7. (a) Discuss the various specifications of a DAC Converter? With a neat circuit diagram explain the working of a Weighted resistor type Digital to Analog Converter.

CO3 (10)
(b) Write a short note on semiconductor memories.

Roll No. \qquad

007403

May 2023

B.Tech. (EL) IV SEMESTER

DIGITAL ELECTRONICS (ELPC401)

Time : 3 Hours]

[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) What is the difference between a synchronous and a asynchronous counter?

CO 2 (1.5)
(b) Differentiate between PLA and PAL.
(c) What are the various types of clocks in sequential circuits?

CO 2 (1.5)
(d) What is the resolution in volts of a 10 -bit D/A Converter whose fullscale output is 5 V ?
(e) Which of the digital logic families is the fastest among all?
$\mathrm{CO1}$ (1.5)
$007403 / 125 / 111 / 112$
[P.T.O.
(f) Display the decimal numbers (97 and 19) in Excess-3 code.

CO1 (1.5)
(g) What do you understand by the problem of current hogging?

CO1 (1.5)
(h) What is the significance of ASCII code? CO1 (1.5)
(i) Perform (20-42) using l's complement method.

CO1 (1.5)
(j) What is a race around condition?

CO2 (1.5)

PART-B

2. (a) Perform the following conversions:

CO1 (5)
(i) $(49056)_{10}=(?)_{16}$.
(ii) $(10101)_{2}=(?)_{10}$.
(iii) $(2 \mathrm{AB})_{16}=(?)_{8}$.
(iv) $(\mathrm{C} 20)_{16}=(?)_{2}$.
(v) $(287)_{10}=(?)_{8}$.
(b) Encode data bits 0011 into the 7 -bit even parity Hamming code.

CO1 (5)
(c) Discuss the working of a parallel-in serial-out (PISO) register in detail.

CO2 (5)
3. (a) Reduce the expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3$, $5,7,8,9,10,12,13$) using K-map and implement using NAND gates only.

CO2 (7.5)
(b) With a neat circuit diagram explain the operation of a Counter type A/D converter.

CO2 (7.5)
4. (a) Explain the following terms:

CO1 (5)
(i) Fan in.
(ii) Figure of merit.
(iii) Propagation delay.
(iv). Tristate logic.
(v) Passive pull up.
(b) Implement following Boolean function using a $8: 1$ multiplexer.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,4,5,8,9,15) . \quad \mathrm{CO} 2(5)$
(c) Design a combinational circuit for a common anode display BCD to 7 segment code converter. (for any one segment)

CO2 (5)
5. (a) Design a 4-bit BCD to gray code converter using logic gates.

CO2 (7.5)
(b) Carry out the conversion of S-R Flip-Flop to J-K Flip-Flop

CO2 (7.5)
6. (a) Explain the working of TTL logic family with active pull up configuration with suitable diagrams and truth table.

CO1 (7.5)
(b) Design and implement a Mod-5 up/down counter using JK-Flip-Flop.

CO 2 (7.5)
$007403 / 125 / 111 / 112$
3
[P.T.O.

