7. Explain how interchange between interconnected utilities through several transmission line saves the energy in the following case.

Consider two utility operating areas with following data :

Area: 1

S.No.	Fuel Cost F ₁ (R/MBtu)	Cost Coefficients			Unit Limits (MW)		
		a _i	b _i	c _i	P _i ^{min}	P _i ^{max}	
1	2.0	561	7.92	0.001562	150	600	
2	2.0	310	7.85	0.00194	100	400	
3	2.0	78	7.97	0.00482	50	200	

Area: 2

S.No.	Fuel Cost F ₁ (R/MBtu)	Cost Coefficients			Unit Limits (MW)	
÷	20 24	a _i	b _i	c _i	P _i ^{min}	P _i ^{max}
1	1.9	500	7.06	0.00139	140	590
2	1.9	295	7.46	0.00184	110	440
3	1.9	295	7.46	0.00184	100	440

Load : 700 MW on area 1 and 1100 MW on area 2. Prove how saving is achieved by interconnecting both the areas. (15) CO5 Roll No.

Total Pages: 4

007601

May, 2023

B.Tech. (EL) 6th Semester

POWER SYSTEMS-II (Operation and Control), ELPC-601

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.

PART-A

- 1. (a) Explain Wheeling. (1.5) CO5
 - (b) What is the significance of doing Economic dispatch? (1.5) CO5
 - (c) Compare the various load flow techniques. (1.5) CO1
 - (d) Differentiate between SCADA and PMU. (1.5) CO4
 - (e) Define Power System Stability. Name various types of stability. (1.5) CO2
 - (f) Differentiate between SVC and STATCOM. (1.5) CO3
 - (g) What is free governing action in LFC? (1.5) CO3
 - (h) What is Sparsity in power system and way of handling it?(1.5) CO1

007601/125/111/289

(P.T.O.

007601/125/111/289

4

- (i) Explain energy broker system. (1.5) CO5
- (j) Explain how assessment is done for power system security ? (1.5) CO4

PART-B

2. The following is the system data for a load flow solution for a 5-bus power system. Each line has an impedance of 0.05 + j0.05 pu. The line shunt admittances may be neglected. (15) CO1

Bus	P _D	Q _D	P _G	Q _G	V	Bus
Code	(p.u.)	(p.u.)	(p.u.)	(p.u.)	-	Specification
1	1	0.5	2.0	1.0	1.02+ <i>j</i> 0	PV
2	0	0	2		1.02	PQ
3	0.5	0.2	0	0	-	PQ
4	0.5	0.2	· 0	0	-	PQ
5	0.5	0.2	0	0	-	PQ

- 1. Develop Y_{BUS} matrix.
- 2. Determine Q_2 , δ_2 , V_3 , V_4 and V_5 after first iteration using GS method.
- 3. Assume $Q_{2min} = 0.2$ pu and $Q_{2max} = 0.6$ pu.

2

007601/125/111/289

- 3. (a) Draw the state space model of single area load frequency control and explain it briefly. (5) CO3
 - (b) Single area consists of two units with the following parameters :

Unit-1– 1200 MVA, $R_1 = 6\%$ (on machine base)

Unit-2– 1000 MVA, $R_2 = 4\%$ (on machine base)

The units are sharing 1800 MW at nominal frequency of 50 Hz. Unit 1 supplies 1000 MW and unit 2 supplies 800 MW. The load is now increased by 200 MW. Find steady state frequency and generation of each unit if B = 0. (10) CO3

4. Derive the swing equation and explain with diagram how power system stability is analyzed using equal area criterion. The inertia constant for a 50 Hz, 100 MVA alternator is 5 MJ/MVA.

Determine the energy content of the rotor. If the input of the alternator is suddenly increased by 20 MVA, what would be the acceleration? (15) CO2

- (a) Explain WLSE scheme for state estimation of state variables in power system.
 (8) CO4
 - (b) What are the functions of Ancillary services in deregulated electricity market? (7) CO5
- 6. Write note on :
 - (a) AVR.

(b) T	ypes of energy	interchange.	(15) C	03&5
007601/125	/111/289	3	[]	P.T.O.