Roll No.

Total Pages : 5

003404

May 2023

B.Tech. - IV SEMESTER Design & Analysis of Algorithms (PCC-CS-404)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) What is the time complexity of the following code? Justify your answer.

(b) Sort the following functions in the decreasing order of their asymptotic (big-0) complexity : $f_1(n) = n^{\sqrt{n}}, f_2(n)$ = $2^n, f_3(n) = (1.000001)^n, f_4(n) = n^{10} * 2^{(n/2)}.$ (1.5)

003404/1055/111/451

A [P.T.O.

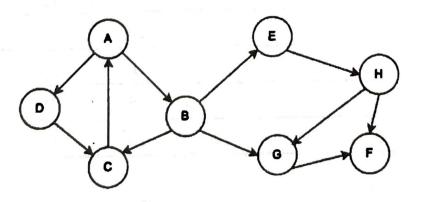
- (c) Differentiate Greedy algorithm and Dynamic programming. (1.5)
- (d) State Job Sequencing with Deadline Problem. Write down time and space complexity if problem solved by Greedy approach.
 (1.5)
- (e) Define Principle of Optimality with suitable example.
 - (1.5)
- (f) Draw state space tree of 4-Queens problem. (1.5)
- (g) Why does Dijkstra's algorithm fail on negative weights? (1.5)
- (h) Draw binary search trees for the given set of keys and their corresponding frequencies and find the Optimal among them. keys[] = {10, 12, 20}, freq[] = {34, 8, 50}
 (1.5)
- (i) Explain Least Cost Search function for branch and bound algorithm design technique. (1.5)
- (j) What is the importance of approximation algorithm?

(1.5)

PART-B

- 2. (a) Solve the following recurrence relation.
 - (i) $T(n) = 2T(n/2) + \log n \operatorname{with} T(1) = 1$
 - (ii) $T(n) = 2T(\sqrt{n}) + 1$ if n > 2 and T(n) = 2 if 0 < n < = 2. (10)
 - (b) How are time and space trade-offs used to optimize the performance of an algorithm? Provide an example of an algorithm that optimizes time at the expense of space and vice-versa. (5)

003404/1055/111/451


3. (a) Give a dynamic-programming solution to the 0-1 knapsack problem that runs in 0(n/W) time, where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack.

> Consider the weights and values of items listed below. The task is to pick a subset of these items such that their total weight is no more than 5 Kgs and o their total value is rnaximized.

Item No.	Weight (Kg)	Values (Rs.)
1	2	3
2	3	4
3	4	5
4	5	6

 (b) Consider the given graph. In what order will the nodes be visited using a Breadth First Search and Depth First Search? (Assume starting vertex A) (5)

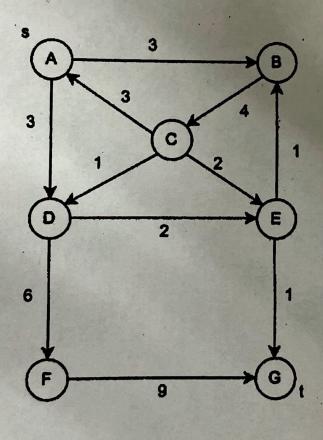
Note: If a node has multiple neighbors then select which is alphabetically near to node.

003404/1055/111/451

3

[P.T.O.

- (a) The N-Queen problem is a classic problem in computer science, where the goal is to place N queens on an N × N chessboard so that no two queens attack each other.
- (i) Write a brute-force algorithm to solve the N-Queen problem. Analyze the time complexity of your algorithm, and explain why it is not efficient for large values of N.
 - (ii) Write a backtracking algorithm to solve the N-Queen problem. Analyze the time complexity of your algorithm, and compare it with the brute-force algorithm.
 (12)
 - (b) Describe the Traveling Salesman Problem and explain why it is NP-complete. (3)
- (a) A delivery truck travels between multiple destinations. The truck starts at city A and visits cities B, C, D, and E before returning to A. Design an algorithm to find the shortest path for the truck to travel while minimizing cost. Use following distance matrix to solve the problem.


C A B D E 0 A 10 20 15 30 B 10 0 25 20 30 C 20 25 0 15 35 D 15 30 35 0 10 E 30 20 15 10 0

(7)

(b) Write a short note on Randomized algorithms.
003404/1055/111/451 4

- 6. (a) Define spanning tree. Write Kruskal's algorithm for finding minimum cost spanning tree. Describe how Kruskal's algorithm is different from Prim's algorithm for finding minimum cost spanning tree. (10)
 - (b) What is Topological Sorting? Explain with example.
 - (5)
- (a) What is the relationship among P, NP, NP-Hard and NP-Complete problems? Show with the help of a diagram.
 (8)
 - (b) In a given directed graph with source s and sink t, where each edge in the graph has a non-negative capacity. Find the maximum flow that can be sent from s to t.

5

003404/1055/111/451