May, 2023
B. Tech. (Civil) IV Semester Basics of Solid Mechanics (PCC-CE-205R)

Time: 3 Hours]

[Max. Marks : 75

Instructions :

1. It is compulsory to answer, all the questions (1,5 marks each) of Part -A in. short.
2. Answer any four questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.
4. Use of a non-programmable scientific calculator is allowed.

PART-A

1. (a) Write Simple Bending Equation.
(b) Draw shear stress distribution of T Shapes and circular sections.
(c) What is plastic hinge?
(d) Explain principal stresses. Also write equation for maximum principal stress.
(e) Write crippling load equation or Euler's Equation.
(f) Define Saint Venant's theory of failure.
(g) Define resilience.

002419/60/111/529
(h) What are hoop stress and longitudinal stress? (1.5)
(i) Draw Stress-Strain Curve and define each component including upper and lower yield points.
(j) What is the section modulus for rectangular and circular sections?

PART-B

2. (a) Derive the torsion equation for solid circular shafts, and state the assumptions involved.
(b) Derive the relationship between maximum shear stress and average shear stress.
3. (a) What factors affect the location of the point of contraflexure in a beam under loading?
(b) Determine the collapse load in a continuous beam $A B C$, length of span $A B$ and $B C$ is L, both span carrying uniformly distributed load over the entire span. Plastic moment capacity is Mp throughout the beam $A B$ and $2 M p$ for beam $B C$. Far end A is fixed and C is simply supported.
4. Derive the formula for shear stress in a beam and explain its significance. Also, describe the shear stress behaviour in triangular and T -shaped beam sections.
5. (a) Explain the Moment Area method and how it is used to calculate slope and deflection.
