- (a) If $\alpha = (4, 3, 5)$, $\beta = (0, 1, 3)$, $\gamma = (2, 1, 1)$, $\delta = (4, 2, 2)$ in R³ then prove that
 - (i) α is a combination of β and γ .
 - (ii) β is not a linear combination of γ and δ . (8)
 - (b) Show that the set $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), ($ (0, 1, 0)} spans the vector space R³ but is not a basis set. (7)
- Determine the linear mapping $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) of R³ to the vectors (1, 1), (2, 3), (-1, 2) of \mathbb{R}^2 respectively. Find out $\varphi(1, 2, 0)$.
 - (b) Use Gram-Schmidt process to obtain an orthogonal basis from the basis set $\{(1, 1, 0), (0, 1, 0), (1, 0, 1)\}\$ of \mathbb{R}^3 with the standard inner product.

Roll No. Total Pages: 4

003101

December 2023

B.Tech. (CE/IT/CE (Hindi Medium)/CE(DS)/CSE(AIML)) 1st SEMESTER

Mathematics-I (Calculus and Linear Algebra) (BSC-103E)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- (a) Evaluate $\lim_{x \to \infty} (\sec x \tan x)$. (1.5)
 - (b) Define basis and dimensions of a vector space. (1.5)
 - (c) Write down the relationship between Beta & Gamma function. Find out the value of Beta (2, 3). (1.5)
 - Define Rank of a matrix. (1.5)
 - (e) Following vectors are linearly dependent or not (3, 2, 7), (2, 4, 1), (1, -2, 6)(1.5)
 - Define kernel of a linear mapping. (1.5)

003101/2,000/111/709

[P.T.O.

(g) Prove that the matrix A is orthogonal. (1.5)

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
 (1.5)

- (h) Write down the radius of curvature of an implicit equation. (1.5)
- (i) Find out the sum and product of Eigen values of

$$B = \begin{bmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}. \tag{1.5}$$

(j) Explain Taylor theorem with Cauchy's form of remainder. (1.5)

PART-B

- 2. (a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^3 x \cos^{\frac{5}{2}} x \, dx.$ (8)
 - (b) Find out the coordinates of centre of curvature for any point on the parabola $y^2 = 4ax$, also find out the equation of evaluate of the parabola. (7)
- 3. (a) Apply Maclaurin's theorem to $f(x) = (1 + x)^4$ to deduce the expression in the power of x. (8)
 - (b) Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x}}$. (7)

4. (a) Find out the inverse of the matrix C

$$C = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

Also find out non-singular matrix P & Q such that PCQ = I, where I is identity matrix. Verify that $C^{-1} = QP$.

(9)

(b) Find out the rank of the matrix D by reducing it into normal form

$$D = \begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}. \tag{6}$$

5. (a) Show that the equations

$$x + 2y - z = 3,$$

 $3x - y + 2z = 1,$
 $2x - 2y + 3z = 2,$
 $x - y + z = -1$

are consistent and solve them.

(8)

(b) Show that the transformation is singular

$$y_1 = x_1 - x_2 + x_3,$$

 $y_2 = 3x_1 - x_2 + 2x_3,$
 $y_3 = 2x_1 - 2x_2 + 3x_3$

Find out the inverse transformation.

(7)

003101/2,000/111/709

3

[P.T.O.