(b) Using Modified Euler's method to find the value of $y(0.2)$ and $y(0.4)$ given that $\frac{d y}{d x}=y+e^{x}, y(0)=0$.
6. (a) To prove that
(i) $\mu \delta=\frac{1}{2}(\Delta+\nabla)$
(ii) $\delta\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)=\Delta \mathrm{E}^{-1}+\Delta$.
(b) Explain Regula-False Position method and hence find a real root of the equation $x \log _{10} x=1.2$ correct to four decimal places.
7. Using Runge-Kutta method of order four to find the value of y for $x=0.1$ and 0.2 if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ where $x=0$.

Roll No. \qquad Total Pages : 4

May 2023
 B.Sc. - IV SEMESTER
 Numerical Methods (OMTH-401)

Time : 3 Hours]
[Max. Marks : 75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.
4. Scientific calculator can be used.

PART-A

1. (a) Round-off the following numbers up to four significant figures :
38.46235, $0.70029,0.0022218$.
(b) Explain the term 'round-off error' and round-off the following numbers to two decimal places :
52.275, 2.3742.
(c) What is normalized floating point representation? Find the multiplication of $0.1234 \mathrm{E}-10$ and $0.1111 \mathrm{E}-4$ in normalized floating point form.
(d) If $y(1)=4, y(3)=12, y(4)=19$ and $y(x)=7$, then find x using Lagrange's formula.
(e) Given $f(1)=3, f(2)=8, f(3)=15$, then find the value of $\Delta^{2} f(1)$.
(f) Write the finite difference formula for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$.
(g) Write down the formula for Milne' method for finding the solution of the problem $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$.
(h) To prove that $\Delta^{3} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0}$.
(i) Write down the Newton's iterative formula for finding the value of $\sqrt{\mathrm{N}}$.
(j) Form the divided difference table for the following data:

X	5	15	22
Y	7	36	160

PART-B

2. (a) Find a real root of the equation $x^{3}-3 x+1=0$ by Newton's-Raphson method correct to three decimal places.
(b) Find the root of the equation $x e^{x}=\cos x$ correct to four decimal places by Secant method.
3. (a) Find $f(22)$ from the Gauss forward formula :

x	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

(b) Using Newton's divided difference formula, find the missing value from the table :
(7)

x	1	2	4	5	6
y	14	15	5	-	9

4. (a) Given the following table of values of x and y,

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.000	13.625	24.000	38.875	59.000

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.5$.
(b) Evaluate the following integral by using Simpson's $1 / 3$ rd rule,

$$
\int_{0}^{\pi} \sin x d x
$$

by taking eleven ordinates.
5. (a) Solve the following equations

$$
\begin{array}{r}
28 x+4 y-z=32 \\
x+3 y+10 z=24 \\
2 x+17 y+4 z=35
\end{array}
$$

by Gauss-Seidal method, correct to three decimal places.

