May, 2023
B.Sc. (H) Mathematics VIth SEMESTER

Number Theory (DEMH-604)
Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find the $l c m$ and $g c d$ of 272 and 1479.
(b) Find the remainder if 3^{40} is divided by 23.
(c) Find all positive integral solutions of the Diophantine equation $5 x+3 y=52$.
(d) Justify with the help of an example that converse of Fermat's theorem is not true.
(e) Check whether the set $\{11,-3,-4,7,18,22\}$ forms a CRS $(\bmod 6)$ or not?
(f) Evaluate $\mu(270)$.
(g) Find the highest power of 7 contained in 1000! (1.5)
(h) Define primitive root. Also, give an example.
(i) State Fermat's last theorem.
(j) Using the linear cipher $\mathrm{C} \equiv \mathrm{P}+11(\bmod 26)$, encrypt the message NUMBER THEORY.

PART-B

2. (a) Solve the congruence $259 x \equiv 5(\bmod 11)$.
(b) State and prove fundamental theorem of arithmetic.
3. (a) Prove that a linear congruence $a x \equiv b(\bmod m)$, where a is not a multiple of m, has a solution if and only if $\operatorname{gcd}(a, m)$ divides b.
(b) Let x and y be two real numbers and m be an integer, then prove the followine properties :
I. $\quad[x-y] \leq[x]-[y] \leq[x-y]+1$.
II. $\left[\frac{[x]}{m}\right]=\left[\frac{x}{m}\right]$.
4. State and prove Chinese remainder theorem. Use this theorem to find all the integers that give the remainders $2,6,5$ when divided by $5,7,11$ respectively.
(15)
5. (a) State and prove F. Merten's Lemma.
(5)
(b) Define Euler's function. Prove that if p is a prime and $k>0$, then

$$
\begin{equation*}
\phi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right) \tag{10}
\end{equation*}
$$

fo. (a) Find all the quadratic residues and non-residues of 7.
(b) If p is an odd prime and a, b be any integers coprime to p, then prove that the following properties of Legendre symbol hold
I. $\quad\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
II. $\left(-\frac{1}{p}\right)=(-1)^{\frac{p-1}{2}}$.
III. $\left(\frac{a b^{2}}{p}\right)=\left(\frac{a}{p}\right)$.
IV. $\left(\frac{1}{p}\right)=1$.
7. (a) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with seed Q .
(b) Prove that the positive primitive solutions of $x^{2}+y^{2}$ $=z^{2}$, with y even are $x=r^{2}-s^{2}, y=2 r s$ and $z=r^{2}+s^{2}$, where r and s are integers of opposite parity with $r>s>0$ and $(r, s)=1$.

