernet 5
Code 15 Information 20 ATM 10
Security 17 Search 21 Wireless 8
Information 7 Content 19 OSI 15
Cipher 13 Usage 10 Layer 21
Decode 11 Data 23 Signal 7

Table A.3 Keywords of Categories

Network Protocol Type of Network Routing Protocol
SNMP 10 Wireless 11 Route 7
ATM 12 Wired 13 Token 13
OSI 15 WSN 8 Message 17
TCP/IP 8 Client 9 Adhoc 14
UDP 6 Network 11 Dynamic 7
Layer 21 Optical 7 Static 8
Ethernet 5 Topology 9 Node 12
Protocol 14 Server 15 Transfer 5
Signal 7 Manage 12 Protocol 10
Remote 6 Switch 15 OSPF 4

Table A.4 Keywords of Categories

Fuzzy Logic Genetic Algorithm Algorithm Methodologies
Fuzzy 23 Genetic 18 Graph 8
Inference 13 Mutation 13 Shortest 6
Defuzzification 15 Crossover 10 Path 10
Uncertainty 8 Chromosome 8 Dynamic 14
Expert 5 Fitness 12 Backtrack 6
Logic 18 GA 8 Branch 3
Membership 13 Selection 8 Bound 2
Controller 8 Reproduction 7 Divide 9
Implication 5 Population 9 Conque 8
Linguistic 7 Evolutionary 6 Preconditioning 2

185

Table A.5 Keywords of Categories

Web Mining Web search engine Information Systems
Web 8 Crawl 15 Data 17
Log 5 Index 13 Management 9
Analysis 10 Spam 10 Database 12
Extract 8 Detection 6 Structure 5
Integrat 4 Reformation 7 Information 13
Site 3 Suggestion 4 Storage 8
Wrap 5 Query 11 System 9
Rank 12 Log 9 Model 3
Structure 10 Architecture 11 Design 2
Usage 9 Search 17 Integration 6

Table A.6 Keywords of Categories

Artificial Intelligence Information Storage
System

Computer Vision and Pattern
Recognition

Robotics 25 Magnetic 10 Pattern 25
Machine 20 Disk 12 Machine 21
Learning 19 Tape 9 Learn 19
Neural 26 Optical 4 Recognize 11
Network 17 Flash 3 Analysis 17
Classifier 21 Memory 10 Image 21
Probability 16 Array 5 Geometry 16
Expert 11 Record 9 Structure 6
System 10 Block 5 Match 7
Reason 11 Hash 2 Training 19

Table A.7 Keywords of Categories

Database Design Models Theory of computation Models of computation
Relational 9 Model 10 Computability 15
Design 8 Computation 16 Interactive 11
Entity 6 Languages 12 Probabilistic 14
Graph 12 Logic 10 Quantum 10
Hierarchal 9 Programming 11 Stream 5
Network 15 Reasoning 9 Concurrency 6
Physical 7 Data 16 Model 12
Temporal 3 Structure 12 Distribute 9
Inconsistent 5 Theory 9 Recursive 8
Model 8 Algorithm 10 Turing 2

186

Table A.8 Keywords of Categories

Security Services Cryptography Document Representation
Authentication 11 Key 15 Document 21
Biometric 13 Management 7 Structure 9
Password 10 Public 11 Content 15
Access 9 Digital 10 Analysis 12
Control 12 Signature 8 Encoding 6
Digital 16 Symmetric 5 Feature 9
Authorization 8 Hash 3 Ontologies 8
Privacy 6 Block 10 Dictionaries 7
Pseudonymity 3 Cipher 13 Thesauri 5
Untraceability 5 Code 14 Canonicalization 3

Table A.9 Keywords of Categories

Distributed, parallel and
Cluster Computing

Neural network Complexity Analysis

Fault 10 Neural 13 Problem 12
Tolerance 8 Learning 14 Complexity 15
Algorithm 15 Backpropoagation 12 Algebraic 9
Processor 10 ADALINE 7 Theory 7
Cluster 10 Activation 5 Logic 10
Computing 15 Neuron 9 Reduction 7
Parallel 11 SVM 7 Completeness 5
Distributed 13 Habituation 4 Quantum 2
System 19 Network 16 Proof 3
Concurrency 23 Fuzzy 9 Class 8

187

Appendix B

DATA SETS FOR IMPLEMENTATION

This appendix gives input data sources considered for the result analysis of various

indexing, ranking and query processing techniques. As it is impossible to conduct the

experiments over complete WWW, the web sources at a small scale are designed. Section

B.l describes the structure and content utilized for the analysis in terms of citation graph.

B.l THE CITATION GRAPH

A citation graph consisting of 26 interlinked publications or documents from the

computer science domain has been designed which is shown in Fig. B.l. The citation

graph provides information about the documents from computer science domain and their

citation linkage in between. This citation graph consists of sufficient information about

the link structure of documents. Each document in turn has been designed to have

adequate content being used for the analysis of indexing, ranking and query processing

techniques. For simplifying the calculations, a nomenclature of documents is assumed,

which is given in Table B.l. Here document having title “Web Mining Research: A

Survey” is named as ‘A’ and so on.

B.2 SEARCH LOG

For Web searching, a search log is an electronic record of interactions that have occurred

during a searching episode between a Web search engine and users searching for

information on that Web search engine. A Web search engine may be a general-purpose

search engine, a niche search engine, or a searching application on a single Web site. The

users may be humans or computer programs acting on behalf of humans. Interactions are

the communication exchanges that occur between users and the system. Either users or

the system may initiate elements of these exchanges.

A sample fragment of search log for analysis by proposed digital library search system is

shown in Fig B.2.

188

Fig. B.l The Citation Graph for Analysis

C G

H

U
V W

L

M

S

T

X
Y

Z

A

B

D

E

F

I

J

K

N

O

P

Q

R

189

Table B.l The Nomenclature Scheme of Documents

Nomenclature Document Year of

Publication

A Web Mining Research: A Survey 2014

B Web Crawler Architecture 2016

C Network Security: History, Importance, and Future 2015

D Page Ranking Algorithms for Web Mining 2011

E A Survey- Link Algorithm for Web Mining 2012

F How search engines work and a web crawler application 2010

G Network Security: it's time to take it seriously 2013

H Network Security Attacks Solution and Analysis 2012

I Application of Page Ranking Algorithm in Web Mining 2009

J Weighted Page Rank Algorithm Based on Number of Visits of

Links of Web Page

2005

K A Crawler-based Study of Spyware on the Web 2003

L Network Security Using Cryptographic Techniques 2014

M Cybercrime: A threat to Network Security 2003

N Comparative study of Page Ranking Algorithms for Web Mining 2000

O Mercator: A scalable, extensible Web crawler 2001

P Web Crawler: Extracting the Web Data 1998

Q Analysis of Various Web Page Ranking Algorithms in Web

Structure Mining

1990

R Design and Implementation of a High-Performance Distributed

Web Crawler

1996

S A Review of types of Security Attacks and Malicious Software in

Network Security

1998

T Significances and Issues of Network Security 2000

U Application of Genetic Algorithms in Machine learning 2003

V Genetic Algorithms in Cryptography 2010

W Randomized algorithm approach for solving PCP 2013

X A classical view of object-oriented cohesion and coupling 2012

Y Software engineering: a quality management perspective 2007

Z Software engineering: a quality management perspective 2011

190

Fig B.2 Sample Fragment of Search Log

	4.2 PROPOSED CRAWLING PROCESS OF DIGITAL LIBRARIES

